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Abstract
Anumerical semigroup is a submonoid ofZ≥0 whose complement inZ≥0 is finite. For
any set of positive integers a, b, c, the numerical semigroup S(a, b, c) formed by the
set of solutions of the inequality ax mod b ≤ cx is said to be proportionally modular.
For any interval [α, β], S([α, β]) is the submonoid of Z≥0 obtained by intersecting
the submonoid of Q≥0 generated by [α, β] with Z≥0. For the numerical semigroup
S generated by a given arithmetic progression, we characterize a, b, c and α, β such
that both S(a, b, c) and S

([α, β]) equal S.

Keywords Numerical semigroups · Diophantine inequalities · Proportionally
modular

1 Introduction

A numerical semigroup S is a submonoid of Z≥0 whose complement Z≥0 \ S is finite.
For the complement to be finite, it is necessary and sufficient that gcd(S) = 1. For a
given subset A of positive integers, we write

〈A〉 = {
a1x1 + · · · + akxk : ai ∈ A, xi ∈ Z≥0, k ∈ N

} ⋃
{0}.

Note that 〈A〉 is a submonoid of Z≥0, and that S = 〈A〉 is a numerical semigroup if
and only if gcd(A) = 1.
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For a numerical semigroup S, the complement Z≥0 \ S is denoted by G(S), and
called the gap set of S. The largest element in G(S) is called the Frobenius number of
S, and denoted by F(S). The cardinality of G(S) is called the genus of S, and denoted
by g(S).

We say that A is a set of generators of the numerical semigroup S, or that the
numerical semigroup S is generated by the set A, when S = 〈A〉. Further, A is a
minimal set of generators for S if A is a set of generators of S and no proper subset
of A generates S. Every numerical semigroup has a unique minimal set of generators.
The embedding dimension e(S) of S is the size of the minimal set of generators.

Given a subset A of Q≥0, we denote by 〈A〉 the submonoid of Q≥0 generated by
A:

〈A〉 = {
a1x1 + · · · + akxk : ai ∈ A, xi ∈ Z≥0, k ∈ N

} ⋃
{0}.

Then S(A) = 〈A〉 ∩ Z≥0 is a submonoid of Z≥0. Furthermore, S(A) is a numerical
semigroup.We say that S(A) is the numerical semigroup associated to A.When A = I
is an interval, there is a simple way to describe 〈A〉.
Proposition 1 ( [8, Lemma 1, pp. 282]) Let x ∈ Q

+ and let I be an interval. Then
x ∈ 〈I 〉 if and only if there exists a positive integer n such that x

n ∈ I .

A proportionally modular Diophantine inequality is an expression of the form
ax mod b ≤ cx , where a, b, c are positive integers. The set of integer solutions of
a proportionally modular Diophantine inequality form a numerical semigroup. For
a, b, c ∈ N, define

S(a, b, c) = {x ∈ Z≥0 : ax mod b ≤ cx}.

A numerical semigroup of this form is called proportionally modular. Since the
inequality ax mod b ≤ cx has the same set of integer solutions as (a mod b)x mod
b ≤ cx , we may assume that a ∈ {1, . . . , b}. We note that S(b, b, c) = Z≥0.

Toms [12] in an attempt to solve problems in classification theory in C�-algebras
defined Toms decomposable numerical semigroups. Rosales et al [10] introduced the
concept of proportionally modular numerical semigroups [10]. Rosales & Garcia-
Sanchez [9] showed that a numerical semigroup is Toms decomposable if and only if
it is the intersection of finitely many proportionally modular numerical semigroups.

Given a proportionally modular numerical semigroup, there exists a dual propor-
tionally modular numerical semigroup.

Proposition 2 ( [4, Proposition 1, pp. 416]) Let a, b, c ∈ N with c < a < b. Then

S(a, b, c) = S(b + c − a, b, c).

Triples (a′, b′, c′) other than (b + c − a, b, c) satisfy S(a, b, c) = S(a′, b′, c′), as
borne out by Theorem 14.

We note that S
([α, β]) = Z≥0 if and only if α ≤ 1

n ≤ β for some n ∈ N, and that
S(a, b, c) = Z≥0 if and only if a mod b ≤ c. The following two propositions give a
connection between S(a, b, c) and S

([α, β]).
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Proposition 3 ( [11, Lemma 1, pp. 454]) Let a, b, c ∈ N with c < a. Then

S(a, b, c) = S
([

b
a , b

a−c

])
.

Proposition 4 ( [11, Lemma 1, pp. 454]) Let p
q , r

s ∈ Q with p
q < r

s . Then

S
([

p
q , r

s

])
= S(qr , pr , qr − ps).

Let a, b, c ∈ N with c < a < b. Using Propositions 2 and 3 , there exist intervals
[α, β] and [α′, β ′], with rational endpoints, and with α > 1 and α′ > 1, such that

S ([α, β]) = S
([α′, β ′]) .

Moreover, it easily follows from Propositions 2 and 3 that

α′ = β

β − 1
, β ′ = α

α − 1
. (1)

The pair α′, β ′ is not uniquely determined; see for instance, Theorem 12.
Bézout sequences are closely connected to the study of proportionally modular

numerical semigroups; see [11]. A Bézout sequence is an increasing finite sequence of

rational numbers
{
p1
q1

, . . . ,
pn
qn

}
with gcd(pk, qk) = 1 satisfying pk+1qk− pkqk+1 = 1

for k ∈ {1, . . . , n−1}. A Bézout sequence is said to be proper if pk+�qk − pk+�qk > 1
for each k and each � > 1. As a consequence, we have

p1 > · · · > pr < pr+1 < · · · < pn (2)

for some r ∈ {1, . . . , n}; see [11, Corollary 18, pp. 459].
From the proof of Lemma 22 and Theorem 23 in [11], given an interval I = [α, β],

α, β ∈ Q and S = S(I ), there exists a permutation of the generators a1, . . . , ae of S
and positive integers b1, . . . , be such that

{
an
bn

}

1≤n≤e
forms a proper Bézout sequence, and α ≤ a1

b1
<

ae
be

≤ β. (3)

Given rational numbers p1/q1 and pn/qn in reduced form, there exists a unique
proper Bézout sequence with first term p1/q1 and last term pn/qn . This unique Bézout
sequence has been determined algorithmically; see [3, Algorithm 3.5].

