Some results on the spum and the integral spum of graphs

Sahil Singla ${ }^{\text {a,b }}$, Apurv Tiwari ${ }^{\mathrm{c}, \mathrm{d}}$, Amitabha Tripathi ${ }^{\text {d,* }}$
${ }^{\text {a }}$ Department of Computer Science, Princeton University, Princeton, NJ 08542, USA
${ }^{\mathrm{b}}$ Department of Computer Science E Engineering, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
${ }^{\text {c }}$ Starsky Robotics, 1620 Folsom Street, San Francisco, CA 94016, USA
${ }^{\mathrm{d}}$ Department of Mathematics, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India

ARTICLE INFO

Article history:

Received 27 December 2019
Received in revised form 4 November 2020
Accepted 12 January 2021
Available online 5 February 2021

Keywords:

Sum graph
Integral sum graph
Sum number
Integral sum number
Spum
Integral spum

Abstract

A finite simple graph G is called a sum graph (integral sum graph) if there is a bijection f from the vertices of G to a set of positive integers S (a set of integers S) such that $u v$ is an edge of G if and only if $f(u)+f(v) \in S$. For a connected graph G, the sum number (the integral sum number) of G, denoted by $\sigma(G)(\zeta(G)$), is the minimum number of isolated vertices that must be added to G so that the resulting graph is a sum graph (an integral sum graph). The spum (the integral spum) of a graph G is the minimum difference between the largest and smallest integer in any set S that corresponds to a sum graph (integral sum graph) containing G. We investigate the spum and integral spum of several classes of graphs, including complete graphs, symmetric complete bipartite graphs, star graphs, cycles, and paths. We also give sharp lower bounds for the spum and the integral spum of connected graphs.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

The notion of sum graph was introduced by Harary [5]. A graph $G(V, E)$ is called a sum graph if there is a bijection f from $V(G)$ to a set of positive integers S such that $u v \in E(G)$ for $u \neq v$ if and only if $f(u)+f(v) \in S$. We call S a set of labels for the sum graph G, and denote this set by $\mathcal{L}(G)$. Conversely, any set of positive integers S induces a sum graph G_{S} with vertex set S and edges $s_{i} s_{j}$ whenever $s_{i}+s_{j} \in S$. Thus every sum graph can be realized as one induced by a (finite) set of positive integers. Since the vertex with the highest label in a sum graph cannot be adjacent to any other vertex, every sum graph must contain at least one isolated vertex. For a connected graph G, the sum number of G, denoted by $\sigma(G)$, is the minimum number of isolated vertices that must be added to G so that the resulting graph is a sum graph. The sum number of various classes of graphs is known, including $\mathcal{K}_{n}, \mathcal{K}_{m, n}, \mathrm{C}_{n}$ and trees; see [3, Table 20, pp. 238].

Harary [6] also generalized the notion of sum graphs by allowing the set S to contain any set of integers in the definition of sum graphs. The corresponding graph is called an integral sum graph, and the integral sum number of a connected graph G, denoted by $\zeta(G)$, is the minimum number of isolated vertices that must be added to G so that the resulting graph is an integral sum graph. Unlike sum graphs, integral sum graphs need not have isolated vertices. In fact, a conjecture of Harary [6] states that all trees have integral sum number 0 . The integral sum number of a few classes of graphs is known, including \mathcal{K}_{n} and $\mathcal{K}_{m, n}$; see [3, pp. 232].

Goodell et al. [4] investigated the difference between the largest and smallest labels in a sum graph G, and called the minimum possible such difference the spum of G. They proved the spum of \mathcal{K}_{n} is $4 n-6$, and the spum of \mathcal{C}_{n} is at most $4 n-10$, but their work seems to be unpublished [3, pp. 230]. We confirm their result on the spum of \mathcal{K}_{n} and show that

[^0]Table 1
Summary of results on spum and integral spum of various classes of graphs.

G	spum G	integral spum G
G	$\begin{aligned} & \geq 2 n-(\Delta-\delta)-2 \\ & \text { (Theorem 2.1) } \end{aligned}$	$\begin{aligned} & \geq 2 n-\Delta-3 \\ & \text { (Theorem 2.2) } \end{aligned}$
\mathcal{K}_{n}	$4 n-6$ for $n \geq 2$ (Theorems 3.1 \& 3.2)	$4 n-6$ for $n \geq 4$ (Theorems 3.1 \& 3.2)
$\mathcal{K}_{1, n}$	$2 n-1 \text { for } n \geq 2$ (Theorems $4.1 \& 4.2$)	$2 n-2 \text { for } n \geq 2$ (Theorems 4.3 \& 4.4)
$\mathcal{K}_{n, n}$	$7 n-7 \text { for } n \geq 2$ (Theorems $5.1 \& 5.2$)	$7 n-7 \text { for } n \geq 2$ (Theorems $5.1 \& 5.2$)
\mathfrak{C}_{n}	$\begin{aligned} & {[2 n-2,2 n-1] \text { for } n \geq 4} \\ & (\text { Remark } 6.1 \text {) } \\ & 2 n-1 \text { for } n \geq 13 \\ & \text { (Theorems } 6.1 \& 6.2 \text {) } \end{aligned}$	$\begin{aligned} & \geq 2 n-5 \\ & \text { (Theorem 2.2) } \end{aligned}$
\mathcal{P}_{n}	[$2 n-3,2 n+1]$ for $n \geq 9, n$ odd [$2 n-3,2 n+2$] for $n \geq 9, n$ even (Theorems $7.1 \& 7.2$)	$\left[2 n-5, \frac{5}{2}(n-3)\right]$ for $n \geq 7, n$ odd [$2 n-5,2 n-3$] for $n \geq 7, n$ even (Theorems $7.3 \& 7.4$)

the spum of e_{n} is either $2 n-1$ or $2 n-2$, with the former value the answer when $n \geq 13$. We also show that the spum of $\mathcal{K}_{1, n}$ is $2 n-1$, the spum of $\mathcal{K}_{n, n}$ is $7 n-7$, and that the spum of \mathcal{P}_{n} lies between $2 n-3$ and $2 n+2$. We obtain the sharp lower bound $2 n-(\Delta-\delta)-2$ for the spum of a graph of order n and maximum and minimum vertex degree Δ and δ, respectively.

We introduce the notion of integral spum of a graph G, replacing a sum graph by an integral sum graph. We show that the integral spum of \mathcal{K}_{n} equals $4 n-6$, that of $\mathcal{K}_{1, n}$ equals $2 n-2$, and that of $\mathcal{K}_{n, n}$ equals $7 n-7$. We also show that the integral spum of \mathcal{P}_{n} lies between $2 n-5$ and $2 n-3$ when n is even, and between $2 n-5$ and $\frac{5}{2}(n-3)$ for odd n. We obtain a sharp lower bound of $2 n-\Delta-3$ for the integral spum of a graph of order n and maximum vertex degree Δ. A summary of our results is given in Table 1.

Melnikov \& Pyatkin [8] showed that all 2-regular graphs with the exception of \mathcal{C}_{4} are integral sum graphs, and that for every positive integer r there exists an r-regular integral sum graph. They also introduced the notion of the integral radius $r(G)$ for integral sum graphs G. The integral radius of G is the least positive integer r for which there is an integral sum labelling L of G with $L \subseteq[-r, r]$. We remark that our results on the integral spum of graphs automatically provide bounds for the integral radius of the classes of graphs mentioned in Table 1.

Throughout this paper, X and Y are sets of integers, $X \backslash Y:=\{x: x \in X, x \notin Y\}$ and $X-a:=\{x-a: x \in X\}$. We denote by \mathscr{G} a connected graph whose spum and integral spum we study, and by G the sum (integral sum) graph consisting of \mathscr{G} and $\sigma(\mathscr{G})(\zeta(\mathscr{G}))$ isolated vertices. By $\mathcal{L}(G)$ we mean a labelling on the vertices of the graph G, so that the spum \mathscr{G} (integral spum \mathscr{G}) equals max $\mathcal{L}(G)-\min \mathcal{L}(G)$. Upper bounds for spum \mathscr{G} (integral spum \mathscr{G}) are achieved via any sum (integral sum) labelling of the vertices of G. Sharp upper bounds require an optimal labelling of the vertices. Lower bounds for spum \mathscr{G} (integral spum \mathscr{G}) are the difference between any maximum and minimum labellings. More specifically, if $\left\{a_{1}, \ldots, a_{n}\right\}$ is a sum or integral sum labelling arranged in increasing order, a recurrent theme in achieving lower bounds is to partition the interval of integers in $\left[a_{1}, a_{n}\right]$ into two sets, and consider in addition translates of one or the other, and the complement of the labelling in the interval. An estimate of the size of each of these sets provides us with a lower bound. We attempt to minimize the difference between the upper and lower bounds in each of these labellings, and succeed in making this difference zero in the cases of $\mathcal{K}_{n}, \mathcal{K}_{1, n}$ and $\mathcal{K}_{n, n}$, and \mathcal{C}_{n} for $n \geq 13$.

2. Lower bounds for spum \& integral spum of graphs

In this section, we give lower bounds for the spum and for the integral spum of graphs of order n in terms of their maximum and minimum vertex degrees. We show that these bounds are sharp by providing an infinite class of graphs that achieve these bounds.

Theorem 2.1. For graphs \mathscr{G} of order n, with maximum and minimum vertex degree Δ and δ respectively,
spum $\mathscr{G} \geq 2 n-(\Delta-\delta)-2$.
Moreover, there exists an infinite class of graphs that achieves this bound.
Proof. Let \mathscr{G} be a graph with n vertices and with maximum vertex degree $\Delta(\mathscr{G})=\Delta$ and minimum vertex degree $\delta(\mathscr{G})=\delta$. Let G be a sum graph consisting of \mathscr{G} together with $\sigma(\mathscr{G})$ isolated vertices. Let v_{1}, \ldots, v_{n} be the vertices of \mathscr{G}. Let L be a labelling of G for which $\max L-\min L=\operatorname{spum} \mathscr{G}$. Let $S=\left\{a_{1}, \ldots, a_{n}\right\}$, written in increasing order, be the labelling of \mathscr{G}. Let $\ell\left(v_{i}\right)=a_{i}$ for $1 \leq i \leq n$. Let

$$
S_{1}=S \cap\left[a_{1}, 2 a_{1}\right], \quad S_{2}=S \cap\left[2 a_{1}+1, a_{n}\right], \quad S_{3}=S_{2}-a_{1}, \quad T=\left[a_{1}, a_{n}\right] \backslash S .
$$

We claim that $\left|S \cap S_{3}\right| \leq \Delta$. Indeed, if $a_{i_{1}}, \ldots, a_{i_{\Delta+1}} \in S \cap S_{3}$, then $a_{1}+a_{i_{k}} \in S$ for $1 \leq k \leq \Delta+1$. Hence v_{1} is adjacent to each of the vertices $v_{i_{1}}, \ldots, v_{i_{\Delta+1}}$, so that $d\left(v_{1}\right) \geq \Delta+1$. This proves the claim.

Since $S_{1} \subseteq\left[a_{1}, 2 a_{1}\right]$, we have $\left|S_{3}\right|=\left|S_{2}\right|=|S|-\left|S_{1}\right| \geq n-\left(a_{1}+1\right)$. From $S_{3} \subset\left[a_{1}, a_{n}\right]$ we have

$$
\begin{equation*}
n-\left(a_{1}+1\right) \leq\left|S_{3}\right|=\left|S_{3} \cap\left[a_{1}, a_{n}\right]\right|=\left|S_{3} \cap S\right|+\left|S_{3} \cap T\right| \tag{1}
\end{equation*}
$$

If $\left|S \cap S_{3}\right|=\Delta$, Eq. (1) reduces to $\left(a_{n}-a_{1}+1\right)-n=|T| \geq\left|S_{3} \cap T\right| \geq n-a_{1}-\Delta-1$, so that $a_{n} \geq 2 n-2-\Delta$. Since $\left|S \cap S_{3}\right|=\Delta$, all neighbours of v_{1} have labels $<a_{n}$. Hence v_{n} is not adjacent to v_{1}, so that $\max L-\min L \geq\left(a_{n}+a_{\delta+1}\right)-a_{1} \geq$ $a_{n}+\delta \geq 2 n-(\Delta-\delta)-2$.

