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Control-Oriented Physics-Based Modeling and
Observer Design for State-of-Charge Estimation of
Lithium-Ion Cells for High Current Applications
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Abstract— This article proposes a physics-based control-
oriented model and observer design for the state-of-charge (SoC)
estimation of lithium-ion cells for applications involving high
magnitude fluctuating current profiles. The physics-based single-
particle model (SPM) provides enhanced accuracy due to the
inclusion of electrolyte dynamics and addresses the issue of
nonobservability associated with it. The computationally efficient
physics-based model is utilized to design a robust observer-based
SoC estimator in the framework of linear matrix inequality to
guarantee fast convergence despite parametric uncertainty in
the state and output equations, and unknown initial conditions.
The observer performance is validated using FTP75 and US06
dynamic tests at different temperatures, and the results are
compared with the standard unscented Kalman filter (UKF).
The mean SoC estimation error and the integral square error of
the estimated SoC for the proposed observer are at least one
order of magnitude smaller than that of UKF. Furthermore,
robustness to ±30% parametric uncertainty, measurement noise,
and unknown initial conditions is demonstrated through Monte
Carlo simulations at different temperatures.

Index Terms— Linear matrix inequality (LMI), lithium-ion cell,
observer, single-particle model (SPM), state of charge (SoC).

I. INTRODUCTION

IN THE recent decade, significant interest has developed in
the research community toward the application of lithium-

ion batteries for powering electric vehicles (EVs). Lithium-
ion batteries have become an efficient and reliable energy
storage system due to their high energy-to-weight ratio, low
self-discharge, and negligible memory effect in comparison
to other battery chemistries [1]. Safe and reliable operation
of batteries demands continuous monitoring of their internal
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states, including remaining capacity and temperature, to pre-
vent them from being subjected to adverse conditions. This
task is performed by a battery management system (BMS)
that monitors states, such as the state of charge (SoC), state
of health (SoH), and temperature, thereby preventing the bat-
teries from being subjected to overcharge, overdischarge, and
thermal runaway [2].

The SoC is a crucial parameter that provides a measure
of the remaining charge capacity in a cell under operation.
Since the SoC cannot be measured directly, various techniques
have been formulated and implemented for its estimation [3].
One of the simplest techniques is the ampere-hour count-
ing method that involves discrete integration of current over
time. However, being an open-loop method, it requires precise
information of the initial SoC, which is difficult to obtain in
a practical scenario. Furthermore, it may suffer from error
accumulation due to integration operation over large time
steps [4]. Another technique based on open-circuit poten-
tial (OCP) measurement is not suitable for online observation
as this requires a long relaxation time for the determination of
SoC at any instant during operation. The data-based learning
techniques, including neural network and fuzzy logic, require
extensive training data specific to the battery under considera-
tion and may be difficult to obtain for individual cells. These
techniques also suffer from issues of high computational cost,
overfitting, and lack of information about the internal states
of the battery [3]. SoC estimation techniques based on the
equivalent circuit model (ECM) can lead to erroneous SoC
estimation since the ECM is essentially an empirical relation-
ship between the current and terminal voltage [2], [4], [5].
On the other hand, physics-based models consider species
and charge transport phenomena within cells and can provide
an accurate prediction of battery states. In the category of
physics-based model approaches, the pseudo-2-D (P2D) model
based on the electrochemistry of the lithium-ion cell is well-
established [6]. However, the P2D model is computationally
expensive as it involves solving coupled nonlinear differential-
algebraic equations (DAEs) and, thus, has not been practically
realizable for real-time SoC estimation, particularly for low-
cost BMS [7]. Various simplifications have been considered
to overcome this limitation. One such approach is the single-
particle model (SPM) [8], which assumes a uniform current
density in the electrodes and ignores electrolyte dynamics.
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The lithium transport in each electrode is solved for a single-
spherical particle [9]. Various works on SoC estimation have
incorporated this model [10]–[12]. However, ignoring elec-
trolyte dynamics limits the applicability of the SPM to low
C-rates (<C/2) only [13]. Another reduced-order model,
namely, the equivalent-hydraulic model (EHM), uses two tanks
to represent the surface and internal storage of lithium within
the electrode particles [14], [15]. The EHM is an analogous
but approximate representation of diffusion physics and cannot
account for the effect of particle diffusivity and the spa-
tial concentration gradient existing within electrode particles.
Hence, SPM and EHM are not suitable for the SoC estimation
algorithms in EVs where cells routinely experience C-rates up
to 10 C under extreme scenarios.