The following proposition gives a characterization of proportionally modular
numerical semigroups in terms of its minimal set of generators.

Proposition 5 ( [11, Theorem31, pp. 463]) Anumerical semigroup S is proportionally
modular if and only if there exists a permutation a1, . . . , ae of its minimal set of
generators such that the following two conditions hold:
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(i) gcd(ak, ak+1) = 1 for 1 ≤ k ≤ e − 1, and
(ii) ak | (ak−1 + ak+1) for 2 ≤ k ≤ e − 1.

Certain aspects of the numerical semigroup generated by an arithmetic progression
a, a + d, a + 2d, . . . , a + (k − 1)d have been studied by many authors (see [1,2,5–
7,13]). In particular, the gap set G(S) and the Frobenius number F(S) are determined
by the following result in [13]. It can be shown that the embedding dimension e(S) =
min{a, k}.
Proposition 6 ( [13, Theorem 1, pp. 780]) Let a, d, k be positive integers, with
gcd(a, d) = 1 and k ≥ 2. Let S = 〈a, a + d, a + 2d, . . . , a + (k − 1)d〉. Then
(i) G(S) =

{
ax + dy : 0 ≤ x ≤

⌊
y−1
k−1

⌋
, 1 ≤ y ≤ a − 1

}
.

(ii) F(S) = maxG(S) = a
⌊
a−2
k−1

⌋
+ d(a − 1).

Given a numerical semigroup S, it is natural to ask for a characterization of positive
integers a, b, c for which S(a, b, c) = S, and also for a characterization of intervals
I = [α, β] for which S

([α, β]) = S. We note that Propositions 2 and 3 connect the
numerical semigroups S(a, b, c) and S

([α, β]), so characterizing one characterizes
the other. Let S = S

(
AP(a, d; k)) = 〈a, a + d, a + 2d, . . . , a + (k − 1)d〉, k ≥ 2.

Since S
(
AP(a, d; k)) = S

(
AP(a, d; a)

)
whenever k > a, we may assume, without

loss of generality, that k ≤ a.
In this paper, we characterize a, b, c andα, β such that both S(a, b, c) and S

([α, β])
equal the numerical semigroup S = S

(
AP(a, d; k)) generated by any arithmetic pro-

gression. The two characterizations appear as Theorems 12 and 14 , and are based on
Propositions 9, 10, and 11 . Delgado & Rosales [4] provide an algorithmic formula to
determine F

(
S(a, b, c)

)
that does not lead to an explicit formula. The determination of

an explicit formula for F
(
S(a, b, c)

)
therefore remains an open problem. Our charac-

terization of a, b, c for which S = S
(
AP(a, d; k)) yields an explicit formula in these

special cases since the problem of determining the Frobenius number for numerical
semigroups generated by arithmetic progressions is well known, as mentioned above.
We note in passing that the algorithm in [3, Algorithm 3.5] to compute the unique
proper Bézout sequence connecting two given reduced rational numbers p1/q1 and
pn/qn relies on knowing these rational numbers. Since there is no obvious relation-
ship between p1/q1 and pn/qn , and the numerical semigroup S, these endpoints of
the proper Bézout sequence have to be determined first. This means that the algorithm
in [3, Algorithm 3.5] is not directly useful in resolving the problem.

2 Main results

In this section, we consider an inverse problem related to two types of numerical semi-
groups that were introduced in Sect. 1 – numerical semigroups generated by intervals
[α, β] and proportionally modular numerical semigroups S(a, b, c). Propositions 2
and 3 in Sect. 1 connect these two types of numerical semigroups.

In order that the numerical semigroup generated by an arithmetic progression a, a+
d, a+2d, . . . , a+(k−1)d be a numerical semigroup, it is necessary and sufficient that
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Fig. 1 For I such that S(I ) = {0, 5, →}, [5, 9] ⊂ I ⊂ (4, ∞) or [ 92 , 8] ⊂ I ⊂ (4,∞) or [ 97 , 5
4 ] ⊂ I ⊂

(1, 4
3 ) or [ 87 , 9

7 ] ⊂ I ⊂ (1, 4
3 )

gcd(a, d) = 1. Henceforth we assume gcd(a, d) = 1, and write S
(
AP(a, d; k)) =

〈a, a + d, a + 2d, . . . , a + (k − 1)d〉. The set {a, a + d, a + 2d, . . . , a + (k − 1)d}
is the minimal set of generators for S

(
AP(a, d; k)) when 2 ≤ k ≤ a, whereas the set

{a, a+d, a+2d, . . . , a+(a−1)d} is theminimal set of generators for S
(
AP(a, d; k))

for k > a. Throughout this section,wemay therefore assumewithout loss of generality
that 2 ≤ k ≤ a.

We illustrate our main result, Theorem 12, with the following two examples.
In Example 7 we determine intervals I for which S(I ) is the ordinary numerical
semigroup {0, 5,→}, and in Example 8 intervals I for which S(I ) is the numerical
semigroup 〈5, 7〉 with embedding dimension two. These are both special cases of our
result in Theorem 12.

