A NOTE ON INTEGERS THAT ARE UNIQUELY EXPRESSIBLE BY INTEGRAL GEOMETRIC SEQUENCES

Edgar Federico Elizeche
Department of Mathematics, Indian Institute of Technology, New Delhi, India
Edgar.Federico.Elizeche.Armoa@maths.iitd.ac.in
Amitabha Tripathi ${ }^{1}$
Department of Mathematics, Indian Institute of Technology, New Delhi, India
atripath@maths.iitd.ac.in

Received: 6/22/21, Accepted: 12/8/21, Published: 12/13/21

Abstract

Let a, b be positive and coprime integers. By an integral geometric sequence we mean a finite set of the form $\left\{a^{k}, a^{k-1} b, a^{k-2} b^{2}, \ldots, b^{k}\right\}$. We characterize integers that can be uniquely expressed as a linear combination of an integral geometric sequence over nonnegative integers.

1. The Result

The problem of determining the number of solutions of linear Diophantine equations $a_{1} x_{1}+\cdots+a_{k} x_{k}=n$ over nonnegative integers x_{1}, \ldots, x_{k} has a long and rich history; see [3]. The method of generating functions is a basic tool for this problem, and can be found in many standard textbooks on Combinatorics; for instance, see [1, 4].

We explore the following variant of this problem that arises naturally. Given a set $A=\left\{a_{1}, \ldots, a_{k}\right\}$ of positive integers, determine all $n \in \mathbb{Z}_{\geq 0}$ for which there is a unique k-tuple $\left(x_{1}, \ldots, x_{k}\right)$ of nonnegative integers such that

$$
\begin{equation*}
a_{1} x_{1}+\cdots+a_{k} x_{k}=n . \tag{1}
\end{equation*}
$$

We denote the set of all $n \in \mathbb{Z}_{\geq 0}$ such that Equation (1) has a unique solution by $S_{1}(A)$. This problem has been resolved in the case when A is a modified arithmetic sequence, i.e., $A=\{a, h a+d, h a+2 d, \ldots, h a+k d\}$, with a, d, h, k are positive integers and $\operatorname{gcd}(a, d)=1$ in [2]. Observe that an arithmetic sequence is the special case $h=1$.

The case of a geometric sequence: $A=\left\{a, a r, a r^{2}, \ldots, a r^{k}\right\}, a, r, k$ are positive integers, $r>1$, is easily dealt with. If $n \in S_{1}(A)$, then $a \mid n$. With $n=m a$,

[^0]Equation (1) can be rewritten as $x_{0}+r x_{1}+r^{2} x_{2}+\cdots+r^{k} x_{k}=m$. If $0 \leq m<r$, each $x_{i}=0$ for $i>0$, so that $x_{0}=m$. Thus, each such m is uniquely representable by $\left\{1, r, r^{2}, \ldots, r^{k}\right\}$. On the other hand, the above equation has at least the two solutions, viz., (i) $x_{0}=m, x_{i}=0$ for $i>0$, and (ii) $x_{0}=m-r, x_{1}=1, x_{i}=0$ for $i>1$ when $m \geq r$. Therefore, $S_{1}(A)=\{0, a, 2 a, \ldots,(r-1) a\}$ in this case.

Since the problem of determining $S_{1}(A)$ when A is a geometric sequence is easily resolved, we consider a relaxation on the requirement that r be a positive integer in a geometric sequence while maintaining that the elements in the set A are positive integers. One way to achieve this is to consider a two parameter family, parametrized by positive and coprime integers a and b, with first term a^{k} and ratio b / a. For positive and coprime integers a, b, with $a<b$, and any positive integer k, by an integral geometric sequence we mean a sequence of the form

$$
\mathcal{A}_{k}(a, b)=\left\{a^{k}, a^{k-1} b, a^{k-2} b^{2}, \ldots, b^{k}\right\}
$$

Note that the condition on coprimality of a, b can be assumed without loss of generality since $\operatorname{gcd}(a, b)=d$ can be easily linked to the case where $\operatorname{gcd}(a, b)=1$. The purpose of this brief note is determine $S_{1}\left(\mathcal{A}_{k}\right)$ when \mathcal{A}_{k} is an integral geometric sequence.