Otherwise $\left|S \cap S_{3}\right| \leq \Delta-1$, and Eq. (1) reduces to $\left(a_{n}-a_{1}+1\right)-n=|T| \geq\left|S_{3} \cap T\right| \geq n-a_{1}-\Delta$, so that $a_{n} \geq 2 n-1-\Delta$. Hence $\max L-\min L \geq\left(a_{n}+a_{\delta}\right)-a_{1} \geq a_{n}+\delta-1 \geq 2 n-(\Delta-\delta)-2$.

To show the lower bound is achieved for an infinite class of graphs, consider the sum graph induced by the labelling $\left\{\left\lfloor\frac{1}{2}(n-1)\right\rfloor, \ldots,\left\lfloor\frac{1}{2}(3 n-3)\right\rfloor\right\} \cup\left\{n+2\left\lfloor\frac{1}{2}(n-1)\right\rfloor\right\}$. The vertex labelled $n+2\left\lfloor\frac{1}{2}(n-1)\right\rfloor$ is the only isolated vertex, and the graph \mathscr{G} that results on removing this vertex is connected. It is easy to see that the vertex labelled $\left\lfloor\frac{1}{2}(n-1)\right\rfloor$ achieves the maximum degree $\Delta=\left\lfloor\frac{n}{2}\right\rfloor$, the vertex labelled $\left\lfloor\frac{1}{2}(3 n-3)\right\rfloor$ achieves the minimum degree $\delta=1$ in this connected graph \mathscr{G}, and spum $\mathscr{G}=n+\left\lfloor\frac{1}{2}(n-1)\right\rfloor=2 n-(\Delta-\delta)-2$.

Theorem 2.2. For graphs \mathscr{G} of order n with maximum vertex degree Δ,

```
integral spum }\mathscr{G}\geq2n-\Delta-3
```

Moreover, there exists an infinite class of graphs that achieves this bound.
Proof. Let \mathscr{G} be a graph with n vertices, maximum vertex degree $\Delta(\mathscr{G})=\Delta$ and minimum vertex degree $\delta(\mathscr{G})=\delta$. Let G be an integral sum graph consisting of \mathscr{G} together with $\zeta(\mathscr{G})$ isolated vertices. Let v_{1}, \ldots, v_{n} be the vertices of G corresponding to the vertices of \mathscr{G}. Let L be a labelling of G for which $\max L-\min L=$ integral spum \mathscr{G}. Let $S=\left\{a_{1}, \ldots, a_{n}\right\}$, written in increasing order, be the labelling of \mathscr{G}. Let $\ell\left(v_{i}\right)=a_{i}$ for $1 \leq i \leq n$. If each integer in S has the same sign, we may assume that a_{1}, \ldots, a_{n} are all positive by replacing L by $-L$ if necessary. Now the result of Theorem 2.1 applies, and so we may henceforth assume that $a_{1}<0<a_{n}$. Suppose r is such that $a_{r}<0<a_{r+1}$. By replacing L by $-L$ if necessary, we may further assume that $a_{r+1} \leq\left|a_{r}\right|=-a_{r}$.

Let

$$
S_{1}=\left\{a_{1}, \ldots, a_{r}\right\}, \quad S_{2}=\left\{a_{r+1}, \ldots, a_{n}\right\}, \quad S_{3}=S_{1}+a_{r+1}, \quad S_{4}=S_{2}-a_{r+1}
$$

We claim that $\left|S_{1} \cap S_{3}\right|+\left|S_{2} \cap S_{4}\right| \leq \Delta+1$. This upper bound can be improved to Δ provided $2 a_{r+1} \notin S_{2}$. If $S_{1} \cap S_{3} \neq \emptyset$, then $a_{i}=a_{j}+a_{r+1}$ with $i, j \in\{1, \ldots, r\}$. If $S_{2} \cap S_{4} \neq \emptyset$, then $a_{i}=a_{j}-a_{r+1}$ with $i, j \in\{r+1, \ldots, n\}$. However, $2 a_{r+1} \in S_{2}$ contributes one to the count in $S_{2} \cap S_{4}$ but not to $d\left(v_{r+1}\right)$. Since $d\left(v_{r+1}\right) \leq \Delta$, the claim follows.

Observe that each of the sets $S_{1}, S_{2}, S_{3}, S_{4}$ lie within the interval [a_{1}, a_{n}]. Moreover $S_{i} \cap S_{j}=\emptyset$ for $i \neq j$, except possibly for $(i, j) \in\{(1,3),(2,4),(3,4)\}$. Note that $\left|S_{3} \cap S_{4}\right| \leq 1$, with equality if and only if $a_{r}+a_{r+1}=0$. Since $\left|S_{1} \cap S_{3}\right|+\left|S_{2} \cap S_{4}\right| \leq \Delta+1$, we have $\max L-\min L \geq\left|\bigcup_{i=1}^{4} S_{i}\right|-1 \geq \sum_{i=1}^{4}\left|S_{i}\right|-(\Delta+2)-1=2 n-\Delta-3$.

To show the lower bound is achieved for an infinite class of graphs, consider the integral sum graph \mathscr{G} induced by the labelling $\left\{-\left\lfloor\frac{1}{2} n\right\rfloor, \ldots,\left\lfloor\frac{1}{2}(n+1)\right\rfloor\right\} \backslash\{0\}$. It is easy to see that the vertices labelled -1 and 1 achieve the maximum degree $\Delta=n-3$, and integral spum $\mathscr{G}=n=2 n-\Delta-3$.

3. Complete graphs

The study of spum was initiated by Goodell et al. [4] with the calculation of spum of complete graphs and of cycles. Although they determined the spum of complete graphs and found an upper bound for cycles, their paper was unpublished. In this section we determine the spum and the integral spum of complete graphs. Bergstrand et al. [1] showed that the sum number $\sigma\left(\mathcal{K}_{n}\right)=2 n-3$ for $n \geq 4$. It is known and easy to see that $\sigma\left(\mathcal{K}_{2}\right)=1$ and $\sigma\left(\mathcal{K}_{3}\right)=2$; see [3, Table 20, pp. 238]. Chen [2], Sharary [9], and Xu [11] proved a conjecture of Harary that the integral sum number $\zeta\left(\mathcal{K}_{n}\right)=2 n-3$ for $n \geq 4$. It is known and easy to see that $\zeta\left(\mathcal{K}_{2}\right)=0$ (see [10]). We note that the labelling $\{-1,0,1\}$ shows that $\zeta\left(\mathcal{K}_{3}\right)=0$. Our main result is that for $n \geq 4$,

$$
\text { spum } \mathcal{K}_{n}=4 n-6, \quad \text { integral spum } \mathcal{K}_{n}=4 n-6
$$

We begin by determining spum and integral spum for complete graphs of order 2 and 3.

Lemma 3.1.

spum $\mathcal{K}_{2}=2, \quad$ integral spum $\mathcal{K}_{2}=1 ;$
spum $\mathcal{K}_{3}=6, \quad$ integral spum $\mathcal{K}_{3}=2$.

Proof. For spum of \mathcal{K}_{2}, any sum graph consisting of \mathcal{K}_{2} together with an isolated vertex is a graph with three vertices. Hence the difference between the largest and smallest labels is at least 2 . This difference is achieved by the labelling $\{1,2,3\}$. This proves spum $\mathscr{K}_{2}=2$.

For integral spum of \mathcal{K}_{2}, any integral sum graph consisting of \mathcal{K}_{2} is a graph with two vertices, so that difference between the two labels is at least 1 . This difference is achieved by the labelling $\{0,1\}$. This proves integral spum $\mathcal{K}_{2}=1$.

For spum of \mathcal{K}_{3}, consider any sum graph consisting of \mathcal{K}_{3} together with two isolated vertices. If the labels of the vertices of \mathcal{K}_{3} are $\{a, b, c\}$ with $1 \leq a<b<c$, then the labels of the two isolated vertices must be $c+a$ and $c+b$, and $a+b$ must equal c. Hence the difference between the maximum and minimum labels is at least $c+b-a=2 b$. We observe that $b>2$, since $b=2$ forces the labels $\{1,2,3,4,5\}$ and this is not the label of \mathcal{K}_{3} together with two isolated vertices. Therefore spum $\mathcal{K}_{3} \geq 6$. This difference is achieved by the labelling $\{1,3,4,5,7\}$. This proves spum $\mathcal{K}_{3}=6$.

For integral spum of \mathcal{K}_{3}, any integral sum graph consisting of \mathcal{K}_{3} is a graph with three vertices, so that difference between the maximum and minimum labels is at least 2 . This difference is achieved by the labelling $\{-1,0,1\}$. This proves integral spum $\mathcal{K}_{3}=2$.

Theorem 3.1. For $n \geq 4$,

$$
\text { spum } \mathcal{K}_{n} \leq 4 n-6, \quad \text { integral spum } \mathcal{K}_{n} \leq 4 n-6
$$

Proof. Let G be the graph induced by the set of labels $L=[2 n-3,3 n-4] \cup[4 n-5,6 n-9]$. We show that the n vertices with labels in $[2 n-3,3 n-4]$ form a clique while the $2 n-3$ vertices with labels in $[4 n-5,6 n-9]$ are isolated. To prove our claim, let $I_{1}=[2 n-3,3 n-4]$ and $I_{2}=[4 n-5,6 n-9]$. Then the sum of any two distinct integers in I_{1} lies in I_{2}, whereas the sum of any two integers at least one of which is in I_{2} lies outside $I_{1} \cup I_{2}$.

Since $\zeta\left(\mathcal{K}_{n}\right)=\sigma\left(\mathcal{K}_{n}\right)=2 n-3$, integral spum $\mathcal{K}_{n} \leq \operatorname{spum} \mathcal{K}_{n} \leq(6 n-9)-(2 n-3)=4 n-6$.
Theorem 3.2. For $n \geq 4$,
spum $\mathcal{K}_{n} \geq 4 n-6, \quad$ integral spum $\mathcal{K}_{n} \geq 4 n-6$.
Proof. Since $\sigma\left(\mathcal{K}_{n}\right)=\zeta\left(\mathcal{K}_{n}\right)=2 n-3$ and integral spum of a graph is always bounded above by its spum, it suffices to prove that integral spum $\mathcal{K}_{n} \geq 4 n-6$.

Let G be an integral sum graph consisting of \mathcal{K}_{n} together with $2 n-3$ isolated vertices. Let L be a labelling of G for which max $L-\min L=$ integral spum \mathcal{K}_{n}. Let $S=\left\{a_{1}, \ldots, a_{n}\right\}$, written in increasing order, denote the labelling within L of the vertices corresponding to \mathcal{K}_{n}. Note that $0 \notin L$ since G has isolated vertices. Without loss of generality, we may assume that $a_{n}>0$ since we may replace L by $-L$ if $a_{n}<0$.

