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a b s t r a c t

A finite simple graph G is called a sum graph (integral sum graph) if there is a
bijection f from the vertices of G to a set of positive integers S (a set of integers S)
such that uv is an edge of G if and only if f (u) + f (v) ∈ S. For a connected graph
G, the sum number (the integral sum number) of G, denoted by σ (G) (ζ (G)), is the
minimum number of isolated vertices that must be added to G so that the resulting
graph is a sum graph (an integral sum graph). The spum (the integral spum) of a
graph G is the minimum difference between the largest and smallest integer in any set
S that corresponds to a sum graph (integral sum graph) containing G. We investigate
the spum and integral spum of several classes of graphs, including complete graphs,
symmetric complete bipartite graphs, star graphs, cycles, and paths. We also give sharp
lower bounds for the spum and the integral spum of connected graphs.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

The notion of sum graph was introduced by Harary [5]. A graph G(V , E) is called a sum graph if there is a bijection f
from V (G) to a set of positive integers S such that uv ∈ E(G) for u ̸= v if and only if f (u) + f (v) ∈ S. We call S a set of
labels for the sum graph G, and denote this set by L(G). Conversely, any set of positive integers S induces a sum graph
GS with vertex set S and edges sisj whenever si + sj ∈ S. Thus every sum graph can be realized as one induced by a (finite)
set of positive integers. Since the vertex with the highest label in a sum graph cannot be adjacent to any other vertex,
every sum graph must contain at least one isolated vertex. For a connected graph G, the sum number of G, denoted by
σ (G), is the minimum number of isolated vertices that must be added to G so that the resulting graph is a sum graph.
The sum number of various classes of graphs is known, including Kn, Km,n, Cn and trees; see [3, Table 20, pp. 238].

Harary [6] also generalized the notion of sum graphs by allowing the set S to contain any set of integers in the definition
of sum graphs. The corresponding graph is called an integral sum graph, and the integral sum number of a connected
graph G, denoted by ζ (G), is the minimum number of isolated vertices that must be added to G so that the resulting graph
is an integral sum graph. Unlike sum graphs, integral sum graphs need not have isolated vertices. In fact, a conjecture of
Harary [6] states that all trees have integral sum number 0. The integral sum number of a few classes of graphs is known,
including Kn and Km,n; see [3, pp. 232].

Goodell et al. [4] investigated the difference between the largest and smallest labels in a sum graph G, and called the
minimum possible such difference the spum of G. They proved the spum of Kn is 4n − 6, and the spum of Cn is at most
4n − 10, but their work seems to be unpublished [3, pp. 230]. We confirm their result on the spum of Kn and show that
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Table 1
Summary of results on spum and integral spum of various classes of graphs.
G spum G integral spum G

G ≥ 2n − (∆ − δ) − 2 ≥ 2n − ∆ − 3
(Theorem 2.1) (Theorem 2.2)

Kn
4n − 6 for n ≥ 2 4n − 6 for n ≥ 4
(Theorems 3.1 & 3.2) (Theorems 3.1 & 3.2)

K1,n
2n − 1 for n ≥ 2 2n − 2 for n ≥ 2
(Theorems 4.1 & 4.2) (Theorems 4.3 & 4.4)

Kn,n
7n − 7 for n ≥ 2 7n − 7 for n ≥ 2
(Theorems 5.1 & 5.2) (Theorems 5.1 & 5.2)

Cn

[2n − 2, 2n − 1] for n ≥ 4 ≥ 2n − 5
(Remark 6.1) (Theorem 2.2)
2n − 1 for n ≥ 13
(Theorems 6.1 & 6.2)

Pn

[2n − 3, 2n + 1] for n ≥ 9, n odd
[
2n − 5, 5

2 (n − 3)
]
for n ≥ 7, n odd

[2n − 3, 2n + 2] for n ≥ 9, n even [2n − 5, 2n − 3] for n ≥ 7, n even
(Theorems 7.1 & 7.2) (Theorems 7.3 & 7.4)

the spum of Cn is either 2n−1 or 2n−2, with the former value the answer when n ≥ 13. We also show that the spum of
K1,n is 2n − 1, the spum of Kn,n is 7n − 7, and that the spum of Pn lies between 2n − 3 and 2n + 2. We obtain the sharp
lower bound 2n − (∆ − δ) − 2 for the spum of a graph of order n and maximum and minimum vertex degree ∆ and δ,
respectively.

We introduce the notion of integral spum of a graph G, replacing a sum graph by an integral sum graph. We show
that the integral spum of Kn equals 4n − 6, that of K1,n equals 2n − 2, and that of Kn,n equals 7n − 7. We also show that
he integral spum of Pn lies between 2n − 5 and 2n − 3 when n is even, and between 2n − 5 and 5

2 (n − 3) for odd n. We
btain a sharp lower bound of 2n − ∆ − 3 for the integral spum of a graph of order n and maximum vertex degree ∆. A
ummary of our results is given in Table 1.
Melnikov & Pyatkin [8] showed that all 2-regular graphs with the exception of C4 are integral sum graphs, and that for

very positive integer r there exists an r-regular integral sum graph. They also introduced the notion of the integral
adius r(G) for integral sum graphs G. The integral radius of G is the least positive integer r for which there is an integral
um labelling L of G with L ⊆ [−r, r]. We remark that our results on the integral spum of graphs automatically provide
ounds for the integral radius of the classes of graphs mentioned in Table 1.
Throughout this paper, X and Y are sets of integers, X \ Y := {x : x ∈ X, x /∈ Y } and X − a := {x − a : x ∈ X}.
e denote by G a connected graph whose spum and integral spum we study, and by G the sum (integral sum) graph

onsisting of G and σ (G ) (ζ (G )) isolated vertices. By L(G) we mean a labelling on the vertices of the graph G, so that the
pum G (integral spum G ) equals maxL(G)−minL(G). Upper bounds for spum G (integral spum G ) are achieved
ia any sum (integral sum) labelling of the vertices of G. Sharp upper bounds require an optimal labelling of the vertices.
ower bounds for spum G (integral spum G ) are the difference between any maximum and minimum labellings. More
pecifically, if {a1, . . . , an} is a sum or integral sum labelling arranged in increasing order, a recurrent theme in achieving
ower bounds is to partition the interval of integers in [a1, an] into two sets, and consider in addition translates of one
r the other, and the complement of the labelling in the interval. An estimate of the size of each of these sets provides
s with a lower bound. We attempt to minimize the difference between the upper and lower bounds in each of these
abellings, and succeed in making this difference zero in the cases of Kn, K1,n and Kn,n, and Cn for n ≥ 13.

. Lower bounds for spum & integral spum of graphs

In this section, we give lower bounds for the spum and for the integral spum of graphs of order n in terms of their
aximum and minimum vertex degrees. We show that these bounds are sharp by providing an infinite class of graphs

hat achieve these bounds.

heorem 2.1. For graphs G of order n, with maximum and minimum vertex degree ∆ and δ respectively,

spum G ≥ 2n − (∆ − δ) − 2.

oreover, there exists an infinite class of graphs that achieves this bound.

roof. Let G be a graph with n vertices and with maximum vertex degree ∆(G ) = ∆ and minimum vertex degree
(G ) = δ. Let G be a sum graph consisting of G together with σ (G ) isolated vertices. Let v1, . . . , vn be the vertices of
. Let L be a labelling of G for which max L − min L = spum G . Let S = {a1, . . . , an}, written in increasing order, be the
abelling of G . Let ℓ(vi) = ai for 1 ≤ i ≤ n. Let
S1 = S ∩ [a1, 2a1], S2 = S ∩ [2a1 + 1, an], S3 = S2 − a1, T = [a1, an] \ S.

2
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We claim that
⏐⏐S ∩ S3

⏐⏐ ≤ ∆. Indeed, if ai1 , . . . , ai∆+1 ∈ S ∩ S3, then a1 + aik ∈ S for 1 ≤ k ≤ ∆ + 1. Hence v1 is adjacent
o each of the vertices vi1 , . . . , vi∆+1 , so that d(v1) ≥ ∆ + 1. This proves the claim.

