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ABSTRACT
The inverse problem of capillary imbibition involves determination of the capillary geometry from the measurements of the time-varying
meniscus position. This inverse problem is known to have multiple solutions, and to ensure a unique solution, measurements of imbibition
kinematics in both directions of the capillary are required. We here present a closed-form analytical solution of the inverse problem of
determining the axially varying radius of a capillary from experimental data of the meniscus position as a function of time. We demonstrate
the applicability of the method for solving the inverse capillary imbibition problem for two cases, wherein the data for imbibition kinematics
are obtained (i) using numerical simulations and (ii) from published experimental work. In both cases, the axially varying capillary radius
predicted by the analytical solution agrees with the true capillary radius. In contrast to the previously proposed iterative methods for solving
the inverse capillary imbibition problem, the analytical method presented here yields a direct solution. This analytical solution of the inverse
capillary imbibition problem can be helpful in determining the internal geometry of micro- and nano-porous structures in a non-destructive
manner and design of autonomous capillary pumps for microfluidic applications.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0008081., s

The penetration of a liquid into a capillary due to the wetting
of the liquid on the walls, known as capillary imbibition, is of rele-
vance to diverse fields including enhanced oil recovery,1 groundwa-
ter pollution,2 flow through porous media,3,4 tissue drug delivery,5

and microfluidic systems.6 The forward problem of determining the
meniscus position ℓ(t) vs time t has been studied extensively in
the past for various geometric and flow configurations.7–12 How-
ever, the inverse problem of determining the capillary geometry
from measured ℓ vs t data13 has received comparatively less atten-
tion. The inverse problem of capillary imbibition is of significant
importance as it can be used to determine the geometry of those
capillaries, such as nano-pores,14 which otherwise cannot be directly
visualized. The solution of the inverse problem can also be used to
design autonomous microfluidic capillary pumps with desired flow
characteristics.14,15

In this paper, we consider the inverse problem of determining
the axially varying radius of an axisymmetric, non-uniform cross
section capillary, illustrated in Fig. 1, from the measured imbibi-
tion kinematics. As shown in Fig. 1, the liquid filled in either the

left or the right reservoir, maintained at atmospheric pressure, wets
the capillary wall, and penetrates into the horizontally oriented cap-
illary. The left and the right ends of the capillary are at x = 0 and
x = L, respectively. The imbibition process is characterized by the
time-varying meniscus position x = ℓ(t). In the regime, where vis-
cous dissipation dominates flow inertia, the meniscus speed u(ℓ)
= dℓ/dt is governed by13

dℓ
dt
=

γ cos(θ)
4μr(ℓ)3

∫

ℓ
0 r(x)−4dx

. (1)

Here, x is the axial coordinate along the capillary, r(x) is the axi-
ally varying capillary radius, μ is the dynamic viscosity of the liquid,
γ is the air–liquid surface tension, and θ is the contact angle made
by the liquid with the capillary wall. The above equation is based
on the assumption of slow axial variations in the capillary radius.10

The contact angle θ in this equation can be taken as the equilib-
rium contact angle only for quasi-static motion of the meniscus on
ideal surfaces. However, because the meniscus is moving and for
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FIG. 1. Schematic illustrating imbibition in an axisymmetric capillary with an axially
varying cross section. During forward imbibition, the liquid meniscus moves from
x = 0 to L, whereas for imbibition in the reverse direction, the meniscus moves
from x = L to 0. The meniscus position during forward and reverse imbibition is
denoted by x = ℓ(t). The meniscus moves with a mean flow speed given by u and
makes a contact angle θ with the capillary wall.

systems with significant contact angle hysteresis, θ should be
replaced with the receding contact angle.10 Equation (1) can be eas-
ily solved to obtain a unique solution for the meniscus position ℓ(t)
if the capillary radius r(x) is known.9,10 However, the inverse prob-
lem of determining the radius r(x) of a non-uniform capillary, from
experimentally measured imbibition kinematics (ℓ vs t) or menis-
cus speed u(ℓ) = dℓ/dt, is ill-posed. Elizalde et al.13 showed that an
infinite family of curves r(x) can produce the same meniscus velocity
u(ℓ). They also showed that a unique solution for r(x) can be ensured
if the experimental data for capillary imbibition in both directions,
that is, from x = 0 to L and from x = L to 0, are used to solve the
inverse problem.