Example 7 We find I = [α, β], α > 1, for which S(I ) = {0, 5,→}. From the argu-
ment leading up to equation (3), we have {a1, . . . , a5} = {5, . . . , 9}, giving rise to the
following four Bézout sequences:

• 5
1 ,

6
1 ,

7
1 ,

8
1 ,

9
1 .

• 9
2 ,

5
1 ,

6
1 ,

7
1 ,

8
1 .

• 9
8 ,

8
7 ,

7
6 ,

6
5 ,

5
4 .

• 8
7 ,

7
6 ,

6
5 ,

5
4 ,

9
7 .

This leads to

α ≤ 5
1 < 9

1 ≤ β or α ≤ 9
8 < 5

4 ≤ β or α ≤ 9
2 < 8

1 ≤ β or α ≤ 8
7 < 9

7 ≤ β.

Note that the pairs of intervals [5, 9], [ 98 , 5
4 ] and [ 92 , 8], [ 87 , 9

7 ] are connected byEqn. (1).
From Proposition 1, g

n /∈ I whenever g ∈ G(S) = {1, 2, 3, 4} and n ∈ N. This
results in

α ∈ (4, 5], β ∈ [9,∞) or α ∈ (
1, 9

8

]
, β ∈

[
5
4 ,

4
3

)
or α ∈ (

4, 9
2

]
, β ∈ [8,∞)

or α ∈ (
1, 8

7

]
, β ∈ [ 9

7 ,
4
3

)
.

Note that the pairs of intervals (4, 5],
[
5
4 ,

4
3

)
, [9,∞),

(
1, 9

8

]
,
(
4, 9

2

]
,
[ 9
7 ,

4
3

)
, and [8,∞),

(
1, 8

7

]
are connected by Eqn. (1).

By Proposition 3 and the fact that α ∈ (4, 5] and β ∈ [9,∞) we get that

b
a ∈ [4, 5), b

a−c ∈ [9,∞) ⇐⇒ b
5 < a ≤ b

4 , a − b
9 ≤ c.
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5
3

23
14

7
4

23
13

7
3

5
2

23
9

23
10

Fig. 2 For I such that S(I ) = 〈5, 7〉, [ 53 , 7
4 ] ⊂ I ⊂ ( 2314 , 23

13 ) or [ 73 , 5
2 ] ⊂ I ⊂ ( 2310 , 23

9 )

In the case where α ∈ (
1, 9

8

]
and β ∈

[
5
4 ,

4
3

)
, again using Proposition 3 we get

b
a ∈ (

1, 9
8

]
, b
a−c ∈

[
5
4 ,

4
3

)
⇐⇒ 8b

9 ≤ a < b, a − 4b
5 ≤ c < a − 3b

4 .

In the other cases we get

b
a ∈ (

4, 9
2

]
, b
a−c ∈ [8,∞) ⇐⇒ 2b

9 < a ≤ b
4 , a − b

8 ≤ c

and

b
a ∈ (

1, 8
7

]
, b
a−c ∈ [ 9

7 ,
4
3

) ⇐⇒ 7b
8 ≤ a < b, a − 9b

7 ≤ c < a − 3b
4 .

These cases together form an exhaustive list of all a, b, c ∈ N satisfying S(a, b, c) =
{0, 5,→}.
Example 8 FromProposition 5, it follows that every numerical semigroupwith embed-
ding dimension 2 is proportionally modular. We find I = [α, β], α > 1, for which
S(I ) = 〈5, 7〉. From the argument leading up to Eqn. (3), we have {a1, a2} = {5, 7},
so that 1 < 5

b1
< 7

b2
and 7b1 − 5b2 = 1 or 1 < 7

b1
< 5

b2
and 5b1 − 7b2 = 1. This

leads to

α ≤ 5
3 < 7

4 ≤ β or α ≤ 7
3 < 5

2 ≤ β.

Note that the intervals [ 53 , 7
4 ] and [ 73 , 5

2 ] are connected by equation (1).
FromProposition1, gn /∈ I whenever g ∈ G(S) = {1, 2, 3, 4, 6, 8, 9, 11, 13, 16, 18, 23}

and n ∈ N. This results in

α ∈
(
23
14 ,

5
3

]
, β ∈ [ 7

4 ,
23
13

)
or α ∈ ( 23

10 ,
7
3

]
, β ∈

[
5
2 ,

23
9

)
.

Note that the pairs of intervals
(
23
14 ,

5
3

]
,
[
5
2 ,

23
9

)
and

[ 7
4 ,

23
13

)
,
( 23
10 ,

7
3

]
are connected

by Eqn. (1).

By Proposition 3, when α ∈
(
23
14 ,

5
3

]
and β ∈ [ 7

4 ,
23
13

)
, this implies that any a, b, c ∈

N satisfying

3b
5 ≤ a < 14b

23 , a − 4b
7 ≤ c < a − 13b

23

will give S(a, b, c) = 〈5, 7〉.
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Similarly, when α ∈ ( 23
10 ,

7
3

]
and β ∈

[
5
2 ,

23
9

)
will give that any a, b, c ∈ N

satisfying

5b
7 ≤ a < 10b

23 , a − 2b
5 ≤ c < a − 9b

23

will also give S(a, b, c) = 〈5, 7〉.
These cases together form an exhaustive list of all a, b, c ∈ N satisfying

S(a, b, c) = 〈5, 7〉.
The main result in this section is a characterization of α, β such that S

([α, β]) =
S
(
AP(a, d; k)) in Theorem 12. Essential to our proof of Theorem 12 are three results

listed as Propositions 9, 10, and 11 .We also characterize a, b, c such that S(a, b, c) =
S
(
AP(a, d; k)), via Proposition 2 and Theorem 12. We also state, without proof, the

two special cases S
(
AP(a, 1; k)) and S

(
AP(a, 1; a)

)
.