Let $\Gamma_{k}(a, b)=\left\{a^{k} x_{0}+a^{k-1} b x_{1}+\cdots+b^{k} x_{k}: x_{i} \in \mathbb{Z}_{\geq 0}\right\}$. Each integer in $\Gamma_{k}(a, b)$ is of the form $\mathbf{v}\left(x_{0}, \ldots, x_{k}\right):=\sum_{i=0}^{k} a^{k-i} b^{i} x_{i}$, with each $x_{i} \in \mathbb{Z}_{\geq 0}$. The transformation $\left(x_{k-1}, x_{k}\right) \mapsto\left(x_{k-1}+b, x_{k}-a\right)$ maintains the value of $\mathbf{v}\left(x_{0}, \ldots, x_{k}\right)$, and we repeatedly apply this until $0 \leq x_{k} \leq a-1$. Note that the corresponding $x_{k-1}>0$. Next we repeatedly apply the transformation $\left(x_{k-2}, x_{k-1}\right) \mapsto\left(x_{k-2}+b, x_{k-1}-a\right)$ until $0 \leq x_{k-1} \leq a-1$. The corresponding $x_{k-2}>0$ while maintaining the value of $\mathbf{v}\left(x_{0}, \ldots, x_{k}\right)$. Continuing with this process with successive transformations $\left(x_{i-1}, x_{i}\right) \mapsto\left(x_{i-1}+b, x_{i}-a\right), i>0$ leads to the same value of $\mathbf{v}\left(x_{0}, \ldots, x_{k}\right)$, but with $0 \leq x_{i} \leq a-1$ for each $i>0$ and $x_{0} \geq 0$. Therefore, each integer in $\Gamma_{k}(a, b)$ is of the form $\sum_{i=0}^{k} c_{i} x_{i}$, with $0 \leq x_{i} \leq a-1$ for each $i>0$ and $x_{0} \geq 0$.
Definition 1. We say that the expression $n=\sum_{i=0}^{k} c_{i} x_{i}$ is in standard form if we can write $0 \leq x_{i} \leq a-1$ for each $i>0$ and $x_{0} \geq 0$.

For brevity, let us denote $\left(x_{0}, \ldots, x_{k}\right)$ and $\left(y_{0}, \ldots, y_{k}\right)$ by \mathbf{x} and \mathbf{y}, respectively.
Lemma 1. If $\mathbf{v}(\mathbf{x})=\mathbf{v}(\mathbf{y})$ with \mathbf{x}, \mathbf{y} in standard form, then $\mathbf{x}=\mathbf{y}$.
Proof. Suppose $\mathbf{v}(\mathbf{x})=\mathbf{v}(\mathbf{y})$ with \mathbf{x}, \mathbf{y} in standard form. Then

$$
\begin{equation*}
a^{k} x_{0}+a^{k-1} b x_{1}+\cdots+b^{k} x_{k}=a^{k} y_{0}+a^{k-1} b y_{1}+\cdots+b^{k} y_{k} \tag{2}
\end{equation*}
$$

Reducing Equation (2) modulo a gives $x_{k} \equiv y_{k}(\bmod a)$ since $\operatorname{gcd}(a, b)=1$. Therefore $x_{k}=y_{k}$, and Equation (2) reduces to

$$
\begin{equation*}
a^{k-1} x_{0}+a^{k-2} b x_{1}+\cdots+b^{k-1} x_{k-1}=a^{k-1} y_{0}+a^{k-2} b y_{1}+\cdots+b^{k-1} y_{k-1} . \tag{3}
\end{equation*}
$$

Note that Equation (3) is of the form of Equation (2) with k replaced by $k-$ 1. Reducing Equation (3) modulo a leads to $x_{k-1}=y_{k-1}$, and continuing this argument shows $x_{i}=y_{i}, i \in\{0, \ldots, k\}$, so that $\mathbf{x}=\mathbf{y}$.