Chen [2] showed that S is sum-free. Hence the $2 n-3$ isolated vertices of G have labels in $L \backslash S$, which we partition into disjoint sets A and B as follows:

$$
A=\left\{a_{1}+a_{i}: 2 \leq i \leq n\right\}=a_{1}+\left(S \backslash\left\{a_{1}\right\}\right), \quad B=\left\{a_{n}+a_{i}: 2 \leq i \leq n-1\right\}=a_{n}+\left(S \backslash\left\{a_{1}, a_{n}\right\}\right) .
$$

Note that $\max A=a_{1}+a_{n}<a_{2}+a_{n}=\min B$. Hence $|A \cup B|=|A|+|B|=(n-1)+(n-2)=2 n-3$. Therefore, L is the disjoint union of S, A, and B.

We claim that $\left(B-\left|a_{1}\right|\right) \cap L=\emptyset$. We prove this separately for the cases $a_{1}>0$ and $a_{1}<0$.
Case (i) $\left(a_{1}>0\right)$
Note that $\left(B-a_{1}\right) \cap S=\emptyset$ since $\max S=a_{n}<a_{n}+\left(a_{2}-a_{1}\right)=\min \left(B-a_{1}\right)$ and that $\left(B-a_{1}\right) \cap B=\emptyset$ since S is sum-free. Suppose $\left(B-a_{1}\right) \cap A \neq \emptyset$. Then $a_{n}+a_{i}-a_{1}=a_{1}+a_{j}$ for $2 \leq i \leq n-1$ and $2 \leq j \leq n$. But then the isolated vertex with label $a_{1}+a_{j}$ is adjacent to the vertex with label a_{1}, and this is a contradiction. Hence $\left(B-a_{1}\right) \cap A=\emptyset$.
Case (ii) $\left(a_{1}<0\right)$
Note that since S is sum-free, $\left(B+a_{1}\right) \cap A=\emptyset=\left(B+a_{1}\right) \cap B$. Suppose $\left(B+a_{1}\right) \cap S \neq \emptyset$. Then $a_{n}+a_{i}+a_{1}=a_{j}$ with $2 \leq i \leq n-1$ and $2 \leq j \leq n$. But then the isolated vertex with label $a_{n}+a_{i}$ is adjacent to the vertex with label a_{1}, and this is a contradiction. Hence $\left(B+a_{1}\right) \cap S=\emptyset$.

We show that $B-\left|a_{1}\right|$ is contained in the interval [min L, $\max L$]. If $a_{1}>0$, then $\min L=\min S<\max S<\min \left(B-a_{1}\right)<$ $\max \left(B-a_{1}\right)<\min B<\max B=\max L$. If $a_{1}<0$, then $\min L=\min \left\{a_{1}, a_{1}+a_{2}\right\} \leq a_{1}+a_{2}<a_{1}+a_{2}+a_{n}=\min \left(B+a_{1}\right) \leq$ $\max \left(B+a_{1}\right)=a_{n}+a_{n-1}+a_{1}<a_{n}+a_{n-1}=\max B \leq \max L$.

Since $|S|=n,|A|=n-1,|B|=\left|B-\left|a_{1}\right|\right|=n-2$, we must have $\max L-\min L \geq|L|+\left|B-\left|a_{1}\right|\right|-1=$ $|S|+|A|+|B|+\left|B-\left|a_{1}\right|\right|-1=4 n-6$.

4. Star graphs

Harary [5] showed that the sum number $\sigma\left(\mathcal{K}_{1, n}\right)=1$ for $n \geq 2$, and that the integral sum number $\zeta\left(\mathcal{K}_{1, n}\right)=0$ for $n \geq 2$. We show that, for $n \geq 2$,
spum $\mathcal{K}_{1, n}=2 n-1, \quad$ integral spum $\mathcal{K}_{1, n}=2 n-2$.

Theorem 4.1. For $n \geq 2$, spum $\mathcal{K}_{1, n} \leq 2 n-1$.
Proof. Let G be the graph induced by the set of labels $L=\{1\} \cup[n, 2 n]$. Then the vertex labelled 1 is adjacent to each of the vertices with labels in [$n, 2 n-1$], and there is no other edge. The vertex with label $2 n$ is isolated. Hence G is the union of $\mathcal{K}_{1, n}$ and an isolated vertex, so that spum $\mathcal{K}_{1, n} \leq 2 n-1$.

Theorem 4.2. For $n \geq 2$, spum $\mathcal{K}_{1, n} \geq 2 n-1$.
Proof. Let G be a sum graph consisting of $\mathcal{K}_{1, n}$ together with an isolated vertex. Let L be a labelling of G for which $\max L-\min L=\operatorname{spum} \mathcal{K}_{1, n}$. Let $S=\left\{a_{1}, \ldots, a_{n}\right\} \cup\{a\}$ denote the labelling within L of the vertices corresponding to $\mathcal{K}_{1, n}$, where the vertex with degree n is labelled a, and let $a_{1}<\cdots<a_{n}$. Let $L \backslash S=\{b\}$. Since $a+a_{1}, \ldots, a+a_{n}$ forms a strictly increasing sequence of integers in $L \backslash\left\{a, a_{1}\right\}$, we must have $\left(a+a_{1}, \ldots, a+a_{n}\right)=\left(a_{2}, \ldots, a_{n}, b\right)$ as ordered n-tuples. Therefore $a_{i}-a_{i-1}=a$ for $2 \leq i \leq n$ and $b=a+a_{n}$, so that $L=\left\{a, a_{1}, a_{1}+a, \ldots, a_{1}+n a\right\}$. If $a=1, a_{1}+\left(a_{1}+1\right)>a_{1}+n$ since the vertices labelled a_{1} and $a_{1}+1$ are not adjacent. Hence $a_{1} \geq n$, and $\max L-\min L=a_{1}+n-1 \geq 2 n-1$. If $a \geq 2$, then $\max L-\min L \geq a_{1}+(n-1) a \geq 2(n-1)+1=2 n-1$.

Theorem 4.3. For $n \geq 2$, integral spum $\mathcal{K}_{1, n} \leq 2 n-2$.
Proof. Let G be the graph induced by the set of labels $L=\{0\} \cup[n-1,2 n-2]$. Then the vertex labelled 0 is adjacent to each of the vertices with labels in [$n-1,2 n-2$], and there is no other edge. Hence $G \cong \mathcal{K}_{1, n}$, so that integral spum $\mathcal{K}_{1, n} \leq 2 n-2$.

Theorem 4.4. For $n \geq 1$, integral spum $\mathcal{K}_{1, n} \geq 2 n-2$.
Proof. Let $L=\left\{a_{1}, \ldots, a_{n}\right\} \cup\{a\}$ be a labelling of $\mathcal{K}_{1, n}$, where the vertex with degree n is labelled a and $a_{1}<\ldots<a_{n}$, and for which max $L-\min L=$ integral spum $\mathcal{K}_{1, n}$. Without loss of generality, we may assume that $a \geq 0$ by replacing L by $-L$ if necessary. Since $a+a_{1}, \ldots, a+a_{n}$ forms an increasing sequence of integers in L, we must have $a+a_{n} \in\left\{a, a_{n}\right\}$. If $a+a_{n}=a$, then $a_{n}=0$, so that a_{n} corresponds to a vertex of degree n. This contradicts the assumption that the vertex labelled a has degree n. Thus $a+a_{n}=a_{n}$, and $a=0$. Hence $L=S \cup\{0\}$, where $S=\left\{a_{1}, \ldots, a_{n}\right\}$ is sum-free. Moreover a_{1} must be positive; otherwise, replacing a_{1} by $-a_{1}$ again results in a sum-free set and a valid labelling for G but with a smaller integral spum. The same argument extends to all other negative integers in S. Therefore, we may henceforth assume that $a_{1}>0$. Let

$$
S_{1}=S \cap\left[a_{1}, 2 a_{1}\right], \quad S_{2}=S \cap\left[2 a_{1}+1, a_{n}\right], \quad S_{3}=S_{2}-a_{1}, \quad T=\left[a_{1}, a_{n}\right] \backslash S .
$$

Note that $S \cap S_{3}=\emptyset$, since S is sum-free. Since $S_{1} \subseteq\left[a_{1}, 2 a_{1}\right],\left|S_{3}\right|=\left|S_{2}\right|=|S|-\left|S_{1}\right| \geq n-\left(a_{1}+1\right)$. From $S_{3} \subset\left[a_{1}, a_{n}\right]$, we have

$$
\begin{equation*}
n-\left(a_{1}+1\right) \leq\left|S_{3}\right|=\left|S_{3} \cap\left[a_{1}, a_{n}\right]\right|=\left|S_{3} \cap S\right|+\left|S_{3} \cap T\right| . \tag{2}
\end{equation*}
$$

Since $\left|S \cap S_{3}\right|=0$, Eq. (2) reduces to $\left(a_{n}-a_{1}+1\right)-n=|T| \geq\left|S_{3} \cap T\right| \geq n-a_{1}-1$, so that $a_{n} \geq 2 n-2$. Hence $\max L-\min L \geq 2 n-2$.

5. Complete symmetric bipartite graphs

In this section we determine the spum and the integral spum of complete symmetric bipartite graphs. Hartsfield and Smyth [7] showed that the sum number $\sigma\left(\mathcal{K}_{n, n}\right)=2 n-1$ for $n \geq 2$. Yan and Liu [12] showed that the integral sum number $\zeta\left(\mathcal{K}_{n, n}\right)=2 n-1$ for $n \geq 2$. We show that, for $n \geq 2$,

$$
\text { spum } \mathcal{K}_{n, n}=7 n-7, \quad \text { integral spum } \mathcal{K}_{n, n}=7 n-7
$$

Theorem 5.1. For $n \geq 2$,

$$
\text { spum } \mathcal{K}_{n, n} \leq 7 n-7, \quad \text { integral spum } \mathcal{K}_{n, n} \leq 7 n-7
$$

Proof. Let G be the graph induced by the set of labels $L=[3(n-1), 4(n-1)] \cup[5(n-1), 6(n-1)] \cup[8(n-1), 10(n-1)]$. We show that the two sets of n vertices with labels in $I_{1}=[3(n-1), 4(n-1)]$ and in $I_{2}=[5(n-1), 6(n-1)]$ form the two bipartite sets while the $2 n-1$ vertices with labels in $I_{3}=[8(n-1), 10(n-1)]$ are isolated. Let $S_{1}+S_{2}=\left\{x_{1}+x_{2}: x_{1} \in S_{1}, x_{2} \in S_{2}, x_{1} \neq x_{2}\right\}$. Then $I_{1}+I_{1}=[6 n-5,8 n-9] \cap L=\emptyset, I_{1}+I_{2}=[8(n-1), 10(n-1)]=I_{3}$,
and $I_{2}+I_{2}=[10 n-9,12 n-13] \cap L=\emptyset$, proving that the graph vertices with labels in $I_{1} \cup I_{2}$ are isomorphic to $\mathcal{K}_{n, n}$. Moreover $(L+a) \cap L=\emptyset$ for $a \in I_{3}$, implying that the vertices with labels in I_{3} are isolated.

Since $\zeta\left(\mathcal{K}_{n, n}\right)=\sigma\left(\mathcal{K}_{n, n}\right)=2 n-1$, integral spum $\mathcal{K}_{n, n} \leq \operatorname{spum} \mathcal{K}_{n, n} \leq 10(n-1)-3(n-1)=7 n-7$.
Theorem 5.2. For $n \geq 2$,
spum $\mathcal{K}_{n, n} \geq 7 n-7, \quad$ integral spum $\mathcal{K}_{n, n} \geq 7 n-7$.
Proof. Since $\sigma\left(\mathcal{K}_{n, n}\right)=\zeta\left(\mathcal{K}_{n, n}\right)=2 n-1$ and integral spum of a graph is always bounded above by its spum, it suffices to prove that integral spum $\mathcal{K}_{n, n} \geq 7 n-7$.