Since S1 ⊆ [a1, 2a1], we have
⏐⏐S3⏐⏐ =

⏐⏐S2⏐⏐ =
⏐⏐S⏐⏐ −

⏐⏐S1⏐⏐ ≥ n − (a1 + 1). From S3 ⊂ [a1, an] we have

n − (a1 + 1) ≤
⏐⏐S3⏐⏐ =

⏐⏐S3 ∩ [a1, an]
⏐⏐ =

⏐⏐S3 ∩ S
⏐⏐ +

⏐⏐S3 ∩ T
⏐⏐. (1)

If
⏐⏐S ∩ S3

⏐⏐ = ∆, Eq. (1) reduces to (an − a1 + 1) − n = |T | ≥
⏐⏐S3 ∩ T

⏐⏐ ≥ n − a1 − ∆ − 1, so that an ≥ 2n − 2 − ∆. Since
S∩S3

⏐⏐ = ∆, all neighbours of v1 have labels < an. Hence vn is not adjacent to v1, so that max L−min L ≥ (an+aδ+1)−a1 ≥

n + δ ≥ 2n − (∆ − δ) − 2.
Otherwise

⏐⏐S∩S3
⏐⏐ ≤ ∆−1, and Eq. (1) reduces to (an−a1+1)−n = |T | ≥

⏐⏐S3∩T
⏐⏐ ≥ n−a1−∆, so that an ≥ 2n−1−∆.

ence max L − min L ≥ (an + aδ) − a1 ≥ an + δ − 1 ≥ 2n − (∆ − δ) − 2.
To show the lower bound is achieved for an infinite class of graphs, consider the sum graph induced by the labelling

⌊
1
2 (n − 1)⌋, . . . , ⌊ 1

2 (3n − 3)⌋
}

∪
{
n + 2⌊ 1

2 (n − 1)⌋
}
. The vertex labelled n + 2⌊ 1

2 (n − 1)⌋ is the only isolated vertex, and
he graph G that results on removing this vertex is connected. It is easy to see that the vertex labelled ⌊

1
2 (n−1)⌋ achieves

he maximum degree ∆ = ⌊
n
2⌋, the vertex labelled ⌊

1
2 (3n − 3)⌋ achieves the minimum degree δ = 1 in this connected

graph G , and spum G = n + ⌊
1
2 (n − 1)⌋ = 2n − (∆ − δ) − 2. ■

heorem 2.2. For graphs G of order n with maximum vertex degree ∆,

integral spum G ≥ 2n − ∆ − 3.

oreover, there exists an infinite class of graphs that achieves this bound.

roof. Let G be a graph with n vertices, maximum vertex degree ∆(G ) = ∆ and minimum vertex degree δ(G ) = δ. Let G be
n integral sum graph consisting of G together with ζ (G ) isolated vertices. Let v1, . . . , vn be the vertices of G corresponding
o the vertices of G . Let L be a labelling of G for which max L − min L = integral spum G . Let S = {a1, . . . , an}, written
n increasing order, be the labelling of G . Let ℓ(vi) = ai for 1 ≤ i ≤ n. If each integer in S has the same sign, we may
ssume that a1, . . . , an are all positive by replacing L by −L if necessary. Now the result of Theorem 2.1 applies, and so
e may henceforth assume that a1 < 0 < an. Suppose r is such that ar < 0 < ar+1. By replacing L by −L if necessary, we
ay further assume that ar+1 ≤ |ar | = −ar .
Let

S1 = {a1, . . . , ar}, S2 = {ar+1, . . . , an}, S3 = S1 + ar+1, S4 = S2 − ar+1.

We claim that
⏐⏐S1 ∩S3

⏐⏐+ ⏐⏐S2 ∩S4
⏐⏐ ≤ ∆+1. This upper bound can be improved to ∆ provided 2ar+1 /∈ S2. If S1 ∩S3 ̸= ∅,

hen ai = aj + ar+1 with i, j ∈ {1, . . . , r}. If S2 ∩ S4 ̸= ∅, then ai = aj − ar+1 with i, j ∈ {r + 1, . . . , n}. However, 2ar+1 ∈ S2
ontributes one to the count in S2 ∩ S4 but not to d

(
vr+1

)
. Since d

(
vr+1

)
≤ ∆, the claim follows.

Observe that each of the sets S1, S2, S3, S4 lie within the interval [a1, an]. Moreover Si ∩ Sj = ∅ for i ̸= j, except
possibly for (i, j) ∈ {(1, 3), (2, 4), (3, 4)}. Note that

⏐⏐S3 ∩ S4
⏐⏐ ≤ 1, with equality if and only if ar + ar+1 = 0. Since⏐⏐S1 ∩ S3

⏐⏐ +
⏐⏐S2 ∩ S4

⏐⏐ ≤ ∆ + 1, we have max L − min L ≥
⏐⏐⋃4

i=1 Si
⏐⏐ − 1 ≥

∑4
i=1

⏐⏐Si⏐⏐ − (∆ + 2) − 1 = 2n − ∆ − 3.
To show the lower bound is achieved for an infinite class of graphs, consider the integral sum graph G induced by the

abelling
{
−⌊

1
2n⌋, . . . , ⌊

1
2 (n + 1)⌋

}
\{0}. It is easy to see that the vertices labelled −1 and 1 achieve the maximum degree

= n − 3, and integral spum G = n = 2n − ∆ − 3. ■

. Complete graphs

The study of spum was initiated by Goodell et al. [4] with the calculation of spum of complete graphs and of cycles.
lthough they determined the spum of complete graphs and found an upper bound for cycles, their paper was unpublished.
n this section we determine the spum and the integral spum of complete graphs. Bergstrand et al. [1] showed that the
um number σ (Kn) = 2n − 3 for n ≥ 4. It is known and easy to see that σ (K2) = 1 and σ (K3) = 2; see [3, Table 20, pp.
38]. Chen [2], Sharary [9], and Xu [11] proved a conjecture of Harary that the integral sum number ζ (Kn) = 2n − 3 for
≥ 4. It is known and easy to see that ζ (K2) = 0 (see [10]). We note that the labelling {−1, 0, 1} shows that ζ (K3) = 0.
ur main result is that for n ≥ 4,

spum Kn = 4n − 6, integral spum Kn = 4n − 6.

We begin by determining spum and integral spum for complete graphs of order 2 and 3.

emma 3.1.
spum K2 = 2, integral spum K2 = 1;
spum K3 = 6, integral spum K3 = 2.
3
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roof. For spum of K2, any sum graph consisting of K2 together with an isolated vertex is a graph with three vertices.
ence the difference between the largest and smallest labels is at least 2. This difference is achieved by the labelling
1, 2, 3}. This proves spum K2 = 2.

For integral spum of K2, any integral sum graph consisting of K2 is a graph with two vertices, so that difference
etween the two labels is at least 1. This difference is achieved by the labelling {0, 1}. This proves integral spum K2 = 1.
For spum of K3, consider any sum graph consisting of K3 together with two isolated vertices. If the labels of the vertices

of K3 are {a, b, c} with 1 ≤ a < b < c , then the labels of the two isolated vertices must be c + a and c + b, and a + b
must equal c. Hence the difference between the maximum and minimum labels is at least c + b − a = 2b. We observe
that b > 2, since b = 2 forces the labels {1, 2, 3, 4, 5} and this is not the label of K3 together with two isolated vertices.
herefore spum K3 ≥ 6. This difference is achieved by the labelling {1, 3, 4, 5, 7}. This proves spum K3 = 6.
For integral spum of K3, any integral sum graph consisting of K3 is a graph with three vertices, so that difference

between the maximum and minimum labels is at least 2. This difference is achieved by the labelling {−1, 0, 1}. This proves
integral spum K3 = 2. ■

Theorem 3.1. For n ≥ 4,

spum Kn ≤ 4n − 6, integral spum Kn ≤ 4n − 6.

Proof. Let G be the graph induced by the set of labels L = [2n−3, 3n−4]∪ [4n−5, 6n−9]. We show that the n vertices
with labels in [2n−3, 3n−4] form a clique while the 2n−3 vertices with labels in [4n−5, 6n−9] are isolated. To prove
our claim, let I1 = [2n − 3, 3n − 4] and I2 = [4n − 5, 6n − 9]. Then the sum of any two distinct integers in I1 lies in I2,
whereas the sum of any two integers at least one of which is in I2 lies outside I1 ∪ I2.

Since ζ (Kn) = σ (Kn) = 2n − 3, integral spum Kn ≤ spum Kn ≤ (6n − 9) − (2n − 3) = 4n − 6. ■

Theorem 3.2. For n ≥ 4,

spum Kn ≥ 4n − 6, integral spum Kn ≥ 4n − 6.

Proof. Since σ (Kn) = ζ (Kn) = 2n − 3 and integral spum of a graph is always bounded above by its spum, it suffices
to prove that integral spum Kn ≥ 4n − 6.

Let G be an integral sum graph consisting of Kn together with 2n − 3 isolated vertices. Let L be a labelling of G for
which max L−min L = integral spum Kn. Let S = {a1, . . . , an}, written in increasing order, denote the labelling within
L of the vertices corresponding to Kn. Note that 0 /∈ L since G has isolated vertices. Without loss of generality, we may
assume that an > 0 since we may replace L by −L if an < 0.