The previous works on the solution of the inverse capillary
imbibition problem13,14 are based on an iterative, numerical proce-
dure to reproduce experimentally observed ℓ vs t curves for imbibi-
tion in both directions. In this method, first a family of curves r(x) is
obtained that reproduces the kinematics of imbibition in one direc-
tion, using Eq. (1). Among these r(x) curves, that particular curve
is chosen which is able to predict the experimentally measured data
for imbibition in the opposite direction, using Eq. (1). In contrast
to this iterative approach, we here present a closed-form analyti-
cal solution for the inverse problem of determining the capillary
radius r(x) that reproduces the measured ℓ vs t curves for imbibi-
tion in forward and reverse directions. Our analytical method gives a
direct solution to the inverse problem of capillary imbibition, which
is a significant improvement over the iterative methods proposed
earlier.

This paper is structured as follows: First, we derive a closed-
form analytical solution to the inverse problem of capillary imbibi-
tion. Thereafter, we present validation of the analytical solution by
considering two inverse problems, wherein the data for imbibition
kinematics are obtained from numerical simulations and experi-
ments. This is followed by concluding remarks on significance and
applications of this work.

Our method is based on simultaneous consideration of the cap-
illary imbibition process in forward and reverse directions. From
Eq. (1), the meniscus speeds during imbibition in forward and
reverse directions, respectively, denoted by subscripts f and r, are
given by

uf (ℓ) =
dℓ
dt
=

γ cos(θ)
4μr(ℓ)3

∫

ℓ
0 r(x)−4dx

, (2)

ur(ℓ) = −
dℓ
dt
=

γ cos(θ)
4μr(ℓ)3

∫

L
ℓ r(x)−4dx

. (3)

Here, the negative sign in ur(ℓ) = −dℓ/dt denotes that ℓ(t) (measured
from x = 0) decreases with time during imbibition from x = L to 0.
Equations (2) and (3) can be combined as follows:

I = ∫
L

0
r(x)−4dx = ∫

ℓ

0
r(x)−4dx + ∫

L

ℓ
r(x)−4dx, (4)

=
γ cos(θ)
4μr(ℓ)3 [

1
uf (ℓ)

+
1

ur(ℓ)
]. (5)

This equation can be written in a compact form by defining α
= γ cos(θ)/μ and f (ℓ) = (uf (ℓ)−1 + ur(ℓ)−1)/4 to get

I = ∫
L

0
r(x)−4dx =

α
r(ℓ)3 f (ℓ). (6)

Note that the integral I is related to the hydraulic resistance of the
completely filled capillary. In addition, I remains constant over the
imbibition process. The quantity f (ℓ) is obtained from experimental
measurements of imbibition speeds in both directions. From Eq. (6),
the radius of the capillary r(ℓ) can be obtained as

r(ℓ) = (
α
I
f (ℓ))

1/3
. (7)

The only unknown in this equation is I, which can be obtained by
substituting the above relation for radius in the definition of I, given
by Eq. (4), to get

I = ∫
L

0
r(x)−4dx = ∫

L

0
[
αf (x)
I
]

−4/3
dx

= (
I
α
)

4/3
∫

L

0
f (x)−4/3dx. (8)

Therefore, I is given by

I =
α4

(∫

L

0
f (x)−4/3dx)

3 . (9)

Finally, substituting the expression for I given by Eq. (9) in Eq. (7),
we arrive at a closed-form relation for the axially varying radius r(x)
of the capillary,

r(x) =
f (x)1/3

α ∫

L

0
f (η)−4/3dη. (10)

Knowing the measured values of f (x) = (uf (x)−1 + ur(x)−1)/4 at var-
ious axial locations x along the capillary, the above equation can
be used to directly determine the radius curve r(x). We note that
random uncertainties in experimental measurements can result in a
random noise in the measured values of f (x). Therefore, a smooth-
ing filter can be applied on f (x) prior to estimation of r(x), using
Eq. (10).