Proposition 9 Let a, d, k be positive integers, with gcd(a, d) = 1 and 2 ≤ k ≤ a.
Let S

(
AP(a, d; k)) = 〈a, a + d, a + 2d, . . . , a + (k − 1)d〉. If dda = 1 + qaa, with

1 ≤ da < a and 0 ≤ qa < d, and λ =
⌊
a−2
k−1

⌋
, then

max

⎧
⎨

⎩
g

⌈
dag
a

⌉ : g ∈ G(S)

⎫
⎬

⎭
= λa + d(a − 1)

λda + qa(a − 1) + 1
= F(S)

⌈
daF(S)

a

⌉ ,

with the maximum achieved at g = λa + d(a − 1).

Proof If g ∈ G(S), then g = ax + dy, with 0 ≤ x ≤
⌊
y−1
k−1

⌋
and 1 ≤ y ≤ a − 1. Let

da be such that dda ≡ 1 (mod a), da > 0, and write dda = qaa+1, qa ∈ Z≥0. Then

dag

a
= da(ax + dy)

a
= dax + qa y + y

a
.

Since 1 ≤ y < a,

g
⌈
dag
a

⌉ = ax + dy

dax + qa y + 1
def= f�(x, y).

We show that

max
{
f�(x, y) : 0 ≤ x ≤

⌊
y−1
k−1

⌋
, 1 ≤ y ≤ a − 1

}
= f�

(⌊
a−2
k−1

⌋
, a − 1

)
= F(S)

⌈
daF(S)

a

⌉ .

(4)
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Fix y ∈ {1, . . . , a − 1}. For x ∈
{
0, 1, 2, . . . ,

⌊
y−1
k−1

⌋
− 1

}
, the numerator of

f�(x + 1, y) − f�(x, y) = a(x + 1) + dy

da(x + 1) + qa y + 1
− ax + dy

dax + qa y + 1

is

a(dax + qa y + 1) − da(ax + dy) = a(qa y + 1) − y(qaa + 1) = a − y > 0.

Therefore

max
{
f�(x, y) : 0 ≤ x ≤

⌊
y−1
k−1

⌋
, 1 ≤ y ≤ a − 1

}

= max
{
f�
(⌊

y−1
k−1

⌋
, y

)
: 1 ≤ y ≤ a − 1

}
. (5)

For y ∈ {1, . . . , a − 2}, the numerator of

f�
(⌊

y
k−1

⌋
, y + 1

)
− f�

(⌊
y−1
k−1

⌋
, y

)
=

a
⌊

y
k−1

⌋
+ d(y + 1)

da
⌊

y
k−1

⌋
+ qa(y + 1) + 1

−
a
⌊
y−1
k−1

⌋
+ dy

da
⌊
y−1
k−1

⌋
+ qa y + 1

is

d
(
da

⌊
y−1
k−1

⌋
+ qa y + 1

)
− qa

(
a
⌊
y−1
k−1

⌋
+ dy

)
=

⌊
y−1
k−1

⌋
+ d > 0 if (k − 1) � y,

and

(a + d)
(
da

⌊
y−1
k−1

⌋
+ qa y + 1

)
− (da + qa)

(
a
⌊
y−1
k−1

⌋
+ dy

)

=
⌊
y−1
k−1

⌋
− y + a + d > 0 if (k − 1) | y.

Therefore

max
{
f�
(⌊

y−1
k−1

⌋
, y

)
: 1 ≤ y ≤ a − 1

}
= f�

(⌊
a−2
k−1

⌋
, a − 1

)
.

(6)

The claim in Eqn. (4) follows from Eqns. (5) and (6). ��

Proposition 10 Let a, d, k be positive integers, with gcd(a, d) = 1 and 2 ≤ k ≤ a.
Let S

(
AP(a, d; k)) = 〈a, a+d, a+2d, . . . , a+ (k−1)d〉, and set b = a+ (k−1)d.

If ddb = 1 + qbb, with 1 ≤ db < b and 0 ≤ qb < d, and a − 2 = λ(k − 1) + μ,
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0 ≤ μ < k − 1, then

min

⎧
⎨

⎩
g

⌊
dbg
b

⌋ : g ∈ G(S), dbg ≥ b

⎫
⎬

⎭
= λb + d

λdb + qb
= F(S) − μd

⌊
db
(
F(S)−μd

)

b

⌋ ,

with the minimum achieved at g = λa + d
(
λ(k − 1) + 1

) = λb + d.

Proof If g ∈ G(S), then g = ax + dy, with 0 ≤ x ≤
⌊
y−1
k−1

⌋
and 1 ≤ y ≤ a − 1. Let

db be such that ddb ≡ 1 (mod b), db > 0, and write ddb = qbb+ 1, qb ∈ Z≥0. Then

dbg

b
= dbx

(
b − (k − 1)d

) + dbdy

b

= dbx + dbd

b

(
y − (k − 1)x

)

= dbx + qb
(
y − (k − 1)x

) + y − (k − 1)x

b
.

Since 0 < y − (k − 1)x < a < b, we have

g
⌊
dbg
b

⌋ = ax + dy

dbx + qb
(
y − (k − 1)x

) def= fu(x, y).