Chen [2] showed that S is sum-free. Hence the 2n − 3 isolated vertices of G have labels in L \ S, which we partition
into disjoint sets A and B as follows:

A = {a1 + ai : 2 ≤ i ≤ n} = a1 +
(
S \ {a1}

)
, B = {an + ai : 2 ≤ i ≤ n − 1} = an +

(
S \ {a1, an}

)
.

Note that max A = a1 + an < a2 + an = min B. Hence
⏐⏐A∪ B

⏐⏐ =
⏐⏐A⏐⏐ +

⏐⏐B⏐⏐ = (n− 1)+ (n− 2) = 2n− 3. Therefore, L is the
disjoint union of S, A, and B.

We claim that
(
B − |a1|

)
∩ L = ∅. We prove this separately for the cases a1 > 0 and a1 < 0.

Case (i) (a1 > 0)
Note that (B− a1)∩ S = ∅ since max S = an < an + (a2 − a1) = min(B− a1) and that (B− a1)∩ B = ∅ since S is sum-free.
Suppose (B − a1) ∩ A ̸= ∅. Then an + ai − a1 = a1 + aj for 2 ≤ i ≤ n − 1 and 2 ≤ j ≤ n. But then the isolated vertex with
label a1 + aj is adjacent to the vertex with label a1, and this is a contradiction. Hence (B − a1) ∩ A = ∅.
Case (ii) (a1 < 0)
Note that since S is sum-free, (B + a1) ∩ A = ∅ = (B + a1) ∩ B. Suppose (B + a1) ∩ S ̸= ∅. Then an + ai + a1 = aj with
2 ≤ i ≤ n − 1 and 2 ≤ j ≤ n. But then the isolated vertex with label an + ai is adjacent to the vertex with label a1, and
this is a contradiction. Hence (B + a1) ∩ S = ∅.

We show that B−|a1| is contained in the interval [min L,max L]. If a1 > 0, then min L = min S < max S < min(B−a1) <

max(B−a1) < min B < max B = max L. If a1 < 0, then min L = min{a1, a1 +a2} ≤ a1 +a2 < a1 +a2 +an = min
(
B+a1

)
≤

max
(
B + a1

)
= an + an−1 + a1 < an + an−1 = max B ≤ max L.

Since
⏐⏐S⏐⏐ = n,

⏐⏐A⏐⏐ = n − 1,
⏐⏐B⏐⏐ =

⏐⏐B − |a1|
⏐⏐ = n − 2, we must have max L − min L ≥

⏐⏐L⏐⏐ +
⏐⏐B − |a1|

⏐⏐ − 1 =⏐⏐S⏐⏐ +
⏐⏐A⏐⏐ +

⏐⏐B⏐⏐ +
⏐⏐B − |a1|

⏐⏐ − 1 = 4n − 6. ■

4. Star graphs

Harary [5] showed that the sum number σ (K1,n) = 1 for n ≥ 2, and that the integral sum number ζ (K1,n) = 0 for
n ≥ 2. We show that, for n ≥ 2,

spum K1,n = 2n − 1, integral spum K1,n = 2n − 2.
4
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heorem 4.1. For n ≥ 2, spum K1,n ≤ 2n − 1.

roof. Let G be the graph induced by the set of labels L = {1} ∪ [n, 2n]. Then the vertex labelled 1 is adjacent to each
f the vertices with labels in [n, 2n − 1], and there is no other edge. The vertex with label 2n is isolated. Hence G is the
nion of K1,n and an isolated vertex, so that spum K1,n ≤ 2n − 1. ■

heorem 4.2. For n ≥ 2, spum K1,n ≥ 2n − 1.

roof. Let G be a sum graph consisting of K1,n together with an isolated vertex. Let L be a labelling of G for which
ax L−min L = spum K1,n. Let S = {a1, . . . , an} ∪ {a} denote the labelling within L of the vertices corresponding to K1,n,
here the vertex with degree n is labelled a, and let a1 < · · · < an. Let L\ S = {b}. Since a+a1, . . . , a+an forms a strictly

ncreasing sequence of integers in L \ {a, a1}, we must have (a + a1, . . . , a + an) = (a2, . . . , an, b) as ordered n-tuples.
herefore ai −ai−1 = a for 2 ≤ i ≤ n and b = a+an, so that L = {a, a1, a1 +a, . . . , a1 +na}. If a = 1, a1 + (a1 +1) > a1 +n
ince the vertices labelled a1 and a1 + 1 are not adjacent. Hence a1 ≥ n, and max L − min L = a1 + n − 1 ≥ 2n − 1. If
≥ 2, then max L − min L ≥ a1 + (n − 1)a ≥ 2(n − 1) + 1 = 2n − 1. ■

heorem 4.3. For n ≥ 2, integral spum K1,n ≤ 2n − 2.

roof. Let G be the graph induced by the set of labels L = {0} ∪ [n − 1, 2n − 2]. Then the vertex labelled 0 is adjacent
o each of the vertices with labels in [n − 1, 2n − 2], and there is no other edge. Hence G ∼= K1,n, so that integral spum
1,n ≤ 2n − 2. ■

heorem 4.4. For n ≥ 1, integral spum K1,n ≥ 2n − 2.

roof. Let L = {a1, . . . , an} ∪ {a} be a labelling of K1,n, where the vertex with degree n is labelled a and a1 < · · · < an,
nd for which max L−min L = integral spum K1,n. Without loss of generality, we may assume that a ≥ 0 by replacing
by −L if necessary. Since a+a1, . . . , a+an forms an increasing sequence of integers in L, we must have a+an ∈ {a, an}.
f a+ an = a, then an = 0, so that an corresponds to a vertex of degree n. This contradicts the assumption that the vertex
abelled a has degree n. Thus a + an = an, and a = 0. Hence L = S ∪ {0}, where S = {a1, . . . , an} is sum-free. Moreover
1 must be positive; otherwise, replacing a1 by −a1 again results in a sum-free set and a valid labelling for G but with
smaller integral spum. The same argument extends to all other negative integers in S. Therefore, we may henceforth
ssume that a1 > 0. Let

S1 = S ∩ [a1, 2a1], S2 = S ∩ [2a1 + 1, an], S3 = S2 − a1, T = [a1, an] \ S.

ote that S ∩ S3 = ∅, since S is sum-free. Since S1 ⊆ [a1, 2a1],
⏐⏐S3⏐⏐ =

⏐⏐S2⏐⏐ =
⏐⏐S⏐⏐ −

⏐⏐S1⏐⏐ ≥ n − (a1 + 1). From S3 ⊂ [a1, an],
e have

n − (a1 + 1) ≤
⏐⏐S3⏐⏐ =

⏐⏐S3 ∩ [a1, an]
⏐⏐ =

⏐⏐S3 ∩ S
⏐⏐ +

⏐⏐S3 ∩ T
⏐⏐. (2)

ince
⏐⏐S ∩ S3

⏐⏐ = 0, Eq. (2) reduces to (an − a1 + 1) − n =
⏐⏐T ⏐⏐ ≥

⏐⏐S3 ∩ T
⏐⏐ ≥ n − a1 − 1, so that an ≥ 2n − 2. Hence

ax L − min L ≥ 2n − 2. ■

. Complete symmetric bipartite graphs

In this section we determine the spum and the integral spum of complete symmetric bipartite graphs. Hartsfield
nd Smyth [7] showed that the sum number σ (Kn,n) = 2n − 1 for n ≥ 2. Yan and Liu [12] showed that the integral sum
umber ζ (Kn,n) = 2n − 1 for n ≥ 2. We show that, for n ≥ 2,

spum Kn,n = 7n − 7, integral spum Kn,n = 7n − 7.

heorem 5.1. For n ≥ 2,

spum Kn,n ≤ 7n − 7, integral spum Kn,n ≤ 7n − 7.

roof. Let G be the graph induced by the set of labels L = [3(n−1), 4(n−1)]∪ [5(n−1), 6(n−1)]∪ [8(n−1), 10(n−1)].
e show that the two sets of n vertices with labels in I1 = [3(n − 1), 4(n − 1)] and in I2 = [5(n − 1), 6(n − 1)]

form the two bipartite sets while the 2n − 1 vertices with labels in I3 = [8(n − 1), 10(n − 1)] are isolated. Let
S + S = {x + x : x ∈ S , x ∈ S , x ̸= x }. Then I + I = [6n− 5, 8n− 9] ∩ L = ∅, I + I = [8(n− 1), 10(n− 1)] = I ,
1 2 1 2 1 1 2 2 1 2 1 1 1 2 3
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a
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nd I2 + I2 = [10n − 9, 12n − 13] ∩ L = ∅, proving that the graph vertices with labels in I1 ∪ I2 are isomorphic to Kn,n.
oreover (L + a) ∩ L = ∅ for a ∈ I3, implying that the vertices with labels in I3 are isolated.
Since ζ (Kn,n) = σ (Kn,n) = 2n − 1, integral spum Kn,n ≤ spum Kn,n ≤ 10(n − 1) − 3(n − 1) = 7n − 7. ■

Theorem 5.2. For n ≥ 2,

spum Kn,n ≥ 7n − 7, integral spum Kn,n ≥ 7n − 7.