Let G be an integral sum graph consisting of $\mathcal{K}_{n, n}$ together with $2 n-1$ isolated vertices. Let L be a labelling of G for which $\max L-\min L=$ integral spum $\mathcal{K}_{n, n}$. Let the labels within L corresponding to the bipartition of $\mathcal{X}_{n, n}$ be the sets $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$, each written in increasing order. By multiplying by -1 if necessary, we can ensure that the number among $a_{1}, a_{n}, b_{1}, b_{n}$ with largest absolute value is positive. We relabel the numbers so that the largest label is b_{n}. This ensures $b_{n}>a_{n}$ and $b_{n} \geq\left|a_{1}\right|$.

Yan and Liu [12, Theorem 3.1] showed that the $2 n-1$ isolated vertices of G have labels that we can partition into sets C and D as follows:

$$
C=\left\{a_{1}+b_{i}: 1 \leq i \leq n\right\}=B+a_{1}, \quad D=\left\{b_{n}+a_{i}: 2 \leq i \leq n\right\}=\left(A \backslash\left\{a_{1}\right\}\right)+b_{n} .
$$

Observe that the elements in each of the sets C, D are in increasing order, and that $\max C<\min D$. Hence the sets A, B, C, D partition L.

Interchanging the roles of a_{i} 's and b_{i} 's yield the sets

$$
E=\left\{b_{1}+a_{i}: 1 \leq i \leq n\right\}=A+b_{1}, \quad F=\left\{a_{n}+b_{i}: 2 \leq i \leq n\right\}=\left(B \backslash\left\{b_{1}\right\}\right)+a_{n} .
$$

We again see that the elements in each of the sets E, F are in increasing order, and that $\max E<\min F$. Hence we must have

$$
\begin{equation*}
a_{1}+b_{i}=b_{1}+a_{i}(1 \leq i \leq n), \quad b_{n}+a_{i}=a_{n}+b_{i}(2 \leq i \leq n) . \tag{3}
\end{equation*}
$$

Thus $b_{i}-a_{i}$ is constant for $1 \leq i \leq n$; write $b_{i}-a_{i}=d>0$.
We claim that the vertex labelled $a_{i}+b_{j}$ is isolated for all choices of $i, j \in\{1, \ldots, n\}$. Thus we must show that $a_{i}+b_{j} \notin A \cup B$ for all choices of $i, j \in\{1, \ldots, n\}$. This is true for $i=1$ since $a_{1}+b_{j} \in C$ for $j \in\{1, \ldots, n\}$. If $i>1$ and $a_{i}+b_{j} \in A \cup B$, then the isolated vertex labelled $a_{i}+b_{n}$ is adjacent to the vertex labelled b_{j}, which is impossible. Hence the claim.

We recall that L is the disjoint union of the sets A, B, C, D, and that $|A|=|B|=|C|=n$ and $|D|=n-1$. Hence $|L|=4 n-1$. Let $S_{1}=D-\left|a_{1}\right|, S_{2}=D-\left|b_{1}\right|$ and $S_{3}=\left(\operatorname{sgn} a_{1}\right)\left(A \backslash\left\{a_{n}\right\}\right)+a_{n}$. Observe that $\left|S_{1}\right|=\left|S_{2}\right|=\left|S_{3}\right|=n-1$.

We show that each of the sets S_{1}, S_{2}, S_{3} is contained in the interval $[\min L$, max L].
It is clear that $\max S_{i} \leq \max D \leq \max L$ and that $\min S_{i} \geq \min D-\max \left\{\left|a_{1}\right|,\left|b_{1}\right|\right\}=b_{n}+a_{2}-\max \left\{\left|a_{1}\right|,\left|b_{1}\right|\right\}$ for $i=1$, 2. If $a_{1}>0$, then $\min D-\max \left\{\left|a_{1}\right|,\left|b_{1}\right|\right\}=b_{n}+a_{2}-b_{1}>a_{2}>a_{1}=\min L$. If $a_{1}<0<b_{1}$, then $\min D-\max \left\{\left|a_{1}\right|,\left|b_{1}\right|\right\}=b_{n}+a_{2}-\max \left\{-a_{1}, b_{1}\right\} \geq a_{2}>a_{1}=\min L$ since $b_{n} \geq-a_{1}$. If $b_{1}<0$, then $\min D-\max \left\{\left|a_{1}\right|,\left|b_{1}\right|\right\}=b_{n}+a_{2}+a_{1}>\left(b_{n}+a_{1}\right)+a_{1} \geq a_{1}>a_{1}+b_{1}=\min L$. Thus S_{1} and S_{2} are both contained in the interval $[\min L, \max L]$.

If $a_{1}>0$, then $\min L=a_{1}<a_{2}+a_{n}=\min S_{3}<\max S_{3}=a_{n-1}+a_{n}<b_{n}+a_{n}=\max L$. If $a_{1}<0$, then $\min L=\min \left\{a_{1}, a_{1}+b_{1}\right\}<0<a_{n}-a_{n-1}=\min S_{3}<\max S_{3}=a_{n}-a_{2}<a_{n}-a_{1} \leq a_{n}+b_{n} \leq \max L$. Hence S_{3} is contained in the interval $[\min L, \max L]$.

For any sets $S_{1}, S_{2}, S_{3}, S_{4}$, we have by Principle of Inclusion \& Exclusion

$$
\left|\bigcup_{i=1}^{4} s_{i}\right| \geq \sum_{i=1}^{4}\left|S_{i}\right|-\sum_{1 \leq i<j \leq 4}\left|S_{i} \cap S_{j}\right| .
$$

Applying this inequality to the sets considered above and taking $S_{4}=L$, we get $\left|S_{1} \cup S_{2} \cup S_{3} \cup L\right| \geq 3(n-1)+(4 n-1)-\Sigma$, where Σ denotes $\sum_{1 \leq i<j \leq 4}\left|S_{i} \cap S_{j}\right|$. Therefore $\Sigma \leq 3$ would imply that at least $7 n-7$ integers lie within the interval $[\min L, \max L]$, proving our claim.

We consider the sizes of the six sets $S_{i} \cap S_{j}$ with $1 \leq i<j \leq 4$.
Case (i) $\left(S_{1} \cap S_{2}\right)$
Suppose $a_{1}>0$ or $b_{1}<0$. If $x \in S_{1} \cap S_{2}$, then $b_{n}+a_{i} \pm a_{1}=x=b_{n}+a_{j} \pm b_{1}$ for some $i, j \neq 1$. Thus $a_{i}=a_{j} \pm d$, so that $b_{i}=a_{j}$ or $a_{i}=b_{j}$, both of which are impossible.
Suppose $a_{1}<0<b_{1}$. If $x \in S_{1} \cap S_{2}$, then $b_{n}+a_{i}+a_{1}=b_{n}+a_{j}-b_{1}$ for some $i, j \neq 1$. This is impossible because then the isolated vertex labelled $a_{i}+b_{1}$ is adjacent to the vertex labelled a_{1}. Hence $S_{1} \cap S_{2}=\emptyset$ in all cases.
Case (ii) $\left(S_{1} \cap S_{3}\right)$
Suppose $a_{1}>0$. If $x \in S_{1} \cap S_{3}$, then $b_{n}+a_{i}-a_{1}=x=a_{j}+a_{n}$ with $2 \leq i \leq n$ and $1 \leq j \leq n-1$. Hence $a_{1}+a_{j}=b_{i}$, which can possibly hold only if $j=1$ since the vertices with labels a_{1} and a_{j} belong to the same partite set. Hence $\left|S_{1} \cap S_{3}\right| \leq 1$.

Suppose $a_{1}<0$. If $x \in S_{1} \cap S_{3}$, then $b_{n}+a_{i}+a_{1}=a_{n}-a_{j}$ with $2 \leq i \leq n$ and $1 \leq j \leq n-1$. Hence $\left(a_{1}+b_{i}\right)+\left(a_{j}+b_{k}\right)=b_{k}$ holds for $k \in\{1, \ldots, n\}$. Now the isolated vertex with label $a_{1}+b_{i}$ is adjacent to the isolated vertex with label $a_{j}+b_{k}$ for $k \in\{1, \ldots, n\}$, and this is impossible. Hence $S_{1} \cap S_{3}=\emptyset$.
Case (iii) $\left(S_{2} \cap S_{3}\right)$
Suppose $a_{1}>0$. If $x \in S_{2} \cap S_{3}$, then $b_{n}+a_{i}-b_{1}=a_{j}+a_{n}$ with $2 \leq i \leq n$ and $1 \leq j \leq n-1$. Hence $a_{j}+b_{1}=b_{i}$. But this is impossible since the isolated vertex labelled $a_{j}+b_{1}$ has the same label as the non-isolated vertex b_{i}.
Suppose $a_{1}<0<b_{1}$. If $x \in S_{2} \cap S_{3}$, then $b_{n}+a_{i}-b_{1}=a_{n}-a_{j}$ with $2 \leq i \leq n$ and $1 \leq j \leq n-1$. But this is impossible since the isolated vertex labelled $a_{j}+b_{i}$ has the same label as the non-isolated vertex b_{1}.
Suppose $b_{1}<0$. If $x \in S_{2} \cap S_{3}$, then $b_{n}+a_{i}+b_{1}=a_{n}-a_{j}$ with $2 \leq i \leq n$ and $1 \leq j \leq n-1$. Hence $\left(a_{j}+b_{1}\right)+\left(a_{k}+b_{i}\right)=a_{k}$ holds for $k \in\{1, \ldots, n\}$. Now the isolated vertex with label $a_{j}+b_{1}$ is adjacent to the isolated vertex with label $a_{k}+b_{i}$ for $k \in\{1, \ldots, n\}$, and this is impossible. Hence $S_{2} \cap S_{3}=\emptyset$ in all cases.
Case (iv) $\left(S_{1} \cap L\right)$
Suppose $a_{1}>0$. Observe that $S_{1} \cap(A \cup B)=\emptyset$ since $\max A<\max B<\min S_{1}$. If $x \in S_{1} \cap(C \cup D)$, then the vertex with label a_{1} is adjacent to a vertex with label in $C \cup D$, which is impossible since vertices with labels in $C \cup D$ are isolated. Hence $S_{1} \cap(C \cup D)=\emptyset$.
Suppose $a_{1}<0$. If $S_{1} \cap L \neq \emptyset$, then $b_{n}+a_{i}+a_{1} \in L$ for some $i \neq 1$. This is impossible since then the isolated vertex labelled $b_{n}+a_{i}$ is adjacent to the vertex labelled a_{1}. Hence $S_{1} \cap L=\emptyset$ in all cases.
Case (v) $\left(S_{2} \cap L\right)$
Suppose $b_{1}>0$. Observe that $S_{2} \cap A=\emptyset$ since $\max A<\min S_{2}$. If $S_{2} \cap(C \cup D) \neq \emptyset$, then the vertex with label b_{1} is adjacent to a vertex with label in $C \cup D$. This is impossible since vertices with labels in $C \cup D$ are isolated. Hence $S_{2} \cap(C \cup D)=\emptyset$. If $S_{2} \cap B \neq \emptyset$, then $b_{1}+b_{j} \in D$ for some $j \in\{1, \ldots, n\}$. But then the vertices with labels b_{1} and b_{j} are adjacent, and this is impossible since these vertices are from the same partite set unless $j=1$. Thus S_{2} and B can have at most the vertex with label b_{1} in common. Hence $\left|S_{2} \cap L\right| \leq 1$ in this case.
Suppose $b_{1}<0$. If $S_{2} \cap L \neq \emptyset$, then $b_{n}+a_{i}+b_{1} \in L$ for some $i \neq 1$. But then the isolated vertex labelled $b_{n}+a_{i}$ is adjacent to the vertex labelled b_{1}, which is impossible. Hence $S_{2} \cap L=\emptyset$ in this case.
Case (vi) $\left(S_{3} \cap L\right)$
Suppose $a_{1}>0$. If $S_{3} \cap L \neq \emptyset$, then $a_{i}+a_{n} \in L$ for some $i \neq n$. But then the vertices with labels a_{i} and a_{n} are adjacent, which is impossible since they belong to the same partite set. Hence $S_{3} \cap L=\emptyset$ in this case.
Suppose $a_{1}<0$. If $S_{3} \cap(A \cup C \cup D) \neq \emptyset$, then $a_{n}-a_{i} \in A \cup C \cup D$ for some $i \neq n$. But then the vertex with label a_{i} is adjacent to some vertex with label in $A \cup C \cup D$. This is impossible as neighbours of vertex with label a_{i} must have labels in B, with a possible exception in case $a_{n}=2 a_{i}$. If $S_{3} \cap B \neq \emptyset$, then $a_{n}-a_{i}=b_{j}$ for some $i \neq n$ and $j \in\{1, \ldots, n\}$. This is impossible since $a_{i}+b_{j}$ is the label of an isolated vertex whereas a_{n} is the label of a non-isolated vertex. Thus $\left|S_{3} \cap L\right| \leq 1$ in this case.