We show that

min
{
fu(x, y) : 0 ≤ x ≤

⌊
y−1
k−1

⌋
, 1 ≤ y ≤ a − 1

}
= fu (λ, λ(k − 1) + 1) = F(S) − μd

⌊
d−1

(
F(S)−μd

)

b

⌋ .

(7)

Fix y ∈ {1, . . . , a − 1}. For x ∈
{
0, 1, 2, . . . ,

⌊
y−1
k−1

⌋
− 1

}
, the numerator of

fu(x + 1, y) − fu(x, y) = a(x + 1) + dy

db(x + 1) + qb
(
y − (k − 1)(x + 1)

) − ax + dy

dbx + qb
(
y − (k − 1)x

)

is

a
(
dbx + qb

(
y − (k − 1)x

)) − (
db − qb(k − 1)

)
(ax + dy) = y

(
aqb − d(db − qb(k − 1)

))

= y
(
qb
(
a + (k − 1)d

) − (qbb + 1)
) = −y < 0.

Therefore
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838 E. F. Elizeche, A. Tripathi

min
{
fu(x, y) : 0 ≤ x ≤

⌊
y−1
k−1

⌋
, 1 ≤ y ≤ a − 1

}

= min
{
fu
(⌊

y−1
k−1

⌋
, y

)
: 1 ≤ y ≤ a − 1

}
. (8)

Since y − (k − 1)
⌊
y−1
k−1

⌋
= 1 + (

y − 1(mod k − 1)
)
, we may write

fu
(⌊

y−1
k−1

⌋
, y

)
=

a
⌊
y−1
k−1

⌋
+ dy

db
⌊
y−1
k−1

⌋
+ qb

(
1 + (

y − 1 (mod k − 1)
)) . (9)

Write y − 1 = q(k − 1) + r , 0 ≤ r < k − 1. Then the minimum on the right-side
of Eqn. (8) can be written as

min

{
qa + dy

qdb + qb(r + 1)
: 0 ≤ q ≤ λ − 1, 0 ≤ r < k − 1 or q = λ, 0 ≤ r ≤ μ

}

(10)

in view of Eqn. (9).
Fix q. For 0 ≤ q < λ, let 0 ≤ r < k − 1, and for q = λ, let 0 ≤ r ≤ μ. The

numerator of

fu
(⌊

y
k−1

⌋
, y + 1

)
− fu

(⌊
y−1
k−1

⌋
, y

)

= qa + d(y + 1)

qdb + qb(r + 2)
− qa + dy

qdb + qb(r + 1)
= d

(
qdb + qb(r + 1)

) − qb(qa + dy)
(
qdb + qb(r + 1)

)(
qdb + qb(r + 2)

)

is

q(qbb − qba + 1) − qbd
(
y − (r + 1)

)

= q + q
(
qb(k − 1)d

) − qbdq(k − 1) = q > 0.

So for fixed q, the minimum is achieved when r = 0, and we now have

min

{
qa + dy

qdb + qb(r + 1)
: 0 ≤ q ≤ λ − 1, 0 ≤ r < k − 1 or q = λ, 0 ≤ r ≤ μ

}

= min

{
qb + d

qdb + qb
: 0 ≤ q ≤ λ

}
. (11)

Finally for q ∈ {0, 1, 2, . . . , λ − 1}, the numerator of

(q + 1)b + d

(q + 1)db + qb
− qb + d

qdb + qb
= b(qdb + qb) − db(qb + d)

(qdb + qb)
(
(q + 1)db + qb

)
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is

qbb − (qbb + 1) < 0.

Therefore, the minimum is achieved at q = λ, and we have

min

{
qb + d

qdb + qb
: 0 ≤ q ≤ λ

}
= λb + d

λdb + qb
= fu (λ, λ(k − 1) + 1) . (12)

The claim in Eqn. (7) follows from Eqns. (8) - (12). ��
Proposition 11 Let a, d be positive integers, with gcd(a, d) = 1 and let b = a+ (a−
1)d. Let S

(
AP(a, d; a)

) = 〈a, a + d, a + 2d, . . . , a + (a − 1)d〉, and let

dda = 1 + qaa, ddb = 1 + qbb, aab ≡ 1 (mod b), dd ′ ≡ 1 (mod b − d),

where

1 ≤ da < a, 0 ≤ qa < d, 1 ≤ db < b,

0 ≤ qb < d, 1 ≤ ab < b, 1 ≤ d ′ < b − d.

(i) In terms of da and qa, we have

qb = qa, db = da + (a − 1)qa,

d ′ = da + (a − 2)qa, ab = (a − 1)qa + da + 1.

(ii)

⌈
dag

a

⌉
=

⌈abg
b

⌉
and

⌊
dbg

b

⌋
=

⌊
d ′g
b − d

⌋
.

for each g ∈ G(S).

Proof If g ∈ G(S), then g = dy, with 1 ≤ y ≤ a − 1. From Propositions 9 and 10 ,

⌈
dag

a

⌉
= qa y + 1 and

⌊
dbg

b

⌋
= qby. (13)

Multiplying both sides of dda − qaa = 1 by a − 1, then adding and subtracting
ada , and rearranging, we get

a
(
(a − 1)qa + da + 1

) − bda = 1.

Thus, a
(
(a − 1)qa + da + 1

) ≡ 1 (mod b) and 1 ≤ (a − 1)qa + da + 1 < b, so that

ab = (a − 1)qa + da + 1. (14)
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Therefore

abg

b
=

(
(a − 1)qa + da + 1

)
dy

b

= (b − a)qa y + (
1 + qaa

)
y + dy

b

= qa y + (d + 1)y

b
.