Proof. Since σ (Kn,n) = ζ (Kn,n) = 2n−1 and integral spum of a graph is always bounded above by its spum, it suffices
to prove that integral spum Kn,n ≥ 7n − 7.

Let G be an integral sum graph consisting of Kn,n together with 2n − 1 isolated vertices. Let L be a labelling of G for
which max L − min L = integral spum Kn,n. Let the labels within L corresponding to the bipartition of Kn,n be the sets
A = {a1, . . . , an} and B = {b1, . . . , bn}, each written in increasing order. By multiplying by −1 if necessary, we can ensure
that the number among a1, an, b1, bn with largest absolute value is positive. We relabel the numbers so that the largest
label is bn. This ensures bn > an and bn ≥ |a1|.

Yan and Liu [12, Theorem 3.1] showed that the 2n− 1 isolated vertices of G have labels that we can partition into sets
C and D as follows:

C = {a1 + bi : 1 ≤ i ≤ n} = B + a1, D = {bn + ai : 2 ≤ i ≤ n} =
(
A \ {a1}

)
+ bn.

Observe that the elements in each of the sets C,D are in increasing order, and that max C < minD. Hence the sets A, B,
C , D partition L.

Interchanging the roles of ai’s and bi’s yield the sets

E = {b1 + ai : 1 ≤ i ≤ n} = A + b1, F = {an + bi : 2 ≤ i ≤ n} =
(
B \ {b1}

)
+ an.

We again see that the elements in each of the sets E, F are in increasing order, and that max E < min F . Hence we must
have

a1 + bi = b1 + ai (1 ≤ i ≤ n), bn + ai = an + bi (2 ≤ i ≤ n). (3)

Thus bi − ai is constant for 1 ≤ i ≤ n; write bi − ai = d > 0.
We claim that the vertex labelled ai + bj is isolated for all choices of i, j ∈ {1, . . . , n}. Thus we must show that

ai + bj /∈ A ∪ B for all choices of i, j ∈ {1, . . . , n}. This is true for i = 1 since a1 + bj ∈ C for j ∈ {1, . . . , n}. If i > 1
and ai + bj ∈ A ∪ B, then the isolated vertex labelled ai + bn is adjacent to the vertex labelled bj, which is impossible.
Hence the claim.

We recall that L is the disjoint union of the sets A, B, C , D, and that
⏐⏐A⏐⏐ =

⏐⏐B⏐⏐ =
⏐⏐C⏐⏐ = n and

⏐⏐D⏐⏐ = n − 1. Hence⏐⏐L⏐⏐ = 4n − 1. Let S1 = D − |a1|, S2 = D − |b1| and S3 = (sgn a1)
(
A \ {an}

)
+ an. Observe that

⏐⏐S1⏐⏐ =
⏐⏐S2⏐⏐ =

⏐⏐S3⏐⏐ = n − 1.
We show that each of the sets S1, S2, S3 is contained in the interval [min L,max L].
It is clear that max Si ≤ maxD ≤ max L and that min Si ≥ minD − max{|a1|, |b1|} = bn + a2 − max{|a1|, |b1|}

for i = 1, 2. If a1 > 0, then minD − max{|a1|, |b1|} = bn + a2 − b1 > a2 > a1 = min L. If a1 < 0 < b1,
then minD − max{|a1|, |b1|} = bn + a2 − max{−a1, b1} ≥ a2 > a1 = min L since bn ≥ −a1. If b1 < 0, then
minD−max{|a1|, |b1|} = bn + a2 + a1 > (bn + a1)+ a1 ≥ a1 > a1 + b1 = min L. Thus S1 and S2 are both contained in the
interval [min L,max L].

If a1 > 0, then min L = a1 < a2 + an = min S3 < max S3 = an−1 + an < bn + an = max L. If a1 < 0, then
min L = min{a1, a1 + b1} < 0 < an − an−1 = min S3 < max S3 = an − a2 < an − a1 ≤ an + bn ≤ max L. Hence S3 is
contained in the interval [min L,max L].

For any sets S1, S2, S3, S4, we have by Principle of Inclusion & Exclusion⏐⏐⏐⏐⏐
4⋃

i=1

Si

⏐⏐⏐⏐⏐ ≥

4∑
i=1

⏐⏐Si⏐⏐ −

∑
1≤i<j≤4

⏐⏐Si ∩ Sj
⏐⏐.

Applying this inequality to the sets considered above and taking S4 = L, we get
⏐⏐S1 ∪S2 ∪S3 ∪L

⏐⏐ ≥ 3(n−1)+ (4n−1)−Σ ,
where Σ denotes

∑
1≤i<j≤4

⏐⏐Si ∩ Sj
⏐⏐. Therefore Σ ≤ 3 would imply that at least 7n − 7 integers lie within the interval

[min L,max L], proving our claim.
We consider the sizes of the six sets Si ∩ Sj with 1 ≤ i < j ≤ 4.

Case (i) (S1 ∩ S2)
Suppose a1 > 0 or b1 < 0. If x ∈ S1 ∩ S2, then bn + ai ± a1 = x = bn + aj ± b1 for some i, j ̸= 1. Thus ai = aj ± d, so that
bi = aj or ai = bj, both of which are impossible.
Suppose a1 < 0 < b1. If x ∈ S1 ∩ S2, then bn + ai + a1 = bn + aj − b1 for some i, j ̸= 1. This is impossible because then the
isolated vertex labelled ai + b1 is adjacent to the vertex labelled a1. Hence S1 ∩ S2 = ∅ in all cases.
Case (ii) (S1 ∩ S3)
Suppose a1 > 0. If x ∈ S1 ∩ S3, then bn + ai − a1 = x = aj + an with 2 ≤ i ≤ n and 1 ≤ j ≤ n−1. Hence a1 + aj = bi, which⏐⏐ ⏐⏐
can possibly hold only if j = 1 since the vertices with labels a1 and aj belong to the same partite set. Hence S1 ∩ S3 ≤ 1.

6
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uppose a1 < 0. If x ∈ S1 ∩ S3, then bn +ai +a1 = an −aj with 2 ≤ i ≤ n and 1 ≤ j ≤ n−1. Hence (a1 +bi)+ (aj +bk) = bk
olds for k ∈ {1, . . . , n}. Now the isolated vertex with label a1 + bi is adjacent to the isolated vertex with label aj + bk for
∈ {1, . . . , n}, and this is impossible. Hence S1 ∩ S3 = ∅.
ase (iii) (S2 ∩ S3)
uppose a1 > 0. If x ∈ S2 ∩ S3, then bn + ai − b1 = aj + an with 2 ≤ i ≤ n and 1 ≤ j ≤ n − 1. Hence aj + b1 = bi. But this
s impossible since the isolated vertex labelled aj + b1 has the same label as the non-isolated vertex bi.
uppose a1 < 0 < b1. If x ∈ S2 ∩ S3, then bn + ai − b1 = an − aj with 2 ≤ i ≤ n and 1 ≤ j ≤ n − 1. But this is impossible
ince the isolated vertex labelled aj + bi has the same label as the non-isolated vertex b1.
uppose b1 < 0. If x ∈ S2 ∩ S3, then bn +ai +b1 = an −aj with 2 ≤ i ≤ n and 1 ≤ j ≤ n−1. Hence (aj +b1)+ (ak +bi) = ak
olds for k ∈ {1, . . . , n}. Now the isolated vertex with label aj + b1 is adjacent to the isolated vertex with label ak + bi for
∈ {1, . . . , n}, and this is impossible. Hence S2 ∩ S3 = ∅ in all cases.
ase (iv) (S1 ∩ L)
uppose a1 > 0. Observe that S1 ∩ (A ∪ B) = ∅ since max A < max B < min S1. If x ∈ S1 ∩ (C ∪ D), then the vertex with
abel a1 is adjacent to a vertex with label in C ∪ D, which is impossible since vertices with labels in C ∪ D are isolated.
ence S1 ∩ (C ∪ D) = ∅.
uppose a1 < 0. If S1 ∩ L ̸= ∅, then bn + ai + a1 ∈ L for some i ̸= 1. This is impossible since then the isolated vertex

labelled bn + ai is adjacent to the vertex labelled a1. Hence S1 ∩ L = ∅ in all cases.
Case (v) (S2 ∩ L)
Suppose b1 > 0. Observe that S2∩A = ∅ since max A < min S2. If S2∩(C∪D) ̸= ∅, then the vertex with label b1 is adjacent
to a vertex with label in C ∪ D. This is impossible since vertices with labels in C ∪ D are isolated. Hence S2 ∩ (C ∪ D) = ∅.
If S2 ∩ B ̸= ∅, then b1 + bj ∈ D for some j ∈ {1, . . . , n}. But then the vertices with labels b1 and bj are adjacent, and this
is impossible since these vertices are from the same partite set unless j = 1. Thus S2 and B can have at most the vertex
with label b1 in common. Hence

⏐⏐S2 ∩ L
⏐⏐ ≤ 1 in this case.