Since only three cases (ii), (v), and (vi) above lead to $\left|S_{i} \cap S_{j}\right| \leq 1$, it follows that $\Sigma \leq 3$, as desired. This completes the proof.

6. Cycles

Harary [5] showed that the sum number $\sigma\left(C_{n}\right)=2$, except that $\sigma\left(C_{4}\right)=3$. Sharary [9] showed that the integral sum number $\zeta\left(\complement_{n}\right)=0$ for $n \neq 4$. We show that, for $n \geq 4$,

$$
2 n-2 \leq \operatorname{spum} \mathcal{C}_{n} \leq 2 n-1,
$$

and for $n \geq 13$,

$$
\text { spum } \mathcal{C}_{n}=2 n-1
$$

Theorem 6.1. For $n \geq 4$, spum $\mathfrak{C}_{n} \leq 2 n-1$.
Proof. For odd $n \geq 5$, let G_{1} be the graph induced by the set of labels $L_{1}=\mathcal{L}\left(G_{1}\right)=[n-3,2 n-4] \cup\{3 n-6$, $3 n-4\}$. We claim that the graph induced by $[n-3,2 n-4]$ is isomorphic to \mathcal{C}_{n} by showing that the vertices with labels in the sequence

$$
\begin{equation*}
n-3, n-1,2 n-5, n+1,2 n-7, n+3,2 n-9, \ldots, 2 n-4, n-2, n-3 \tag{4}
\end{equation*}
$$

form a cycle, with the vertices labelled $3 n-6$ and $3 n-4$ isolated. We first show that the sequence in Eq. (4) with the first and last terms removed form a path with $n-1$ vertices. We note that this sequence alternates between even and odd integers in the interval $I_{1}=[n-2,2 n-4]$, with the even integers starting at $n-1$ and increasing and the odd integers starting at $2 n-5$ and decreasing. It is easy to see that consecutive sums of labels alternately yield $3 n-6$ and $3 n-4$, thereby forming a path. Now the sum of two distinct integers both taken from the interval I_{1} lies in the interval $[2 n-3,4 n-9]$ and $[2 n-3,4 n-9] \cap L_{1}=\{3 n-6,3 n-4\}$. Hence, for $a \in I_{1} \backslash\{n-2, n-1\}$, there exist $b=(3 n-4)-a \in I_{1}$ with $c=(3 n-6)-a \in I_{1}$. Since the vertices with labels in I_{1} form a path, there are no other edges between these
vertices. Thus the graph induced by the vertices with labels in I_{1} is isomorphic to \mathcal{P}_{n-1} with endpoints labelled $n-1$ and $n-2$. The vertex with label $n-3$ is adjacent to both endpoints of the path (because $2 n-5,2 n-4 \in L_{1}$), and to no other vertex (because [$n, 2 n-4$] $+(n-3) \cap L_{1}=\emptyset$). Moreover it is easy to see that the vertices with the labels $3 n-6$ and $3 n-4$ are isolated. This completes the proof of claim that $G_{1} \cong \mathcal{C}_{n}$.

Hence spum $\mathcal{C}_{n} \leq \max L_{1}-\min L_{1}=(3 n-4)-(n-3)=2 n-1$ when n is odd.
For even $n \geq 4$, let G_{2} be the graph induced by the set of labels $L_{2}=\mathcal{L}\left(G_{2}\right)=[n-2,2 n-3] \cup\{3 n-5,3 n-3\}$. We claim that the graph induced by $[n-2,2 n-3]$ is isomorphic to \mathfrak{C}_{n} by showing that the vertices with labels in the sequence

$$
\begin{equation*}
n-2,2 n-3, n, 2 n-5, n+2,2 n-7, \ldots, 2 n-4, n-1, n-2 \tag{5}
\end{equation*}
$$

form a cycle, with the vertices labelled $3 n-5$ and $3 n-3$ isolated. We note that this sequence alternates between even and odd integers in the interval $I_{2}=[n-2,2 n-3]$, with the even integers starting at $n-2$ and increasing and the odd integers starting at $2 n-3$ and decreasing. It is easy to see that consecutive sums of labels alternately yield $3 n-5$ and $3 n-3$, except for the last sum which is $2 n-3$, thereby forming a cycle. Now the sum of two distinct integers both taken from the interval I_{2} lies in the interval $[2 n-3,4 n-7]$ and $[2 n-3,4 n-7] \cap L_{2}=\{2 n-3,3 n-5,3 n-3\}$. Hence, for $a \in I_{2}$, there exist $b=(3 n-5)-a \in I_{2}$ with $c=(3 n-3)-a \in I_{2}$ for $a \neq n-2, n-1$ and $c=(2 n-3)-a$ for $a=n-2, n-1$. Since the vertices with labels in I_{2} form a cycle given by Eq. (5), there are no other edges between these vertices. Moreover it is easy to see that the vertices with the labels $3 n-5$ and $3 n-3$ are isolated. This completes the proof of claim that $G_{2} \cong \mathfrak{C}_{n}$.

Hence spum $\mathfrak{C}_{n} \leq \max L_{2}-\min L_{2}=(3 n-3)-(n-2)=2 n-1$ when n is even.
Remark 6.1. Theorems 2.1 and 6.1 imply $2 n-2 \leq \operatorname{spum} \mathfrak{C}_{n} \leq 2 n-1$ for $n \geq 4$.
Theorem 6.2. For $n \geq 13$, spum $\mathcal{C}_{n} \geq 2 n-1$.
Proof. Let G be a sum graph consisting of \mathcal{C}_{n} together with two isolated vertices. Let v_{1}, \ldots, v_{n} be the vertices on \mathcal{C}_{n} and let x, y be the isolated vertices. Let L be a labelling of G for which $\max L-\min L=\operatorname{spum} \mathcal{C}_{n}$. Let $S=\left\{a_{1}, \ldots, a_{n}\right\}$, written in increasing order, denote the labellings within L of vertices corresponding to \mathcal{C}_{n}. Let $\ell\left(v_{i}\right)=a_{i}$ for $1 \leq i \leq n$, and let $\ell(x)=a, \ell(y)=b$, with $a<b$. Let

$$
\begin{equation*}
S_{1}=S \cap\left[a_{1}, 2 a_{1}\right], \quad S_{2}=S \cap\left[2 a_{1}+1, a_{n}\right], \quad S_{3}=S_{2}-a_{1}, \quad T=\left[a_{1}, a_{n}\right] \backslash S . \tag{6}
\end{equation*}
$$

From Theorem 2.1 we know that spum $\mathcal{C}_{n} \geq 2 n-2$. We show that spum $\mathcal{C}_{n}=2 n-2$ is not possible for $n \geq 13$. We first show that spum $\mathcal{C}_{n}=2 n-2$ implies $\left[a_{1}, 2 a_{1}\right] \subset S$, and then use this to show that both $a_{1} \leq \frac{5 n+2}{12}$ and $a_{1} \geq n-7$ must hold. The lower and upper bounds for a_{1} can simultaneously hold only when $n-7 \leq \frac{5 n+2}{12}$, or when $n \leq 12$.

We first show that spum $\mathcal{C}_{n}=2 n-2$ implies $\left[a_{1}, 2 a_{1}\right] \subset S$. If this was not the case, Eq. (1) in this special case would be replaced by

$$
n-a_{1} \leq\left|S_{3}\right|=\left|S_{3} \cap\left[a_{1}, a_{n}\right]\right|=\left|S_{3} \cap S\right|+\left|S_{3} \cap T\right|
$$

This is the same as Eq. (1) except that the lower bound for $\left|S_{3}\right|$ has been replaced by $n-a_{1}$. Therefore, the arguments in the two paragraphs immediately following Eq. (1) now imply $\max L-\min L \geq 2 n-1$ since $\Delta=\delta$. This contradicts our assumption that spum $\mathcal{C}_{n}=2 n-2$. Hence $\left[a_{1}, 2 a_{1}\right] \subset S$.

Now assuming [$a_{1}, 2 a_{1}$] $\subset S$ and spum $\mathcal{C}_{n}=2 n-2$, we prove the following two claims that give upper and lower bounds on a_{1}. Together they imply a feasible value of a_{1} exists only for $n \leq 16$, which finishes the proof of this theorem.

Claim 1. spum $\mathcal{C}_{n}=2 n-2$ implies $a_{1} \leq \frac{5 n+2}{12}$.
Recall that under the assumption spum $\mathcal{C}_{n}=2 n-2,\left[a_{1}, 2 a_{1}\right] \subset S$, and so $\ell\left(v_{a_{1}+1}\right)=2 a_{1}$. Since $v_{a_{1}+1}$ has a neighbour with label greater than a_{1}, there is a vertex with label greater than $3 a_{1}$. Hence $a_{n}>3 a_{1}$, and $2 n-2=$ spum $\mathfrak{C}_{n} \geq$ $\left(3 a_{1}+1+a_{1}+1\right)-a_{1}=3 a_{1}+2$. Therefore $a_{1} \leq \frac{2 n-4}{3}$.

We claim that $\left|S \cap\left[2 a_{1}+1,3 a_{1}\right]\right| \leq 2$. Suppose, to the contrary, that $\left|S \cap\left[2 a_{1}+1,3 a_{1}\right]\right| \geq 3$, and that a_{i}, a_{j}, a_{k} are the labels of three of these vertices in $\left[2 a_{1}+1,3 a_{1}\right]$. Then vertex v_{1} is adjacent to each of the three vertices with labels $a_{i}-a_{1}, a_{j}-a_{1}, a_{k}-a_{1}$, contradicting the assumption that $d\left(v_{1}\right)=2$. This proves our claim.

We claim that $\left|S \cap\left[3 a_{1}+1,4 a_{1}\right]\right| \leq 2$. Again suppose, to the contrary, that $\left|S \cap\left[3 a_{1}+1,4 a_{1}\right]\right| \geq 3$, and that b_{i}, b_{j}, b_{k} are the labels of three of these vertices in $\left[3 a_{1}+1,4 a_{1}\right]$. Then vertex $v_{a_{1}+1}$ with label $2 a_{1}$ is adjacent to each of the three vertices with labels $b_{i}-2 a_{1}, b_{j}-2 a_{1}, b_{k}-2 a_{1}$, contradicting the assumption that $d\left(v_{a_{1}+1}\right)=2$. This proves our claim.