Since 0 ≤ (d + 1)y ≤ (d + 1)(a − 1) < b, we have
⌈ abg

b

⌉ = qa y + 1 =
⌈
dag
a

⌉
by

Eqn. (13). This proves the first part of the proposition.
For j ∈ {0, . . . , a − 1}, we have d(da + jqa

) − (a + jd)qa = dda − qaa = 1.
Thus, d

(
da + jqa

) ≡ 1 mod (a + jd), and since 1 ≤ da + jqa < a + jd, we have
da + jqa equals d−1 mod (a + jd) for each j ∈ {0, . . . , a − 1}. In particular,

db = da + (a − 1)qa . (15)

Multiplying both sides of Eqn. (15) by d we get

1 + qbb = ddb = d
(
da + (a − 1)qa

) = (1 + qaa) + (a − 1)dqa = 1 + qab.

Since d ′ is d−1 mod a + jd for j = a − 2, we have

d ′ = da + (a − 2)qa and qa = qb. (16)

Eqns. (14), (15) and (16) prove part (i).
We now have

d ′g
b − d

=
(
(a − 2)qa + da

)
dy

b − d
=

(
(b − d) − a

)
qa y + (

1 + qaa
)
y

b − d
= qby + y

b − d
.

Since 0 ≤ y < b− d, we have
⌊

d ′g
b−d

⌋
= qby =

⌊
dbg
b

⌋
by Eqn. (13). This proves part

(ii). ��
Let S = S

(
AP(a, d; k)) denote the numerical semigroup generated byAP(a, d; k).

Let a, b, c be any positive integers. Since S(a, b, c) = S(a mod b, b, c) and
S(a, b, c) = Z≥0 for c ≥ a, wemay assumewithout loss of generality that c < a < b.
Propositions 3 and 4 provide a one-to-one correspondence between S(a, b, c) and
S([α, β]). Via this correspondence, each interval [α, β], with α ≥ 0, corresponds to
a unique triple (a, b, c), with a ∈ N. The assumption c < a < b on the positive
integers a, b, c gives rise to intervals [α, β] with α > 1. In Theorem 12, we determine
all intervals [α, β] with α > 1 such that S([α, β]) = S. We then use Proposition 3 to
determine all triples (a, b, c) with c < a < b such that S(a, b, c) = S. To extend the
result of Theorem 12 to all intervals [α, β]with α ≥ 0, onemay combine Proposition 3
and the fact that S(a, b, c) = S(a′, b, c) for a ≡ a′ (mod b).
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We characterize intervals [α, β], α > 1 in Theorem 12 by calculating certain
Bézout sequences related to AP(a, d; k). Bullejos & Rosales [3] provide an algorithm
to determine the Bézout sequence connecting any two rational numbers p1/q1 and
p2/q2. However, it remains to determine p1/q1 and p2/q2 in order to characterize
[α, β]. We give a direct method to explicitly determine the desired Bézout sequences.

Theorem 12 Let a, d, k be positive integers, with gcd(a, d) = 1, 2 ≤ k ≤ a, b =
a + (k − 1)d, and let λ =

⌊
a−2
k−1

⌋
. Define dda = 1 + qaa, where 1 ≤ da < a and

0 ≤ qa < d. Let S
(
AP(a, d; k)) = 〈a, a + d, a + 2d, . . . , a + (k − 1)d〉. Then for

α, β ∈ [1,∞) ∩ Q,

S
([α, β]) = S

(
AP(a, d; k))

if and only if

λa + d(a − 1)

λda + qa(a − 1) + 1
< α ≤ a

da
,

b

da + (a − 1)qa
≤ β <

λb + d

λ
(
da + (a − 1)qa

) + qa
,

or

λb + d

λ
(
b − da − (a − 1)qa

) + (d − qa)
< α ≤ b

b − da − (a − 1)qa
,

a

a − da
≤ β <

λa + d(a − 1)

λ(a − da) + (d − qa)(a − 1) − 1
.

Moreover, for k = a, we also have

d(a − 1)

qa(a − 1) + 1
< α ≤ b

(a − 1)qa + da + 1
,

b − d

(a − 2)qa + da
≤ β <

d

qa
,

or

d

d − qa
< α ≤ b − d

b − d − (a − 2)qa − da
,

b

b − (a − 1)qa − da − 1
≤ β <

d(a − 1)

(d − qa)(a − 1) − 1
,

We adopt the convention 1
0 = ∞.

Proof Throughout this proof, we define

ddb = 1 + qbb, aab ≡ 1 (mod b), dd ′ ≡ 1 (mod b − d),

with 1 ≤ db < b, 0 ≤ qb < d, 1 ≤ ab < b, and 1 ≤ d ′ < b − d.
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Let α, β ∈ [1,∞) ∩ Q be such that S(I ) = S(AP(a, d; k)) = S, with I = [α, β].
By Proposition 1, it is enough to show that i

n /∈ I when i ∈ G(S) and n ∈ N, and
j
n ∈ I when j ∈ AP(a, d; k) for some n = n( j) ∈ N that depends on j . By Eqn. (3),

there exists a proper Bézout sequence
{
a1
b1

, . . . ,
ak
bk

}
such that α ≤ a1

b1
<

ak
bk

≤ β and

a1, . . . , ak is a permutation of AP(a, d; k). Then there exists r ∈ {1, . . . , k} such that

a1 > · · · > ar < ar+1 < · · · < ak

by Eqn. (2). Therefore, ar = a and a + d = min{ar−1, ar+1}, unless r = 1 or k.
If r = 1, then a1, . . . , ak is the increasing sequence a, a+d, . . . , a+(k−1)d. Thus,

ai = a+(i−1)d, 1 ≤ i ≤ k. The sequence of bi ’s satisfy ai+1bi −aibi+1 = 1, so that
bi ≡ a−1

i+1 (mod ai ) ≡ d−1 (mod ai ) for 1 ≤ i ≤ k − 1. From akbk−1 − ak−1bk = 1
we have bk ≡ −(ak−1)