Suppose b1 < 0. If S2 ∩ L ̸= ∅, then bn +ai +b1 ∈ L for some i ̸= 1. But then the isolated vertex labelled bn +ai is adjacent
to the vertex labelled b1, which is impossible. Hence S2 ∩ L = ∅ in this case.
Case (vi) (S3 ∩ L)
Suppose a1 > 0. If S3 ∩ L ̸= ∅, then ai + an ∈ L for some i ̸= n. But then the vertices with labels ai and an are adjacent,
which is impossible since they belong to the same partite set. Hence S3 ∩ L = ∅ in this case.
Suppose a1 < 0. If S3 ∩ (A ∪ C ∪ D) ̸= ∅, then an − ai ∈ A ∪ C ∪ D for some i ̸= n. But then the vertex with label ai is
adjacent to some vertex with label in A∪ C ∪ D. This is impossible as neighbours of vertex with label ai must have labels
in B, with a possible exception in case an = 2ai. If S3 ∩ B ̸= ∅, then an − ai = bj for some i ̸= n and j ∈ {1, . . . , n}. This is
impossible since ai +bj is the label of an isolated vertex whereas an is the label of a non-isolated vertex. Thus

⏐⏐S3 ∩ L
⏐⏐ ≤ 1

in this case.
Since only three cases (ii), (v), and (vi) above lead to

⏐⏐Si ∩ Sj
⏐⏐ ≤ 1, it follows that Σ ≤ 3, as desired. This completes

the proof. ■

6. Cycles

Harary [5] showed that the sum number σ (Cn) = 2, except that σ (C4) = 3. Sharary [9] showed that the integral sum
number ζ (Cn) = 0 for n ̸= 4. We show that, for n ≥ 4,

2n − 2 ≤ spum Cn ≤ 2n − 1,

and for n ≥ 13,

spum Cn = 2n − 1.

Theorem 6.1. For n ≥ 4, spum Cn ≤ 2n − 1.

Proof. For odd n ≥ 5, let G1 be the graph induced by the set of labels L1 = L(G1) = [n − 3, 2n − 4] ∪ {3n − 6, 3n − 4}.
We claim that the graph induced by [n − 3, 2n − 4] is isomorphic to Cn by showing that the vertices with labels in the
sequence

n − 3, n − 1, 2n − 5, n + 1, 2n − 7, n + 3, 2n − 9, . . . , 2n − 4, n − 2, n − 3 (4)

form a cycle, with the vertices labelled 3n − 6 and 3n − 4 isolated. We first show that the sequence in Eq. (4) with the
first and last terms removed form a path with n − 1 vertices. We note that this sequence alternates between even and
odd integers in the interval I1 = [n − 2, 2n − 4], with the even integers starting at n − 1 and increasing and the odd
integers starting at 2n − 5 and decreasing. It is easy to see that consecutive sums of labels alternately yield 3n − 6 and
3n − 4, thereby forming a path. Now the sum of two distinct integers both taken from the interval I1 lies in the interval
[2n−3, 4n−9] and [2n−3, 4n−9]∩L1 = {3n−6, 3n−4}. Hence, for a ∈ I1\{n−2, n−1}, there exist b = (3n−4)−a ∈ I1

with c = (3n − 6) − a ∈ I1. Since the vertices with labels in I1 form a path, there are no other edges between these

7
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ertices. Thus the graph induced by the vertices with labels in I1 is isomorphic to Pn−1 with endpoints labelled n− 1 and
n− 2. The vertex with label n− 3 is adjacent to both endpoints of the path (because 2n− 5, 2n− 4 ∈ L1), and to no other
vertex (because [n, 2n − 4] + (n − 3) ∩ L1 = ∅). Moreover it is easy to see that the vertices with the labels 3n − 6 and
3n − 4 are isolated. This completes the proof of claim that G1 ∼= Cn.

Hence spum Cn ≤ max L1 − min L1 = (3n − 4) − (n − 3) = 2n − 1 when n is odd.
For even n ≥ 4, let G2 be the graph induced by the set of labels L2 = L(G2) = [n − 2, 2n − 3] ∪ {3n − 5, 3n − 3}.
e claim that the graph induced by [n − 2, 2n − 3] is isomorphic to Cn by showing that the vertices with labels in the

equence

n − 2, 2n − 3, n, 2n − 5, n + 2, 2n − 7, . . . , 2n − 4, n − 1, n − 2 (5)

orm a cycle, with the vertices labelled 3n − 5 and 3n − 3 isolated. We note that this sequence alternates between even
nd odd integers in the interval I2 = [n − 2, 2n − 3], with the even integers starting at n − 2 and increasing and the odd
ntegers starting at 2n − 3 and decreasing. It is easy to see that consecutive sums of labels alternately yield 3n − 5 and
n−3, except for the last sum which is 2n−3, thereby forming a cycle. Now the sum of two distinct integers both taken
rom the interval I2 lies in the interval [2n − 3, 4n − 7] and [2n − 3, 4n − 7] ∩ L2 = {2n − 3, 3n − 5, 3n − 3}. Hence, for
a ∈ I2, there exist b = (3n − 5) − a ∈ I2 with c = (3n − 3) − a ∈ I2 for a ̸= n − 2, n − 1 and c = (2n − 3) − a for
a = n− 2, n− 1. Since the vertices with labels in I2 form a cycle given by Eq. (5), there are no other edges between these
vertices. Moreover it is easy to see that the vertices with the labels 3n − 5 and 3n − 3 are isolated. This completes the
proof of claim that G2 ∼= Cn.

Hence spum Cn ≤ max L2 − min L2 = (3n − 3) − (n − 2) = 2n − 1 when n is even. ■

Remark 6.1. Theorems 2.1 and 6.1 imply 2n − 2 ≤ spum Cn ≤ 2n − 1 for n ≥ 4.

heorem 6.2. For n ≥ 13, spum Cn ≥ 2n − 1.

roof. Let G be a sum graph consisting of Cn together with two isolated vertices. Let v1, . . . , vn be the vertices on Cn and
et x, y be the isolated vertices. Let L be a labelling of G for which max L−min L = spum Cn. Let S = {a1, . . . , an}, written
n increasing order, denote the labellings within L of vertices corresponding to Cn. Let ℓ(vi) = ai for 1 ≤ i ≤ n, and let
(x) = a, ℓ(y) = b, with a < b. Let

S1 = S ∩ [a1, 2a1], S2 = S ∩ [2a1 + 1, an], S3 = S2 − a1, T = [a1, an] \ S. (6)

From Theorem 2.1 we know that spum Cn ≥ 2n − 2. We show that spum Cn = 2n − 2 is not possible for n ≥ 13. We
irst show that spum Cn = 2n − 2 implies [a1, 2a1] ⊂ S, and then use this to show that both a1 ≤

5n+2
12 and a1 ≥ n − 7

must hold. The lower and upper bounds for a1 can simultaneously hold only when n − 7 ≤
5n+2
12 , or when n ≤ 12.

We first show that spum Cn = 2n − 2 implies [a1, 2a1] ⊂ S. If this was not the case, Eq. (1) in this special case would
be replaced by

n − a1 ≤
⏐⏐S3⏐⏐ =

⏐⏐S3 ∩ [a1, an]
⏐⏐ =

⏐⏐S3 ∩ S
⏐⏐ +

⏐⏐S3 ∩ T
⏐⏐.

This is the same as Eq. (1) except that the lower bound for
⏐⏐S3⏐⏐ has been replaced by n− a1. Therefore, the arguments in

the two paragraphs immediately following Eq. (1) now imply max L − min L ≥ 2n − 1 since ∆ = δ. This contradicts our
assumption that spum Cn = 2n − 2. Hence [a1, 2a1] ⊂ S.

Now assuming [a1, 2a1] ⊂ S and spum Cn = 2n − 2, we prove the following two claims that give upper and lower
bounds on a1. Together they imply a feasible value of a1 exists only for n ≤ 16, which finishes the proof of this theorem.

Claim 1. spum Cn = 2n − 2 implies a1 ≤
5n+2
12 .