Since $\left[a_{1}, 2 a_{1}\right] \subset S$ and S has at most two elements in common with each of the intervals $\left[2 a_{1}+1,3 a_{1}\right]$ and $\left[3 a_{1}+1,4 a_{1}\right],\left|S \cap\left[a_{1}, 4 a_{1}\right]\right| \leq a_{1}+5 \leq \frac{2 n+11}{3}$. Thus there are at least $n-\frac{2 n+11}{3}=\frac{n-11}{3}$ elements of S in the interval $\left[4 a_{1}+1, a_{n}\right]$. Hence $a_{n} \geq 4 a_{1}+\frac{n-11}{3}$, and spum $\mathcal{C}_{n} \geq\left(4 a_{1}+\frac{n-11}{3}+a_{1}+1\right)-a_{1}=4 a_{1}+\frac{n-8}{3}$.

We conclude that $4 a_{1}+\frac{n-8}{3} \leq 2 n-2$, so that $a_{1} \leq \frac{5 n+2}{12}$, as claimed.

Claim 2. spum $\mathfrak{C}_{n}=2 n-2$ implies $a_{1} \geq n-7$.
We recall the sets defined at the beginning of this proof in Eq. (6). We further define sets

$$
S_{2}^{\prime}=S \cap\left[2 a_{1}+1,3 a_{1}\right], \quad S_{2}^{\prime \prime}=S \cap\left[3 a_{1}+1, a_{n}\right], \quad S_{3}^{\prime}=S_{2}^{\prime}-a_{1}, \quad S_{3}^{\prime \prime}=S_{2}^{\prime \prime}-a_{1}, \quad S_{4}^{\prime \prime}=S_{2}^{\prime \prime}-2 a_{1}
$$

Note that S_{2} is the disjoint union of S_{2}^{\prime} and $S_{2}^{\prime \prime}$ and S_{3} is the disjoint union of S_{3}^{\prime} and $S_{3}^{\prime \prime}$. Recall that under the assumption spum $\mathcal{C}_{n}=2 n-2,\left[a_{1}, 2 a_{1}\right] \subset S$, and so $\ell\left(v_{a_{1}+1}\right)=2 a_{1}$.

Suppose $s \in S \cap S_{3}$. Then $s+a_{1} \in S_{2} \subset S$ with $s \in S$, so that each vertex with label in $S \cap S_{3}$ is a neighbour of v_{1}. Again if $t \in T \cap S_{3} \cap S_{4}^{\prime \prime}$, then $t+a_{1} \in S_{2} \subset S$ and $t+2 a_{1} \in S_{2}^{\prime \prime} \subset S$. So the vertex labelled $t+a_{1}$ is a neighbour of v_{1}.

Suppose $s \in S \cap S_{4}^{\prime \prime}$. Then $s+2 a_{1} \in S_{2}^{\prime \prime} \subset S$ with $s \in S$, and so $v_{a_{1}+1}$ has at least as many as $\left|S \cap S_{4}^{\prime \prime}\right|$ neighbours.
Since $d\left(v_{1}\right)=d\left(v_{a_{1}+1}\right)=2$, we have

$$
\begin{equation*}
\left|S \cap S_{3}\right| \leq 2, \quad\left|S \cap S_{4}^{\prime \prime}\right| \leq 2, \quad\left|S_{3} \cap S_{4}^{\prime \prime}\right| \leq 2 \tag{7}
\end{equation*}
$$

Since S, T partition the interval $\left[a_{1}, a_{n}\right.$] and $S_{3}, S_{4}^{\prime \prime}$ lie within $\left[a_{1}, a_{n}\right.$], we have

$$
\begin{equation*}
\left|S \cap S_{3}\right|+\left|T \cap S_{3}\right|=\left|S_{3}\right|=\left|S_{2}\right|=|S|-\left|\left[a_{1}, 2 a_{1}\right]\right|=n-\left(a_{1}+1\right) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|S \cap S_{4}^{\prime \prime}\right|+\left|T \cap S_{4}^{\prime \prime}\right|=\left|S_{4}^{\prime \prime}\right|=\left|S_{2}^{\prime \prime}\right|=|S|-\left|S \cap\left[a_{1}, 3 a_{1}\right]\right| \geq n-\left(a_{1}+1\right)-2 \tag{9}
\end{equation*}
$$

the last inequality because $\left|S \cap\left[2 a_{1}+1,3 a_{1}\right]\right| \leq 2$, as shown earlier.
Eqs. (7), (8), and (9) give

$$
\begin{equation*}
\left|T \cap S_{3}\right| \geq n-a_{1}-3, \quad\left|T \cap S_{4}^{\prime \prime}\right| \geq n-a_{1}-5 \tag{10}
\end{equation*}
$$

Using Eqs. (7) and (10), and the fact that $|T|=\left(a_{n}-a_{1}+1\right)-n$ in

$$
|T| \geq\left|T \cap\left(S_{3} \cup S_{4}^{\prime \prime}\right)\right|=\left|T \cap S_{3}\right|+\left|T \cap S_{4}^{\prime \prime}\right|-\left|T \cap S_{3} \cap S_{4}^{\prime \prime}\right| \geq\left|T \cap S_{3}\right|+\left|T \cap S_{4}^{\prime \prime}\right|-\left|S_{3} \cap S_{4}^{\prime \prime}\right|,
$$

we have

$$
\begin{equation*}
a_{n} \geq 3 n-a_{1}-11 \tag{11}
\end{equation*}
$$

To complete the proof of this Claim 2, suppose $v_{1} \leftrightarrow v_{n}$. Since $a_{n} \in S_{3} \cup S_{4}^{\prime \prime}$, Eq. (7) may be replaced by

$$
\left|S \cap S_{3}\right| \leq 1, \quad\left|S \cap S_{4}^{\prime \prime}\right| \leq 1, \quad\left|S_{3} \cap S_{4}^{\prime \prime}\right| \leq 1
$$

Consequently Eqs. (8) and (9) now imply that Eq. (10) may be replaced by

$$
\left|T \cap S_{3}\right| \geq n-a_{1}-2, \quad\left|T \cap S_{4}^{\prime \prime}\right| \geq n-a_{1}-4
$$

and Eq. (11) by

$$
a_{n} \geq 3 n-a_{1}-8
$$

Hence spum $\mathcal{C}_{n} \geq\left(3 n-a_{1}-8\right)+\left(a_{1}+1\right)-a_{1}=3 n-a_{1}-7$.
If $v_{1} \not \leftrightarrow v_{n}$, from Eq. (11) we get spum $\mathcal{C}_{n} \geq\left(3 n-a_{1}-11\right)+\left(a_{1}+2\right)-a_{1}=3 n-a_{1}-9$. In any case, we have $2 n-2 \geq 3 n-a_{1}-9$, so that $a_{1} \geq n-7$, as claimed.

This completes the proof of the theorem.
Melnikov \& Pyatkin [8, Lemma 2, pp. 240-242] provided an integral labellings for cycles \mathfrak{C}_{n} with $n \geq 5$. For each $k \geq 1$, they showed that the set

$$
[-17 k,-16 k+1] \cup[-12 k,-12 k+1] \cup\{-5 k,-k-1\} \cup[4 k, 5 k] \cup\{16 k-1,17 k\}
$$

induces the cycle $\mathfrak{C}_{2 k+9}$, and the set

$$
[-5 k-8,-4 k-7] \cup[-3 k-6,-3 k-5] \cup[-k-2,-k-1] \cup[k+2,2 k+2] \cup\{4 k+7\}
$$

induces the cycle $\mathfrak{C}_{2 k+8}$. They also provided integral labels for \mathcal{C}_{n} with $n \in\{5,6,7,8,9\}$. Thus we have the following upper bound for integral spum \mathcal{C}_{n} for $n \geq 10$.

Theorem 6.3 (Melnikov \& Pyatkin, [8]). For $n \geq 10$,
integral spum $\bigodot_{n} \leq \begin{cases}17(n-9) & \text { if } n \text { is odd; } \\ \frac{3}{2}(3 n-14) & \text { if } n \text { is even. }\end{cases}$

Table 2
Table of results for integral spum of cycles.

n	integral spum labelling	integral spum \mathfrak{C}_{n}
5	$-\mathbf{3}, \mathbf{2},-1,-2,1$	5
6	$\mathbf{- 5}, \mathbf{3},-2,-3,1,2$	8
7	$-\mathbf{7}, \mathbf{4},-3,-4,1,-5,2$	11
8	$-\mathbf{1 1}, \mathbf{3},-10,-1,-7,-3,-8,1$	14
9	$-\mathbf{8}, \mathbf{9},-1,-5,-3,8,1,-6,5$	17
10	$-\mathbf{1 3}, \mathbf{4},-2,-10,-3,-9,-4,2,-12,3$	17
11	$-\mathbf{5}, \mathbf{1 6},-4,15,-3,-2,5,11,4,12,3$	21
12	$\mathbf{- 6}, \mathbf{1 9},-5,18,-4,17,-3,6,13,4,14,3$	25
13	$\mathbf{- 6}, \mathbf{2 0},-5,19,-4,7,-3,6,14,5,15,4,3$	26

Theorem 6.4. For $n \geq 3$, integral spum $\mathcal{C}_{n} \geq 2 n-5$.
Proof. This follows directly from Theorem 2.2.
We are unable to determine a better upper bound for integral spum \mathcal{C}_{n} than the one in Theorem 6.3, but we make the following conjecture based on the limited evidence of Table 2.

Conjecture 6.1. For $n \geq 9$,

$$
\text { integral spum } \mathcal{C}_{n}= \begin{cases}\frac{5}{2}(n-3)+1 & \text { if } n \text { is odd } \\ 2 n-2 & \text { if } n \text { is even } .\end{cases}
$$

7. Paths

Harary showed that the sum number $\sigma\left(\mathcal{P}_{n}\right)=1$ in [5] and that the integral sum number $\zeta\left(\mathcal{P}_{n}\right)=0$ in [6]. For $n \geq 9$, we show that

$$
2 n-3 \leq \operatorname{spum} \mathcal{P}_{n} \leq \begin{cases}2 n+1 & \text { if } n \text { is odd } \\ 2 n+2 & \text { if } n \text { is even }\end{cases}
$$

and for $n \geq 7$, we show that

$$
2 n-5 \leq \text { integral spum } \mathcal{P}_{n} \leq \begin{cases}\frac{5}{2}(n-3) & \text { if } n \text { is odd; } \\ 2 n-3 & \text { if } n \text { is even }\end{cases}
$$

Theorem 7.1. For $n \geq 9$,

$$
\text { spum } \mathcal{P}_{n} \leq \begin{cases}2 n+1 & \text { if } n \text { is odd } \\ 2 n+2 & \text { if } n \text { is even } .\end{cases}
$$