−1 (mod ak) ≡ d−1 (mod ak). Thus, bi ≡ d−1 (mod ai )
for each i ∈ {1, . . . , k}. Since bi , d−1 (mod ai ) belong to {1, . . . , ai − 1}, we have
bi = d−1 (mod ai ), for each i ∈ {1, . . . , k}. So α, β must satisfy

α ≤ a1
b1

= a

da
<

ak
bk

= b

db
≤ β. (17)

In order that i
n /∈ I whenever i ∈ G(S) and n ∈ N, we must have either i

n < α or
i
n > β. From Eqn. (17), this amounts to i

n < a
da

or i
n > b

db
, or to n > ida

a or n <
idb
b .

Therefore, α is greater than the maximum of i/
⌈
ida
a

⌉
as i runs through values in

G(S) and β is less than the minimum of i/
⌊
idb
b

⌋
as i runs through values in G(S).

Therefore, by Propositions 9 and 10

α >
λa + d(a − 1)

λda + qa(a − 1) + 1
and β <

λb + d

λdb + qb
. (18)

This gives the first of the two ranges for α and β in the theorem using Proposition 11,
part (i).

If r = k, then a1, . . . , ak is the decreasing sequence a + (k − 1)d, a + (k −
2)d, . . . , a. Thus, ai = a + (k − i)d, 1 ≤ i ≤ k. Arguing as above, we see that
bi = ai − (

d−1 (mod ai )
)
for each i ∈ {1, . . . , k}. So α, β must satisfy

α ≤ a1
b1

= b

b − db
<

ak
bk

= a

a − da
≤ β. (19)

In order that i
n /∈ I whenever i ∈ G(S) and n ∈ N, we must have either i

n < α or
i
n > β. From Eqn. (19), this amounts to i

n < b
b−db

or i
n > a

a−da
, or to n >

i(b−db)
b

or n <
i(a−da)

a . Therefore, α is greater than the maximum of i/
⌈
i(b−db)

b

⌉
as i runs

through values in G(S) and β is less than the minimum of i/
⌊
i(a−da)

a

⌋
as i runs
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through values in G(S). Since

m
⌈

(b−db)m
b

⌉ <
n

⌈
(b−db)n

b

⌉ ⇐⇒ n
⌊
dbn
b

⌋ <
m

⌊
dbm
b

⌋

and

m
⌊

(a−da)m
a

⌋ <
n

⌊
(a−da)n

a

⌋ ⇐⇒ n
⌈
dan
a

⌉ <
m

⌈
dam
a

⌉

for every m, n ∈ N, we have

α >
λb + d

λ(b − db) + (d − qb)
and β <

λa + d(a − 1)

λ(a − da) + (d − qa)(a − 1) − 1
, (20)

by Propositions 9 and 10 . This gives the second of the two ranges for α and β in the
theorem using Proposition 11, part (i).

Henceforth, assume r �= 1, k. Two cases arise: (i) ar+1 = a + d, and (ii) ar−1 =
a + d. These cases arise only if k = a, as we show below.
Case (i) From ar | (ar−1 + ar+1) we have ar−1 ≡ −ar+1 ≡ −d (mod a). If
ar−1 = a + id, with 0 ≤ i ≤ k − 1 ≤ a − 1, then i ≡ −1 (mod a). This is
possible only if k = a, and then ar−1 = a + (a − 1)d = b. From Eqn. (2), the
sequence a1, . . . , ak must be b = a + (a − 1)d, a, a + d, . . . , a + (a − 2)d. The
corresponding sequence b2, . . . , bk is the same as in the case r = 1 above. Moreover,
ab1 − (

a + (a − 1)d
)
b2 = 1, so that b1 ≡ ab (mod b). Since b1, ab belong to

{1, . . . , b − 1}, we have b1 = ab. So α, β must satisfy

α ≤ a1
b1

= b

ab
<

ak
bk

= b − d

d ′ ≤ β. (21)

In order that i
n /∈ I whenever i ∈ G(S) and n ∈ N, we must have either i

n < α

or i
n > β. From Eqn. (21), this amounts to i

n < b
ab

or i
n > b−d

d ′ , or to n >
iab
b or

n < id ′
b−d . Therefore, α is greater than the maximum of i/

⌈
iab
b

⌉
as i runs through

values in G(S) and β is less than the minimum of i/
⌊

id ′
b−d

⌋
as i runs through values

in G(S). By Proposition 11, part (ii), the bounds for α and β are as given by Eqn. (18)
with λ = 0. This gives the first of the two ranges for α and β in the additional case
k = a in the theorem using Proposition 11, part (i).