Recall that under the assumption spum Cn = 2n− 2, [a1, 2a1] ⊂ S, and so ℓ
(
va1+1

)
= 2a1. Since va1+1 has a neighbour

with label greater than a1, there is a vertex with label greater than 3a1. Hence an > 3a1, and 2n − 2 = spum Cn ≥

(3a1 + 1 + a1 + 1) − a1 = 3a1 + 2. Therefore a1 ≤
2n−4

3 .
We claim that

⏐⏐S ∩ [2a1 + 1, 3a1]
⏐⏐ ≤ 2. Suppose, to the contrary, that

⏐⏐S ∩ [2a1 + 1, 3a1]
⏐⏐ ≥ 3, and that ai, aj, ak are

the labels of three of these vertices in [2a1 + 1, 3a1]. Then vertex v1 is adjacent to each of the three vertices with labels
ai − a1, aj − a1, ak − a1, contradicting the assumption that d(v1) = 2. This proves our claim.

We claim that
⏐⏐S ∩ [3a1 + 1, 4a1]

⏐⏐ ≤ 2. Again suppose, to the contrary, that
⏐⏐S ∩ [3a1 + 1, 4a1]

⏐⏐ ≥ 3, and that bi, bj, bk
are the labels of three of these vertices in [3a1 + 1, 4a1]. Then vertex va1+1 with label 2a1 is adjacent to each of the three
vertices with labels bi − 2a1, bj − 2a1, bk − 2a1, contradicting the assumption that d(va1+1) = 2. This proves our claim.

Since [a1, 2a1] ⊂ S and S has at most two elements in common with each of the intervals [2a1 + 1, 3a1] and
[3a1 + 1, 4a1],

⏐⏐S ∩ [a1, 4a1]
⏐⏐ ≤ a1 + 5 ≤

2n+11
3 . Thus there are at least n −

2n+11
3 =

n−11
3 elements of S in the interval

[4a1 + 1, an]. Hence an ≥ 4a1 +
n−11

3 , and spum Cn ≥ (4a1 +
n−11

3 + a1 + 1) − a1 = 4a1 +
n−8
3 .

We conclude that 4a +
n−8

≤ 2n − 2, so that a ≤
5n+2 , as claimed.
1 3 1 12
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C
laim 2. spum Cn = 2n − 2 implies a1 ≥ n − 7.

We recall the sets defined at the beginning of this proof in Eq. (6). We further define sets

S ′

2 = S ∩ [2a1 + 1, 3a1], S ′′

2 = S ∩ [3a1 + 1, an], S ′

3 = S ′

2 − a1, S ′′

3 = S ′′

2 − a1, S ′′

4 = S ′′

2 − 2a1.

Note that S2 is the disjoint union of S ′

2 and S ′′

2 and S3 is the disjoint union of S ′

3 and S ′′

3 . Recall that under the assumption
spum Cn = 2n − 2, [a1, 2a1] ⊂ S, and so ℓ

(
va1+1

)
= 2a1.

Suppose s ∈ S ∩ S3. Then s+ a1 ∈ S2 ⊂ S with s ∈ S, so that each vertex with label in S ∩ S3 is a neighbour of v1. Again
if t ∈ T ∩ S3 ∩ S ′′

4 , then t + a1 ∈ S2 ⊂ S and t + 2a1 ∈ S ′′

2 ⊂ S. So the vertex labelled t + a1 is a neighbour of v1.
Suppose s ∈ S ∩ S ′′

4 . Then s + 2a1 ∈ S ′′

2 ⊂ S with s ∈ S, and so va1+1 has at least as many as
⏐⏐S ∩ S ′′

4

⏐⏐ neighbours.
Since d(v1) = d

(
va1+1

)
= 2, we have⏐⏐S ∩ S3

⏐⏐ ≤ 2,
⏐⏐S ∩ S ′′

4

⏐⏐ ≤ 2,
⏐⏐S3 ∩ S ′′

4

⏐⏐ ≤ 2. (7)

Since S, T partition the interval [a1, an] and S3, S ′′

4 lie within [a1, an], we have⏐⏐S ∩ S3
⏐⏐ +

⏐⏐T ∩ S3
⏐⏐ =

⏐⏐S3⏐⏐ =
⏐⏐S2⏐⏐ =

⏐⏐S⏐⏐ −
⏐⏐[a1, 2a1]⏐⏐ = n − (a1 + 1) (8)

and ⏐⏐S ∩ S ′′

4

⏐⏐ +
⏐⏐T ∩ S ′′

4

⏐⏐ =
⏐⏐S ′′

4

⏐⏐ =
⏐⏐S ′′

2

⏐⏐ =
⏐⏐S⏐⏐ −

⏐⏐S ∩ [a1, 3a1]
⏐⏐ ≥ n − (a1 + 1) − 2, (9)

the last inequality because
⏐⏐S ∩ [2a1 + 1, 3a1]

⏐⏐ ≤ 2, as shown earlier.
Eqs. (7), (8), and (9) give⏐⏐T ∩ S3

⏐⏐ ≥ n − a1 − 3,
⏐⏐T ∩ S ′′

4

⏐⏐ ≥ n − a1 − 5. (10)

Using Eqs. (7) and (10), and the fact that
⏐⏐T ⏐⏐ = (an − a1 + 1) − n in⏐⏐T ⏐⏐ ≥

⏐⏐T ∩ (S3 ∪ S ′′

4 )
⏐⏐ =

⏐⏐T ∩ S3
⏐⏐ +

⏐⏐T ∩ S ′′

4

⏐⏐ −
⏐⏐T ∩ S3 ∩ S ′′

4

⏐⏐ ≥
⏐⏐T ∩ S3

⏐⏐ +
⏐⏐T ∩ S ′′

4

⏐⏐ −
⏐⏐S3 ∩ S ′′

4

⏐⏐,
we have

an ≥ 3n − a1 − 11. (11)

To complete the proof of this Claim 2, suppose v1 ↔ vn. Since an ∈ S3 ∪ S ′′

4 , Eq. (7) may be replaced by⏐⏐S ∩ S3
⏐⏐ ≤ 1,

⏐⏐S ∩ S ′′

4

⏐⏐ ≤ 1,
⏐⏐S3 ∩ S ′′

4

⏐⏐ ≤ 1.

Consequently Eqs. (8) and (9) now imply that Eq. (10) may be replaced by⏐⏐T ∩ S3
⏐⏐ ≥ n − a1 − 2,

⏐⏐T ∩ S ′′

4

⏐⏐ ≥ n − a1 − 4,

and Eq. (11) by

an ≥ 3n − a1 − 8.

Hence spum Cn ≥ (3n − a1 − 8) + (a1 + 1) − a1 = 3n − a1 − 7.
If v1 ̸↔ vn, from Eq. (11) we get spum Cn ≥ (3n − a1 − 11) + (a1 + 2) − a1 = 3n − a1 − 9. In any case, we have

2n − 2 ≥ 3n − a1 − 9, so that a1 ≥ n − 7, as claimed.
This completes the proof of the theorem. ■

Melnikov & Pyatkin [8, Lemma 2, pp. 240–242] provided an integral labellings for cycles Cn with n ≥ 5. For each k ≥ 1,
they showed that the set

[−17k, −16k + 1] ∪ [−12k, −12k + 1] ∪ {−5k, −k − 1} ∪ [4k, 5k] ∪ {16k − 1, 17k}

induces the cycle C2k+9, and the set

[−5k − 8, −4k − 7] ∪ [−3k − 6, −3k − 5] ∪ [−k − 2, −k − 1] ∪ [k + 2, 2k + 2] ∪ {4k + 7}

induces the cycle C2k+8. They also provided integral labels for Cn with n ∈ {5, 6, 7, 8, 9}. Thus we have the following upper
bound for integral spum Cn for n ≥ 10.

Theorem 6.3 (Melnikov & Pyatkin, [8]). For n ≥ 10,

integral spum Cn ≤

{
17(n − 9) if n is odd;
3
2 (3n − 14) if n is even.
9
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Table 2
Table of results for integral spum of cycles.
n integral spum labelling integral spum Cn

5 −3, 2, −1, −2, 1 5
6 −5, 3, −2, −3, 1, 2 8
7 −7, 4, −3, −4, 1, −5, 2 11
8 −11, 3, −10, −1, −7, −3, −8, 1 14
9 −8, 9, −1, −5, −3, 8, 1, −6, 5 17

10 −13, 4, −2, −10, −3, −9, −4, 2, −12, 3 17
11 −5, 16, −4, 15, −3, −2, 5, 11, 4, 12, 3 21
12 −6, 19, −5, 18, −4, 17, −3, 6, 13, 4, 14, 3 25
13 −6, 20, −5, 19, −4, 7, −3, 6, 14, 5, 15, 4, 3 26

Theorem 6.4. For n ≥ 3, integral spum Cn ≥ 2n − 5.

roof. This follows directly from Theorem 2.2. ■

We are unable to determine a better upper bound for integral spum Cn than the one in Theorem 6.3, but we make
he following conjecture based on the limited evidence of Table 2.

onjecture 6.1. For n ≥ 9,

integral spum Cn =

{ 5
2 (n − 3) + 1 if n is odd;
2n − 2 if n is even.