Proof. For odd $n \geq 9$, let G_{1} be the graph induced by the set of labels $L_{1}=\mathcal{L}\left(G_{1}\right)=\{1,3,5, \ldots, 2 n-7\} \cup\{2 n-6,2 n-$ $3,2 n+1,2 n+2\}$. We claim that the graph induced by $L_{1} \backslash\{2 n+2\}$ is isomorphic to \mathcal{P}_{n} by showing that the vertices with labels in the sequence

$$
\begin{equation*}
2 n+1,1,2 n-7,9, \ldots, 11,2 n-9,3,2 n-6,7,2 n-13,15,2 n-21, \ldots, 2 n-11,5,2 n-3 \tag{12}
\end{equation*}
$$

form a path when n is of the form $4 k+1$, and by showing that the vertices with labels in the sequence

$$
\begin{equation*}
2 n+1,1,2 n-7,9, \ldots, 15,2 n-9,7,2 n-6,3,2 n-13,11,2 n-21, \ldots, 2 n-11,5,2 n-3 \tag{13}
\end{equation*}
$$

form a path when n is of the form $4 k+3$. In both cases, the vertex labelled $2 n+2$ is isolated.
For the case $n=4 k+1$, the subsequence of odd subscripts consists of two arithmetic progressions each with common difference 8 . One starts with $\ell_{1}=2 n+1$ and ends with 3 (there are $\frac{n+3}{4}$ terms), the other starts with $\ell_{n}=2 n-3$ and ends with 7 (there are $\frac{n-1}{4}$ terms). The subsequence of even subscripts also consists of two arithmetic progressions each with common difference 8 , but with a term in the middle: $\ell_{(n+3) / 2}=2 n-6$. One of these progressions starts with $\ell_{2}=1$ and ends with $2 n-9$ (there are $\frac{n-1}{4}$ terms), the other starts with $\ell_{n-1}=5$ and ends with $2 n-13$ (there are $\frac{n-5}{4}$ terms). We can define the sequence in Eq. (12) by:

$$
\ell_{2 i+1}=\left\{\begin{array}{lll}
(2 n+1)-8 i & \text { if } 0 \leq i \leq \frac{n-1}{4}, \\
-(2 n-1)+8 i & \text { if } \frac{n+3}{4} \leq i \leq \frac{n-1}{2},
\end{array} \quad \ell_{2 i}= \begin{cases}8 i-7 & \text { if } 1 \leq i \leq \frac{n-1}{4} \\
2 n-6 & \text { if } i=\frac{n+3}{4} \\
(4 n+1)-8 i & \text { if } \frac{n+7}{4} \leq i \leq \frac{n-1}{2}\end{cases}\right.
$$

Observe that $\ell_{i}+\ell_{i+1}$ is alternately $2 n+2$ and $2 n-6$, except that $\ell_{(n-1) / 4}+\ell_{(n+3) / 4}=2 n-3$ and $\ell_{(n+3) / 4}+\ell_{(n+7) / 4}=2 n+1$. Thus the vertices with labels given in Eq. (12) form a path.

We now prove that $v_{i} \not \leftrightarrow v_{j}$ when $|i-j|>1$. Observe that exactly two of the labels are even (in fact, multiples of 4); the label $2 n-6$ corresponds to $v_{(n+3) / 4}$ and the label $2 n+2$ corresponds to an isolated vertex. Observe also that $\ell_{\text {odd }} \equiv 3$ $(\bmod 4)$ and $\ell_{\text {even }} \equiv 1(\bmod 4)$, for even subscript $\neq \frac{n+3}{2}$. Hence, by considering residue classes modulo 4 , we see that $v_{2 i-1} \not \leftrightarrow v_{2 j-1}$ for $i \neq j$ and $v_{2 i} \not \leftrightarrow v_{2 j}$ for $i \neq j, i, j \neq \frac{n+3}{4}$. Thus $v_{2 i-1} \leftrightarrow v_{2 j}$ if and only if $\ell_{2 i-1}+\ell_{2 j} \in\{2 n-6,2 n+2\}$, so that each of the vertices (possibly except $v_{(n+3) / 4}$) must have degree 0,1 , or 2 . Since these vertices lie on the path with labels given by Eq. (14), we need to show that $d\left(v_{1}\right)=d\left(v_{n}\right)=1, d\left(v_{(n+3) / 2}\right)=2$; the vertex with label $2 n+2=\max L_{1}$ is isolated. We note that in order that v_{i} is a neighbour of v_{1} (respectively, $v_{(n+3) / 2}, v_{n}$), ℓ_{i} must belong to $\{1\}$ (respectively, $\{3,7,8\},\{4,5\})$. The proof of the claim that the graph induced by $L_{1} \backslash\{2 n+2\}$ is isomorphic to \mathcal{P}_{n} is complete with the observation that $1,3,5,7 \in L_{1}$ and $4 \notin L_{1}$ for the case $n=4 k+1$.

The case $n=4 k+3$ is almost identical to the case $n=4 k+1$ discussed above. The subsequence of odd subscripts consists of two arithmetic progressions each with common difference 8 . One starts with $\ell_{1}=2 n+1$ and ends with 7 (there are $\frac{n+1}{4}$ terms), the other starts with $\ell_{n}=2 n-3$ and ends with 3 (there are $\frac{n+1}{4}$ terms). The subsequence of even subscripts also consists of two arithmetic progressions each with common difference 8, but with a term in the middle: $\ell_{(n+1) / 2}=2 n-6$. One of these progressions starts with $\ell_{2}=1$ and ends with $2 n-9$ (there are $\frac{n-1}{4}$ terms), the other starts with $\ell_{n-1}=5$ and ends with $2 n-13$ (there are $\frac{n-5}{4}$ terms). We can define the sequence in Eq. (13) by:

$$
\ell_{2 i+1}=\left\{\begin{array}{ll}
(2 n+1)-8 i & \text { if } 0 \leq i \leq \frac{n-3}{4}, \\
-(2 n-1)+8 i & \text { if } \frac{n+1}{4} \leq i \leq \frac{n-1}{2},
\end{array} \quad \ell_{2 i}= \begin{cases}8 i-7 & \text { if } 1 \leq i \leq \frac{n-3}{4} \\
2 n-6 & \text { if } i=\frac{n+1}{4} \\
(4 n+1)-8 i & \text { if } \frac{n+5}{4} \leq i \leq \frac{n-1}{2}\end{cases}\right.
$$

The details of the proof for this case are identical to the case when $n=4 k+1$ and is omitted. The proof of the claim that the graph induced $L_{1} \backslash\{2 n+2\}$ is isomorphic to \mathcal{P}_{n} is complete for the case when n is odd.

Hence spum $\mathcal{P}_{n} \leq \max L_{2}-\min L_{2}=(2 n+2)-1=2 n+1$ when n is odd.
For even $n \geq 10$, let G_{2} be the graph induced by the set of labels $L_{2}=\mathcal{L}\left(G_{2}\right)=\{1,3,5, \ldots, 2 n-9\} \cup\{2 n-5,2 n-4,2 n-$ $1,2 n, 2 n+3\}$. We claim that the graph induced by $L_{2} \backslash\{2 n+3\}$ is isomorphic to \mathcal{P}_{n} by showing that the vertices with labels in the sequence

$$
\begin{equation*}
2 n-1,1,2 n-5,5,2 n-9,9, \ldots, 2 n-4,3,2 n \tag{14}
\end{equation*}
$$

form a path, with the vertex labelled $2 n+3$ isolated. We note that the labels are given by $\ell_{2 i-1}=(2 n-1)-4(i-1)=$ $2 n+3-4 i$ for $i \in\left\{1, \ldots, \frac{n}{2}\right\}$ and $\ell_{2 i}=1+4(i-1)=4 i-3$ for $i \in\left\{1, \ldots, \frac{n}{2}-2\right\}$, with $\ell_{n-2}=2 n-4$ and $\ell_{n}=2 n$. Observe that $\ell_{i}+\ell_{i+1}$ is alternately $2 n$ and $2 n-4$, except that the last two sums are $2 n-1$ and $2 n+3$. Thus the vertices with labels given in Eq. (14) form a path.

We now prove that $v_{i} \not \leftrightarrow v_{j}$ when $|i-j|>1$. Observe that exactly two of the labels are even (in fact, multiples of 4), and these correspond to the vertices v_{n-2} and v_{n}. Observe also that $\ell_{\text {odd }} \equiv 3(\bmod 4)$ and $\ell_{\text {even }} \equiv 1(\bmod 4)$, for even subscripts $\neq n-2, n$. Hence, by considering residue classes modulo 4, we see that $v_{2 i-1} \not \leftrightarrow v_{2 j-1}$ for $i \neq j$ and $v_{2 i} \not \leftrightarrow v_{2 j}$ for $i \neq j, i, j \neq \frac{n}{2}-1, \frac{n}{2}$. Thus $v_{2 i-1} \leftrightarrow v_{2 j}$ if and only if $\ell_{2 i-1}+\ell_{2 j} \in\{2 n-4,2 n\}$, so that each of the vertices (possibly except v_{n-2} and v_{n}) must have degree 0,1 or 2 . Since these vertices lie on the path with labels given by Eq. (14), we need to show that $d\left(v_{1}\right)=d\left(v_{n}\right)=1, d\left(v_{n-2}\right)=2$; the vertex with label $2 n+3=\max L_{2}$ is isolated. We note that in order that v_{i} is a neighbour of v_{1} (respectively, v_{n-2}, v_{n}), ℓ_{i} must belong to $\{1,4\}$ (respectively, $\{3,4,7\},\{3\}$). The proof of the claim that the graph induced by $L_{2} \backslash\{2 n+3\}$ is isomorphic to \mathcal{P}_{n} is complete with the observation that $1,3,7 \in L_{2}$ and $4 \notin L_{2}$ when n is even.

Hence spum $\mathcal{P}_{n} \leq \max L_{2}-\min L_{2}=(2 n+3)-1=2 n+2$ when n is even.
Theorem 7.2. For $n \geq 3$, spum $\mathcal{P}_{n} \geq 2 n-3$.
Proof. This follows directly from Theorem 2.1.
Theorem 7.3. For $n \geq 7$,

$$
\text { integral spum } \mathcal{P}_{n} \leq \begin{cases}\frac{5}{2}(n-3) & \text { if } n \text { is odd } \\ 2 n-3 & \text { if } n \text { is even. }\end{cases}
$$

Proof. For odd $n \geq 7$, let G_{1} be the graph induced by the set of labels $L_{1}=\mathcal{L}\left(G_{1}\right)=\left[-(n-3),-\frac{n-3}{2}\right] \cup\left\{\frac{n-3}{2}, \frac{n-1}{2}\right\} \cup$ $\left[n-2, \frac{3(n-3)}{2}\right]$. We claim that $G_{1} \cong \mathcal{P}_{n}$ by showing that the vertices with labels in the sequence

$$
\begin{equation*}
\frac{n-1}{2}, \frac{n-3}{2},-(n-3), \frac{3 n-9}{2},-(n-4), \frac{3 n-11}{2},-(n-5), \frac{3 n-13}{2}, \ldots, n-2,-\frac{n-3}{2} \tag{15}
\end{equation*}
$$

form a path. We note that the labels are given by $\ell_{2 i}=\frac{3 n-5}{2}-i$ for $i \in\left\{2, \ldots, \frac{n-1}{2}\right\}$ and $\ell_{2 i+1}=-(n-2)+i$ for $i \in\left\{1, \ldots, \frac{n-1}{2}\right\}$, with $\ell_{1}=\frac{n-1}{2}$ and $\ell_{2}=\frac{n-3}{2}$. Observe that $v_{1} \leftrightarrow v_{2}, v_{2} \leftrightarrow v_{3}$ and $v_{3} \leftrightarrow v_{4}$, and that $v_{2 i} \leftrightarrow v_{2 i+1}$ since $\ell_{2 i}+\ell_{2 i+1}=\left(\frac{3 n-5}{2}-i\right)+(-n+2+i)=\frac{n-1}{2}$ for $i \in\left\{2, \ldots, \frac{n-1}{2}\right\}$.