Case (ii) From ar | (ar−1+ar+1)we have ar+1 ≡ −ar−1 ≡ −d (mod a). Arguing as
in Case (i), the sequence a1, . . . , ak must be a+(a−2)d, a+(a−3)d, . . . , a, a+(a−
1)d = b, and this is possible only if k = a. The corresponding sequence b1, . . . , bk−1
is the same as in the case r = k above, and bk = b − (ab (mod b)). So α, β must
satisfy

α ≤ a1
b1

= b − d

b − d − d ′ <
ak
bk

= b

b − ab
≤ β. (22)
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In order that i
n /∈ I whenever i ∈ G(S) and n ∈ N, we must have either i

n < α or
i
n > β. From Eqn. (22), this amounts to i

n < b−d
b−d−d ′ or i

n > b
b−ab

, or to n >
i(b−d−d ′)

b−d

or n <
i(b−ab)

b . Therefore, α is greater than the maximum of i/
⌈
i(b−d−d ′)

b−d

⌉
as i runs

through values in G(S) and β is less than the minimum of i/
⌊
i(b−ab)

b

⌋
as i runs

through values in G(S). Since

m
⌈

(b−d−d ′)m
b−d

⌉ <
n

⌈
(b−d−d ′)n

b−d

⌉ ⇐⇒ n
⌊

d ′n
b−d

⌋ <
m

⌊
d ′m
b−d

⌋

and

m
⌊

(b−ab)m
b

⌋ <
n

⌊
(b−ab)n

b

⌋ ⇐⇒ n
⌈ abn

b

⌉ <
m

⌈ abm
b

⌉

for every m, n ∈ N, we have the bounds for α and β as given by Eqn. (20) with λ = 0
by Proposition 11, part (ii). This gives the second of the two ranges for α and β in the
additional case k = a in the theorem using Proposition 11, part (i). ��
Corollary 13 Let a, k be positive integers, with 2 ≤ k ≤ a, b = a + k − 1, and

λ =
⌊
a−2
k−1

⌋
. Let S

(
AP(a, 1; k)) = 〈a, a + 1, a + 2, . . . , a + k − 1〉. Then for

α, β ∈ [1,∞) ∩ Q,

S
([α, β]) = S

(
AP(a, 1; k))

if and only if

a − 1

λ + 1
< α ≤ a, b ≤ β < b + 1

λ

or

1 + λ

λ(b − 1) + 1
< α ≤ 1 + 1

b − 1
, 1 + 1

a − 1
≤ β < 1 + λ + 1

(λ + 1)(a − 1) − 1
.

Moreover, for k = a, we also have

a − 1 < α ≤ b

2
, b − 1 ≤ β,

or

1 < α ≤ 1 + 1

b − 2
, 1 + 2

b − 2
≤ β < 1 + 1

a − 2
.

We adopt the convention 1
0 = ∞.
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Theorem 14 Let a, d, k be positive integers, with gcd(a, d) = 1, 2 ≤ k ≤ a, b =
a + (k − 1)d, and let λ =

⌊
a−2
k−1

⌋
. Define dda = 1 + qaa, where 1 ≤ da < a and

0 ≤ qa < d. Let S
(
AP(a, d; k)) = 〈a, a + d, a + 2d, . . . , a + (k − 1)d〉. Then for

positive integers p, q,m with q < p < m,

S
(
p,m, q

) = S
(
AP(a, d; k))

if and only if

mda
a

≤ p <
m
(
λda + qa(a − 1) + 1

)

λa + d(a − 1)
,

p + m
(
(a − 1)qa + da

)

b
≤ q < p − m

(
λ
(
(a − 1)qa + da

) + qa
)

λb + d

or

m − m
(
(a − 1)qa + da

)

b
≤ p < m − m

(
λ
(
(a − 1)qa + da

) + qa
)

λb + d
,

p − m + mda
a

≤ q < p − m − m
(
(λda + qa)(a − 1) − 1

)

λa + d(a − 1)
.

Moreover, for k = a, we also have

m
(
(a − 1)qa + da + 1

)

b
≤ p <

m
(
qa(a − 1) + 1

)

d(a − 1)
,

p − m
(
(a − 2)qa + da

)

b − d
≤ q < p − mqa

d
,

or

m − m
(
(a − 2)qa + da

)

b − d
≤ p < m − mqa

d
,

p − m + m
(
(a − 1)qa + da + 1

)

b
≤ q < p − m + m

(
qa(a − 1) + 1

)

d(a − 1)
.

Proof This follows directly from Proposition 2 and Theorem 12. If S
(
p,m, q

) =
S
([α, β]), then m

p = α and m
p−q = β, so that p = m

α
and p − q = m

β
. The latter

implies q = p − m
β
. The bounds on α, β in Theorem 12 translate to bounds on p, q

in terms of m in Theorem 14. ��
Corollary 15 Let a, k be positive integers, with 2 ≤ k ≤ a, b = a + k − 1, and

λ =
⌊
a−2
k−1

⌋
. Let S

(
AP(a, 1; k)) = 〈a, a+1, a+2, . . . , a+ k−1〉. Then for positive

integers p, q,m with q < p < m,

S
(
p,m, q

) = S
(
AP(a, 1; k))

123



846 E. F. Elizeche, A. Tripathi

if and only if

m

a
≤ p <

m
(
λ + 1

)

(λ + 1)a − 1
, p + m

b
≤ q < p − mλ

λb + 1

or

m − m

b
≤ p < m − mλ

λb + 1
, p − m + m

a
≤ q < p − m − m

(
λ(a − 1) − 1

)

(λ + 1)a − 1)
.

Moreover, for k = a, we also have

2m

b
≤ p <

m

a − 1
, p − m

b − 1
≤ q < p,

or

m − m

b − 1
≤ p < m, p − m + 2m

b
≤ q < p − m + m

a − 1
.

Remark 16 We note that Examples 7 and 8 follow from Corollaries 13 and 15 .

Remark 17 For any positive integer a > 1, for α, β ∈ [1,∞)∩Q, and positive integers
p, q,m with q < p < m,

S
(
p,m, q

) = S
([α, β]) = S

(
AP(a, 1; a)

) = {
0, a,→ }

is the special case λ = 0 in Corollaries 13 and 15 . We adopt the convention 1
0 = ∞.
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