. Paths

Harary showed that the sum number σ (Pn) = 1 in [5] and that the integral sum number ζ (Pn) = 0 in [6]. For n ≥ 9,
e show that

2n − 3 ≤ spum Pn ≤

{
2n + 1 if n is odd;

2n + 2 if n is even,

nd for n ≥ 7, we show that

2n − 5 ≤ integral spum Pn ≤

{ 5
2 (n − 3) if n is odd;

2n − 3 if n is even.

heorem 7.1. For n ≥ 9,

spum Pn ≤

{
2n + 1 if n is odd;
2n + 2 if n is even.

roof. For odd n ≥ 9, let G1 be the graph induced by the set of labels L1 = L(G1) = {1, 3, 5, . . . , 2n − 7} ∪ {2n − 6, 2n −

3, 2n+1, 2n+2}. We claim that the graph induced by L1 \ {2n+2} is isomorphic to Pn by showing that the vertices with
labels in the sequence

2n + 1, 1, 2n − 7, 9, . . . , 11, 2n − 9, 3, 2n − 6, 7, 2n − 13, 15, 2n − 21, . . . , 2n − 11, 5, 2n − 3 (12)

form a path when n is of the form 4k + 1, and by showing that the vertices with labels in the sequence

2n + 1, 1, 2n − 7, 9, . . . , 15, 2n − 9, 7, 2n − 6, 3, 2n − 13, 11, 2n − 21, . . . , 2n − 11, 5, 2n − 3 (13)

form a path when n is of the form 4k + 3. In both cases, the vertex labelled 2n + 2 is isolated.
For the case n = 4k+1, the subsequence of odd subscripts consists of two arithmetic progressions each with common

difference 8. One starts with ℓ1 = 2n + 1 and ends with 3 (there are n+3
4 terms), the other starts with ℓn = 2n − 3 and

nds with 7 (there are n−1
4 terms). The subsequence of even subscripts also consists of two arithmetic progressions each

with common difference 8, but with a term in the middle: ℓ(n+3)/2 = 2n−6. One of these progressions starts with ℓ2 = 1
and ends with 2n− 9 (there are n−1

4 terms), the other starts with ℓn−1 = 5 and ends with 2n− 13 (there are n−5
4 terms).

e can define the sequence in Eq. (12) by:
10
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ℓ2i+1 =

{
(2n + 1) − 8i if 0 ≤ i ≤

n−1
4 ,

−(2n − 1) + 8i if n+3
4 ≤ i ≤

n−1
2 ,

ℓ2i =

⎧⎨⎩
8i − 7 if 1 ≤ i ≤

n−1
4 ,

2n − 6 if i =
n+3
4 ,

(4n + 1) − 8i if n+7
4 ≤ i ≤

n−1
2 .

bserve that ℓi+ℓi+1 is alternately 2n+2 and 2n−6, except that ℓ(n−1)/4+ℓ(n+3)/4 = 2n−3 and ℓ(n+3)/4+ℓ(n+7)/4 = 2n+1.
hus the vertices with labels given in Eq. (12) form a path.
We now prove that vi ̸↔ vj when |i − j| > 1. Observe that exactly two of the labels are even (in fact, multiples of 4);

he label 2n− 6 corresponds to v(n+3)/4 and the label 2n+ 2 corresponds to an isolated vertex. Observe also that ℓodd ≡ 3
mod 4) and ℓeven ≡ 1 (mod 4), for even subscript ̸=

n+3
2 . Hence, by considering residue classes modulo 4, we see that

v2i−1 ̸↔ v2j−1 for i ̸= j and v2i ̸↔ v2j for i ̸= j, i, j ̸=
n+3
4 . Thus v2i−1 ↔ v2j if and only if ℓ2i−1 + ℓ2j ∈ {2n − 6, 2n + 2}, so

hat each of the vertices (possibly except v(n+3)/4) must have degree 0, 1, or 2. Since these vertices lie on the path with
labels given by Eq. (14), we need to show that d

(
v1

)
= d

(
vn

)
= 1, d

(
v(n+3)/2

)
= 2; the vertex with label 2n+ 2 = max L1

is isolated. We note that in order that vi is a neighbour of v1 (respectively, v(n+3)/2, vn), ℓi must belong to {1} (respectively,
{3, 7, 8}, {4, 5}). The proof of the claim that the graph induced by L1 \ {2n + 2} is isomorphic to Pn is complete with the
observation that 1, 3, 5, 7 ∈ L1 and 4 /∈ L1 for the case n = 4k + 1.

The case n = 4k + 3 is almost identical to the case n = 4k + 1 discussed above. The subsequence of odd subscripts
consists of two arithmetic progressions each with common difference 8. One starts with ℓ1 = 2n + 1 and ends with 7
(there are n+1

4 terms), the other starts with ℓn = 2n− 3 and ends with 3 (there are n+1
4 terms). The subsequence of even

subscripts also consists of two arithmetic progressions each with common difference 8, but with a term in the middle:
ℓ(n+1)/2 = 2n − 6. One of these progressions starts with ℓ2 = 1 and ends with 2n − 9 (there are n−1

4 terms), the other
tarts with ℓn−1 = 5 and ends with 2n − 13 (there are n−5

4 terms). We can define the sequence in Eq. (13) by:

ℓ2i+1 =

{
(2n + 1) − 8i if 0 ≤ i ≤

n−3
4 ,

−(2n − 1) + 8i if n+1
4 ≤ i ≤

n−1
2 ,

ℓ2i =

⎧⎨⎩
8i − 7 if 1 ≤ i ≤

n−3
4 ,

2n − 6 if i =
n+1
4 ,

(4n + 1) − 8i if n+5
4 ≤ i ≤

n−1
2 .

he details of the proof for this case are identical to the case when n = 4k+ 1 and is omitted. The proof of the claim that
the graph induced L1 \ {2n + 2} is isomorphic to Pn is complete for the case when n is odd.

Hence spum Pn ≤ max L2 − min L2 = (2n + 2) − 1 = 2n + 1 when n is odd.
or even n ≥ 10, let G2 be the graph induced by the set of labels L2 = L(G2) = {1, 3, 5, . . . , 2n−9}∪{2n−5, 2n−4, 2n−

1, 2n, 2n + 3}. We claim that the graph induced by L2 \ {2n + 3} is isomorphic to Pn by showing that the vertices with
labels in the sequence

2n − 1, 1, 2n − 5, 5, 2n − 9, 9, . . . , 2n − 4, 3, 2n (14)

form a path, with the vertex labelled 2n + 3 isolated. We note that the labels are given by ℓ2i−1 = (2n − 1) − 4(i − 1) =

2n + 3 − 4i for i ∈ {1, . . . , n
2 } and ℓ2i = 1 + 4(i − 1) = 4i − 3 for i ∈ {1, . . . , n

2 − 2}, with ℓn−2 = 2n − 4 and ℓn = 2n.
bserve that ℓi + ℓi+1 is alternately 2n and 2n− 4, except that the last two sums are 2n− 1 and 2n+ 3. Thus the vertices
ith labels given in Eq. (14) form a path.
We now prove that vi ̸↔ vj when |i − j| > 1. Observe that exactly two of the labels are even (in fact, multiples of 4),

nd these correspond to the vertices vn−2 and vn. Observe also that ℓodd ≡ 3 (mod 4) and ℓeven ≡ 1 (mod 4), for even
subscripts ̸= n − 2, n. Hence, by considering residue classes modulo 4, we see that v2i−1 ̸↔ v2j−1 for i ̸= j and v2i ̸↔ v2j
for i ̸= j, i, j ̸=

n
2 − 1, n

2 . Thus v2i−1 ↔ v2j if and only if ℓ2i−1 + ℓ2j ∈ {2n − 4, 2n}, so that each of the vertices (possibly
except vn−2 and vn) must have degree 0, 1 or 2. Since these vertices lie on the path with labels given by Eq. (14), we need
to show that d

(
v1

)
= d

(
vn

)
= 1, d

(
vn−2

)
= 2; the vertex with label 2n + 3 = max L2 is isolated. We note that in order

hat vi is a neighbour of v1 (respectively, vn−2, vn), ℓi must belong to {1, 4} (respectively, {3, 4, 7}, {3}). The proof of the
claim that the graph induced by L2 \ {2n + 3} is isomorphic to Pn is complete with the observation that 1, 3, 7 ∈ L2 and
4 /∈ L2 when n is even.

Hence spum Pn ≤ max L2 − min L2 = (2n + 3) − 1 = 2n + 2 when n is even. ■

Theorem 7.2. For n ≥ 3, spum Pn ≥ 2n − 3.