We now prove that $v_{i} \not \leftrightarrow v_{j}$ when $|i-j|>1$. Note that $\left\{\ell_{2 i+1}: 1 \leq i \leq \frac{n-1}{2}\right\}=\left[-(n-3),-\frac{n-3}{2}\right]=I_{1}$ and that $\left\{\ell_{2 i}: 2 \leq i \leq \frac{n-1}{2}\right\}=\left[n-2, \frac{3(n-3)}{2}\right]=I_{2}$. Let $S_{1}+S_{2}=\left\{x_{1}+x_{2}: x_{1} \in S_{1}, x_{2} \in S_{2}, x_{1} \neq x_{2}\right\}$. Then $I_{1}+I_{1}=$ $[-(2 n-7),-(n-2)] \cap L_{1}=\emptyset, I_{1}+I_{2}=[1, n-3] \cap L_{1}=\left\{\frac{n-3}{2}, \frac{n-1}{2}\right\}$, and $I_{2}+I_{2}=[2 n-3,3 n-10] \cap L_{1}=\emptyset$. Hence $v_{i} \leftrightarrow v_{j}, i, j \notin\{1,2\}$ if and only if $\ell_{i}+\ell_{j} \in\left\{\frac{n-3}{2}, \frac{n-1}{2}\right\}$.

Suppose $\ell_{2 i+1}=-(n-2)+i \in I_{1}$ and $v_{2 i+1} \leftrightarrow v_{j}$. Then $\ell_{j}=\frac{3 n-5}{2}-i$ or $\frac{3 n-7}{2}-i, i \in\left\{1, \ldots, \frac{n-1}{2}\right\}$. Since both $\frac{3 n-5}{2}-i$, $\frac{3 n-7}{2}-i$ belong to I_{2} for all $i \neq \frac{n-1}{2}$ while $\frac{3 n-5}{2}-\frac{n-1}{2} \in I_{2}, \frac{3 n-7}{2}-\frac{n-1}{2} \notin I_{2}$, each of the vertices $v_{2 i+1}, i>1$ has no neighbours aside from those on the path given by Eq. (15).

Suppose $\ell_{2 i}=\frac{3 n-5}{2}-i \in I_{2}$ and $v_{2 i} \leftrightarrow v_{j}$. Then $\ell_{j}=-(n-2)+i$ or $-(n-3)+i, i \in\left\{2, \ldots, \frac{n-1}{2}\right\}$. Since both $-(n-2)+i$, $-(n-3)+i$ belong to I_{2} for all i, each of the vertices $v_{2 i}, i>1$ has no neighbours aside from those on the path given by Eq. (15).

There remains to consider the vertices v_{1} and v_{2}. Observe that $\left(I_{1}+\frac{n-1}{2}\right) \cap L_{1}=\left\{\frac{n-3}{2}\right\}$ and that $\left(I_{1}+\frac{n-3}{2}\right) \cap L_{1}=$ $\left\{\frac{n-1}{2},-(n-3)\right\}$. Thus there are no edges other than those on the path given by Eq. (15). This completes the proof of claim that $G_{1} \cong \mathcal{P}_{n}$.

Hence integral spum $\mathcal{P}_{n} \leq \max L_{1}-\min L_{1}=\frac{3}{2}(n-3)+(n-3)=\frac{5}{2}(n-3)$ when n is odd.
For even $n \geq 8$, let G_{2} be the graph induced by the set of labels $L_{2}=\mathcal{L}\left(G_{2}\right)=\{-1,1,3, \ldots, 2 n-9\} \cup\{2 n-8,2 n-5,2 n-4\}$. We claim that $G_{2} \cong \mathcal{P}_{n}$ by showing that the vertices with labels in the sequence

$$
\begin{equation*}
2 n-4,-1,2 n-8,3,2 n-11,7,2 n-15,11,2 n-19, \ldots, 1,2 n-5 \tag{16}
\end{equation*}
$$

form a path. We note that the labels are given by $\ell_{2 i}=4(i-1)-1=4 i-5$ for $i \in\left\{1, \ldots, \frac{n}{2}\right\}$ and $\ell_{2 i-1}=$ $(2 n-11)-4(i-3)=2 n+1-4 i$ for $i \in\left\{3, \ldots, \frac{n}{2}\right\}$, with $\ell\left(v_{1}\right)=2 n-4$ and $\ell\left(v_{3}\right)=2 n-8$. Observe that $v_{1} \leftrightarrow v_{2}$, $v_{2} \leftrightarrow v_{3}, v_{3} \leftrightarrow v_{4}$ and $v_{4} \leftrightarrow v_{5}$, and that $v_{2 i-1} \leftrightarrow v_{2 i}$ since $\ell_{2 i-1}+\ell_{2 i}=(2 n+1-4 i)+(4 i-5)=2 n-4$ for $i \in\left\{3, \ldots, \frac{n}{2}\right\}$.

We now prove that $v_{i} \not \leftrightarrow v_{j}$ when $|i-j|>1$. Observe that exactly two of the labels are even (in fact, multiples of 4), and these correspond to the vertices v_{1} and v_{3}. Observe also that $\ell_{\text {odd }} \equiv 1(\bmod 4)$, for odd subscripts $\neq 1,3$ and $\ell_{\text {even }} \equiv 3(\bmod 4)$. Suppose $v_{i} \leftrightarrow v_{j}$ with $i, j \notin\{1,3\}, i \neq j$. Hence i and j must be of opposite parity, so that $(2 n+1-4 i)+(4 j-5) \in\{2 n-4,2 n-8\}$. But then $|i-j| \in\{0,1\}$, and this is impossible. Since $v_{1} \nleftarrow v_{4}$, it remains to show that $v_{1} \not \leftrightarrow v_{i}$ and $v_{3} \not \leftrightarrow v_{i}$ for $i>4$. Suppose, to the contrary, that $v_{i} \leftrightarrow v_{1}$ or $v_{i} \leftrightarrow v_{3}$. Then ℓ_{i} added to one of $2 n-4,2 n-8$ must belong to $\left\{\ell_{j}: j \equiv i(\bmod 2)\right\}$. Since $\left|\ell_{j}-\ell_{i}\right| \leq 2 n-12$ under the constraints, we arrive at a contradiction. This completes the proof of claim that $G_{2} \cong \mathcal{P}_{n}$.

Hence integral spum $\mathcal{P}_{n} \leq \max L_{2}-\min L_{2}=(2 n-4)+1=2 n-3$ when n is even.
Theorem 7.4. For $n \geq 3$, integral spum $\mathcal{P}_{n} \geq 2 n-5$.

Proof. This follows directly from Theorem 2.2.
We close this section with a table of values for spum \mathcal{P}_{n} for $4 \leq n \leq 9$ (Table 3) and integral spum \mathcal{P}_{n} for $3 \leq n \leq 13$ (Table 4), and conjectures on their exact values based on limited numerical evidence. The largest labels in Table 3 are also the labels of the isolated vertex in each case.

Table 3
Table of results for spum of paths.

n	spum labelling	spum \mathcal{P}_{n}
4	$3, \mathbf{1}, 2,4 ; \mathbf{6}$	5
5	$5, \mathbf{1}, 4,2,6 ; \mathbf{8}$	7
6	$9, \mathbf{1}, 4,5,2,7 ; \mathbf{1 0}$	9
7	$12, \mathbf{1}, 6,7,2,4,9 ; \mathbf{1 3}$	12
8	$12, \mathbf{1}, 11,5,7,9,3,13 ; \mathbf{1 6}$	15
9	$19, \mathbf{1}, 11,9,3,12,7,5,15 ; \mathbf{2 0}$	19
10	$19, \mathbf{1}, 15,5,11,9,7,16,3,20 ; \mathbf{2 3}$	22
11	$23, \mathbf{1}, 15,9,7,16,3,13,11,5,19 ; \mathbf{2 4}$	23
12	$23, \mathbf{1}, 19,5,15,9,11,13,7,20,3,24 ; \mathbf{2 7}$	26
13	$27, \mathbf{1}, 19,9,11,17,3,20,7,13,15,5,23 ; \mathbf{2 8}$	27
14	$27, \mathbf{1}, 23,5,19,9,15,13,11,17,7,24,3,28 ; \mathbf{3 1}$	30

Table 4
Table of results for integral spum of paths.

n	integral spum labelling	integral spum \mathcal{P}_{n}
3	$1, \mathbf{0}, \mathbf{2}$	2
4	$1,2,-\mathbf{1}, \mathbf{3}$	4
5	$2,1,3,-\mathbf{2}, \mathbf{4}$	6
6	$2,-\mathbf{4}, 1,-3, \mathbf{4},-2$	8
7	$3,2,-\mathbf{4}, \mathbf{6},-3,5,-2$	10
8	$\mathbf{1 2},-\mathbf{1}, 8,3,5,7,1,11$	13
9	$4,3,-\mathbf{6}, \mathbf{9},-5,8,-4,7,-3$	15
10	$\mathbf{1 6},-\mathbf{1}, 12,3,9,7,5,11,1,15$	17
11	$5,4,-\mathbf{8}, \mathbf{1 2},-7,11,-6,10,-5,9,-4$	20
12	$\mathbf{2 0}, \mathbf{1}, 16,3,13,7,9,11,5,15,1,19$	21
13	$6,5,-\mathbf{1 0}, \mathbf{1 5},-9,14,-8,13,-7,12,-6,11,-5$	25

Conjecture 7.1. For $n \geq 9$,

spum $\mathcal{P}_{n}= \begin{cases}2 n+1 & \text { if } n \text { is odd; } \\ 2 n+2 & \text { if } n \text { is even } .\end{cases}$
Conjecture 7.2. For $n \geq 7$,
integral spum $\mathcal{P}_{n}= \begin{cases}\frac{5}{2}(n-3) & \text { if } n \text { is odd; } \\ 2 n-3 & \text { if } n \text { is even } .\end{cases}$

CRediT authorship contribution statement

Sahil Singla: Conceptualization, Methodology, Formal analysis, Investigation, Writing - original draft, Writing - review \& editing. Apurv Tiwari: Conceptualization, Methodology, Formal analysis, Investigation, Writing - original draft, Writing review \& editing. Amitabha Tripathi: Conceptualization, Investigation, Writing - original draft, Writing - review \& editing, Supervision, Project administration.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

The authors acknowledge the suggestions of a referee to make this paper more readable.

References

[1] D. Bergstrand, F. Harary, K. Hodges, G. Jennings, L. Kuklinski, J. Wiener, The sum numbering of a complete graph, Bull. Malays. Math. Sci. Soc. 12 (1989) 25-28.
[2] Z. Chen, Harary's conjectures on integral sum graphs, Discrete Math. 160 (1996) 241-244.
[3] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. (2019) 22nd ed..
[4] J. Goodell, A. Beveridge, M. Gallagher, D. Goodwin, J. Gyori, A. Joseph, Sum graphs, unpublished.
[5] F. Harary, Sum graphs and difference graphs, Congr. Numer. 72 (1990) 101-108.
[6] F. Harary, Sum graphs over all the integers, Discrete Math. 124 (1994) 99-105.
[7] N. Hartsfeld, W.F. Smyth, The sum number of complete bipartite graphs, in: R. Rees (Ed.), Graphs, Matrices and Designs, Marcel Dekker, New York, 1992, pp. 205-211.
[8] L.S. Melnikov, A.V. Pyatkin, Regular integral sum graphs, Discrete Math. 252 (2002) 237-245.
[9] A. Sharary, Integral sum graphs from complete graphs, cycles and wheels, Arab Gulf Sci. Res. 14 (1) (1996) 1-14.
[10] J. Wu, J. Mao, D. Li, New types of integral sum graphs, Discrete Math. 260 (2003) 163-176.
[11] B. Xu, On integral sum graphs, Discrete Math. 194 (1999) 285-294.
[12] W. Yan, B. Liu, The sum number and integral sum number of complete bipartite graphs, Discrete Math. 239 (2001) 69-82.

[^0]: * Corresponding author.

 E-mail addresses: singla@cs.princeton.edu (S. Singla), apurv@starskyrobotics.com (A. Tiwari), atripath@maths.iitd.ac.in (A. Tripathi).