To validate our method, we considered two inverse problems,
wherein the data for imbibition kinematics are obtained (i) using
numerical simulations and (ii) from experiment data of Elizalde
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et al.13 For the first problem, we assumed a capillary of length L
= 30 mm with the axially varying radius given by

r(x)
r0
= 1 + 0.3 sin(

πx
L
) + 0.4 sin(

2πx
L
) + 0.2 cos(

3πx
L
), (11)

where r0 = 100 μm. The meniscus position ℓ(t) was obtained for
imbibition in both directions by numerically integrating Eqs. (2)
and (3) using the Runge–Kutta method, with α = 0.18 m. To mimic
experimental noise in the measured data, Gaussian random noise
with a zero mean and standard deviation of 10 μm was added to
the numerically obtained values of ℓ(t); this was considered as the
measured data. Thereafter, the measured data were filtered using a
3-point moving average filter, and the meniscus speeds uf (x) and
ur(x) were obtained by numerically differentiating the smoothed ℓ(t)
vs t curves. These meniscus speeds were subsequently used to com-
pute f (x) and then r(x) using Eq. (10). Figure 2(a) shows that the

FIG. 2. Validation of the analytical solution for the inverse problem of capillary imbi-
bition using simulated imbibition kinematics. (a) Comparison of the capillary radius
determined by solving the inverse problem with the true capillary radius given by
Eq. (11). The capillary radius predicted using the analytical solution compares well
with the true radius. (b) Comparison of the measured imbibition kinematics with
those obtained by solving the forward imbibition problem using the predicted cap-
illary radius. The imbibition kinematics corresponding to the predicted capillary
radius agree well with the measured data. In these calculations, random noise was
added to the simulated data of imbibition length ℓ(t) vs t, to mimic experimental
uncertainty, and the resulting data were considered as the measured data.

radius estimated by solving the inverse problem using Eq. (10) is in
excellent agreement with the true capillary radius given by Eq. (11).
Moreover, as shown in Fig. 2(b), the meniscus position ℓ(t) predicted
by solving the forward problem using the estimated radius matches
well with the measured ℓ vs t data. Note that the small deviations in
the predicted and true radii and the corresponding imbibition kine-
matics are due to the random noise added to the imbibition data. In
the absence of any added noise, the predicted radius matches exactly
with the true radius of the capillary.

Next, we demonstrate the applicability of our approach for
determining the capillary radius from experimentally measured
imbibition data. To this end, we consider the experiments of Elizalde
et al.,13 wherein a glass capillary with a non-uniform cross sec-
tion was fabricated by heating and pulling the capillary. A mix-
ture of gylcerol and 2-propanol with α = 0.18 m was used for the
imbibition experiments. The meniscus position during the imbibi-
tion in forward and reverse directions was recorded using a CCD
camera. For our analysis, we digitized the experimental data of

FIG. 3. Validation of the analytical solution for the inverse problem of capillary
imbibition using experimental data of Elizalde et al.13 (a) Comparison of the cap-
illary radius determined by solving the inverse problem with the experimentally
determined true capillary radius. The capillary radius predicted using the analytical
solution compares well with the true radius. (b) Comparison of the time-varying
imbibition length, ℓ(t) vs t, measured during experiments with those obtained by
solving the forward imbibition problem using the predicted capillary radius. The
imbibition kinematics corresponding to the predicted capillary radius agree well
with the experimental data.
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imbibition kinematics and the actual radius of the capillary, reported
by Elizalde et al.13 Following a similar procedure to that described
for the first problem, we used the experimental data to obtain the
capillary radius r(x), using Eq. (10). Figure 3(a) shows a compari-
son of the radius r(x) predicted by Eq. (10) with the actual radius
of the capillary measured using the camera. Despite the uncertainty
in digitized experimental data, the solution to the inverse prob-
lem agrees well with the actual radius of the capillary. Figure 3(b)
shows the variation of the meniscus position with time mea-
sured during the forward and reverse imbibition experiments. The
imbibition kinematics simulated using the radius curve obtained
by solving the inverse problem are also in agreement with the
experimental data, as shown in Fig. 3(b). These results demon-
strate the robustness of the analytical solution to measurement
uncertainties.

To summarize, we have presented a closed-form analytical
solution of the inverse problem of capillary imbibition, which
involves determination of the radius of an axially non-uniform cap-
illary using experimentally measured data of imbibition kinematics.
Unlike the previous iterative methods proposed to solve this inverse
problem, our method gives a direct solution. We have validated our
method with data of capillary imbibition obtained from numerical
simulations and experimental measurements of capillary imbibition.
The analytical solution of the inverse capillary imbibition problem
can be helpful in determining the internal geometry of micro- and
nano-porous structures in a non-destructive manner and design of
autonomous capillary pumps for microfluidic applications.

We acknowledge the financial support received from the Sci-
ence and Engineering Research Board (SERB), Government of
India, under the Impacting Research Innovation and Technology
(IMPRINT-2) scheme (Grant No. IMP/2018/000422).

The data that support the findings of this study are available
within the article.
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