Proof. This follows directly from Theorem 2.1. ■

Theorem 7.3. For n ≥ 7,

integral spum Pn ≤

{ 5
2 (n − 3) if n is odd;
2n − 3 if n is even.

roof. For odd n ≥ 7, let G1 be the graph induced by the set of labels L1 = L(G1) =
[
−(n − 3), − n−3

2

]
∪

{ n−3
2 , n−1

2

}
∪

n − 2, 3(n−3) ]. We claim that G ∼ P by showing that the vertices with labels in the sequence
2 1 = n

11
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2 , n−3

2 , −(n − 3), 3n−9
2 , −(n − 4), 3n−11

2 , −(n − 5), 3n−13
2 , . . . , n − 2, − n−3

2 (15)

orm a path. We note that the labels are given by ℓ2i =
3n−5

2 − i for i ∈ {2, . . . , n−1
2 } and ℓ2i+1 = −(n − 2) + i for

∈ {1, . . . , n−1
2 }, with ℓ1 =

n−1
2 and ℓ2 =

n−3
2 . Observe that v1 ↔ v2, v2 ↔ v3 and v3 ↔ v4, and that v2i ↔ v2i+1 since

2i + ℓ2i+1 = ( 3n−5
2 − i) + (−n + 2 + i) =

n−1
2 for i ∈ {2, . . . , n−1

2 }.
We now prove that vi ̸↔ vj when |i − j| > 1. Note that

{
ℓ2i+1 : 1 ≤ i ≤

n−1
2

}
=

[
−(n − 3), − n−3

2

]
= I1 and that

ℓ2i : 2 ≤ i ≤
n−1
2

}
=

[
n − 2, 3(n−3)

2

]
= I2. Let S1 + S2 = {x1 + x2 : x1 ∈ S1, x2 ∈ S2, x1 ̸= x2}. Then I1 + I1 =

[−(2n − 7), −(n − 2)] ∩ L1 = ∅, I1 + I2 = [1, n − 3] ∩ L1 =
{ n−3

2 , n−1
2

}
, and I2 + I2 = [2n − 3, 3n − 10] ∩ L1 = ∅.

ence vi ↔ vj, i, j /∈ {1, 2} if and only if ℓi + ℓj ∈
{ n−3

2 , n−1
2

}
.

Suppose ℓ2i+1 = −(n− 2)+ i ∈ I1 and v2i+1 ↔ vj. Then ℓj =
3n−5

2 − i or 3n−7
2 − i, i ∈ {1, . . . , n−1

2 }. Since both 3n−5
2 − i,

3n−7
2 − i belong to I2 for all i ̸=

n−1
2 while 3n−5

2 −
n−1
2 ∈ I2, 3n−7

2 −
n−1
2 /∈ I2, each of the vertices v2i+1, i > 1 has no

eighbours aside from those on the path given by Eq. (15).
Suppose ℓ2i =

3n−5
2 − i ∈ I2 and v2i ↔ vj. Then ℓj = −(n−2)+ i or −(n−3)+ i, i ∈ {2, . . . , n−1

2 }. Since both −(n−2)+ i,
(n − 3) + i belong to I2 for all i, each of the vertices v2i, i > 1 has no neighbours aside from those on the path given by
q. (15).
There remains to consider the vertices v1 and v2. Observe that

(
I1 +

n−1
2

)
∩ L1 =

{ n−3
2

}
and that

(
I1 +

n−3
2

)
∩ L1 =

n−1
2 , −(n − 3)

}
. Thus there are no edges other than those on the path given by Eq. (15). This completes the proof of

claim that G1 ∼= Pn.
Hence integral spum Pn ≤ max L1 − min L1 =

3
2 (n − 3) + (n − 3) =

5
2 (n − 3) when n is odd.

or even n ≥ 8, let G2 be the graph induced by the set of labels L2 = L(G2) = {−1, 1, 3, . . . , 2n−9}∪{2n−8, 2n−5, 2n−4}.
We claim that G2 ∼= Pn by showing that the vertices with labels in the sequence

2n − 4, −1, 2n − 8, 3, 2n − 11, 7, 2n − 15, 11, 2n − 19, . . . , 1, 2n − 5 (16)

form a path. We note that the labels are given by ℓ2i = 4(i − 1) − 1 = 4i − 5 for i ∈ {1, . . . , n
2 } and ℓ2i−1 =

(2n − 11) − 4(i − 3) = 2n + 1 − 4i for i ∈ {3, . . . , n
2 }, with ℓ(v1) = 2n − 4 and ℓ(v3) = 2n − 8. Observe that v1 ↔ v2,

2 ↔ v3, v3 ↔ v4 and v4 ↔ v5, and that v2i−1 ↔ v2i since ℓ2i−1 +ℓ2i = (2n+1−4i)+ (4i−5) = 2n−4 for i ∈ {3, . . . , n
2 }.

We now prove that vi ̸↔ vj when |i − j| > 1. Observe that exactly two of the labels are even (in fact, multiples
f 4), and these correspond to the vertices v1 and v3. Observe also that ℓodd ≡ 1 (mod 4), for odd subscripts ̸= 1, 3
nd ℓeven ≡ 3 (mod 4). Suppose vi ↔ vj with i, j /∈ {1, 3}, i ̸= j. Hence i and j must be of opposite parity, so that
2n + 1 − 4i) + (4j − 5) ∈ {2n − 4, 2n − 8}. But then |i − j| ∈ {0, 1}, and this is impossible. Since v1 ̸↔ v4, it remains
to show that v1 ̸↔ vi and v3 ̸↔ vi for i > 4. Suppose, to the contrary, that vi ↔ v1 or vi ↔ v3. Then ℓi added to one
of 2n − 4, 2n − 8 must belong to {ℓj : j ≡ i (mod 2)}. Since

⏐⏐ℓj − ℓi
⏐⏐ ≤ 2n − 12 under the constraints, we arrive at a

contradiction. This completes the proof of claim that G2 ∼= Pn.
Hence integral spum Pn ≤ max L2 − min L2 = (2n − 4) + 1 = 2n − 3 when n is even. ■

Theorem 7.4. For n ≥ 3, integral spum Pn ≥ 2n − 5.

roof. This follows directly from Theorem 2.2. ■

We close this section with a table of values for spumPn for 4 ≤ n ≤ 9 (Table 3) and integralspum Pn for 3 ≤ n ≤ 13
Table 4), and conjectures on their exact values based on limited numerical evidence. The largest labels in Table 3 are also
he labels of the isolated vertex in each case.

Table 3
Table of results for spum of paths.
n spum labelling spum Pn

4 3, 1, 2, 4; 6 5
5 5, 1, 4, 2, 6; 8 7
6 9, 1, 4, 5, 2, 7; 10 9
7 12, 1, 6, 7, 2, 4, 9; 13 12
8 12, 1, 11, 5, 7, 9, 3, 13; 16 15
9 19, 1, 11, 9, 3, 12, 7, 5, 15; 20 19

10 19, 1, 15, 5, 11, 9, 7, 16, 3, 20; 23 22
11 23, 1, 15, 9, 7, 16, 3, 13, 11, 5, 19; 24 23
12 23, 1, 19, 5, 15, 9, 11, 13, 7, 20, 3, 24; 27 26
13 27, 1, 19, 9, 11, 17, 3, 20, 7, 13, 15, 5, 23; 28 27
14 27, 1, 23, 5, 19, 9, 15, 13, 11, 17, 7, 24, 3, 28; 31 30
12



S. Singla, A. Tiwari and A. Tripathi Discrete Mathematics 344 (2021) 112311

C

&
r
S

D

a

A

R

Table 4
Table of results for integral spum of paths.
n integral spum labelling integral spum Pn

3 1, 0, 2 2
4 1, 2, −1, 3 4
5 2, 1, 3, −2, 4 6
6 2, −4, 1, −3, 4, −2 8
7 3, 2, −4, 6, −3, 5, −2 10
8 12, −1, 8, 3, 5, 7, 1, 11 13
9 4, 3, −6, 9, −5, 8, −4, 7, −3 15

10 16, −1, 12, 3, 9, 7, 5, 11, 1, 15 17
11 5, 4, −8, 12, −7, 11, −6, 10, −5, 9, −4 20
12 20, −1, 16, 3, 13, 7, 9, 11, 5, 15, 1, 19 21
13 6, 5, −10, 15, −9, 14, −8, 13, −7, 12, −6, 11, −5 25

Conjecture 7.1. For n ≥ 9,

spum Pn =

{
2n + 1 if n is odd;
2n + 2 if n is even.

Conjecture 7.2. For n ≥ 7,

integral spum Pn =

{ 5
2 (n − 3) if n is odd;
2n − 3 if n is even.
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