Theorem 1. A nonnegative integer n is uniquely representable by elements of $\mathcal{A}_{k}(a, b)$ if and only if

$$
n=\sum_{i=0}^{k} a^{k-i} b^{i} x_{i}, \text { where } 0 \leq x_{0} \leq b-1 \text { and } 0 \leq x_{i} \leq a-1, i=1, \ldots, k
$$

In particular, the number of such integers equals $a^{k} b$.
Proof. Let $X=\left\{\left(x_{0}, \ldots, x_{k}\right): 0 \leq x_{0} \leq b-1,0 \leq x_{i} \leq a-1, i=1, \ldots, k\right\}$. Let $n=\mathbf{v}(\mathbf{x})$, with $\mathbf{x} \in X$. We must show that $\mathbf{v}(\mathbf{x})=\mathbf{v}(\mathbf{y})$ with $\mathbf{y} \in \mathbb{Z}_{\geq 0}^{k+1}$ implies $\mathbf{x}=\mathbf{y}$. Repeated applications of the transformations described in the paragraph above Lemma 1 leads to $\mathbf{v}(\mathbf{y})=\mathbf{v}\left(\mathbf{y}^{\prime}\right)$, where \mathbf{y}^{\prime} is in standard form. Since \mathbf{x} is in standard form, we have $\mathbf{x}=\mathbf{y}^{\prime}$ by Lemma 1. Applying the inverse transformations in reverse order to \mathbf{y}^{\prime} must lead back to \mathbf{y}. However, such transformations are not applicable to \mathbf{x}. Thus, $\mathbf{y}^{\prime}=\mathbf{y}$, so that $\mathbf{x}=\mathbf{y}$.

Nonnegative integers that are not in $\Gamma_{k}(a, b)$ have no representation by elements in $\mathcal{A}_{k}(a, b)$. Therefore, we must show that any $n=\mathbf{v}(\mathbf{x}), \mathbf{x} \notin X$ has at least two representations by elements in $\mathcal{A}_{k}(a, b)$. Note that $\mathbf{x} \notin X$ implies either $x_{0} \geq b$ or $x_{i} \geq a$ for some $i \in\{1, \ldots, k\}$. Now
$\mathbf{v}\left(x_{0}, x_{1}, x_{2}, \ldots, x_{k}\right)=\left\{\begin{array}{l}\mathbf{v}\left(x_{0}-b, x_{1}+a, x_{2}, \ldots, x_{k}\right), \quad \text { if } x_{0} \geq b, \\ \mathbf{v}\left(x_{0}, \ldots, x_{j-2}, x_{j-1}+b, x_{j}-a, x_{j+1}, \ldots, x_{k}\right) \\ \text { if } x_{j} \geq a, j \in\{1, \ldots, k\},\end{array}\right.$
gives two representations of any such n by elements of $\mathcal{A}_{k}(a, b)$.

Acknowledgement. The authors thank the referee for his/her comments.

References

[1] L. Comtet, Advanced Combinatorics, Dordrecht, Reidel, 1974.
[2] S. Chimni, S. Sankar and A. Tripathi, On integers that are uniquely representable by modified arithmetic progressions, Notes in Number Theory and Discrete Mathematics 22, no. 3 (2016), 36-44.
[3] L. E. Dickson, History of the Theory of Numbers, Vol. 2, Chelsea, New York, 1992.
[4] H. S. Wilf, generatingfunctionology, Academic Press, New York, 1990.

[^0]: ${ }^{1}$ Corresponding Author