Several mathematical models have also been proposed to
improve the SPM by incorporating electrolyte dynamics. Most
of results have attempted to model the electrolyte poten-
tial drop in the cell [16]–[20]. The model developed by
Prada et al. [16] has found application in several estimation
algorithms [20]. While some of these works have ignored
the electrolyte dynamics [21]–[23], others have considered a
polynomial model to obtain the lithium concentration in the
electrolyte [17], [18], [24]. Recently, SPM incorporating elec-
trolyte dynamics was proposed, which considered the effect
of spatial variations of the overpotential and the OCP in the
cell voltage [13]. The proposed model was able to predict cell
voltage within 2% accuracy to that of P2D for discharge and
charge rates up to a 5-C rate.

Previous works on modeling the dynamics of lithium-
ion cells have employed either domain discretization tech-
niques (DDTs) [10]–[12], [23] [such as the finite-volume
method (FVM) or finite-difference method (FDM)] or fourth-
degree polynomial model [25]–[28] to obtain the solution of
the electrode diffusion equation. While DDT requires many
nodes to obtain a converged solution, the polynomial models
can result in significant error under highly fluctuating cur-
rents. In addition, several analytical solutions for the diffusion
equation exist in the literature [17], [29]. The model of Guo
and White [29] has been shown to accurately represent the
diffusion dynamics with relatively lower computational cost
than DDTs. [13]. The linearized modeling in [13] while being
computationally efficient is amenable for control and estima-
tion and, therefore, motivated the proposed work.

Furthermore, considering the dynamics of both the positive
and negative electrodes independently leads to the issue of
nonobservability [23]. A single-electrode representation and
an approximated linear relation between the two electrodes’
surface concentration have been considered in [10], [12], [18],
and [23] to overcome this issue though resulting in an inaccu-
rate prediction of the surface concentration. In [30], an inter-
connected cascaded observer structure is used for estimating
the lithium-ion surface concentrations in both electrodes. The
charge and species conservation equations are solved using
FDM, thereby increasing the dimension of the state-space
model and, hence, the complexity. A temperature sensor-based
approach was adopted in [31] to circumvent nonobservability
in SPM, albeit at a higher cost due to the inclusion of this
sensor.

Recent works that incorporate the electrolyte dynamics use
an open-loop observer to estimate the electrolyte states [17],
[18], [24], [32], which can lead to erroneous SoC estimates due
to the absence of self-correcting terms and unavailability of
information about the internal states [3]. The efficacy of these
algorithms is further reduced in the presence of parametric
uncertainty and modeling inaccuracies.

Various variants of the Kalman filter (KF)-based SoC esti-
mation techniques have been extensively studied in the lit-
erature. The ability of the stochastic filter-based approaches,
such as the extended KF (EKF) [33]–[35], unscented KF
(UKF) [3], [36], [37], and particle filter (PF) [38], to deal
with inherent system nonlinearity put these algorithms in the
forefront. Recently, EKF has been applied to a control-oriented
SPM (COSPM) to estimate the internal states [39]. How-
ever, these algorithms have limitations in terms of complex
matrix operations and require characterization of the system
uncertainty, which can be difficult to obtain in practice for a
particular cell chemistry and application [2], [3].

Deterministic observer-based SoC algorithms have also
recently gained widespread interest. The H∞ filter [5], [40]
and sliding mode observers (SMOs) [2], [41] are the two most
common techniques that have been explored for SoC estima-
tion. Like their stochastic counterparts, the H∞ filters incur
a high computational burden for their implementation [2].
On the other hand, SMOs have been known to suffer from
chattering issues [42] and often require the use of filters
that induce additional lags and increase the implementation
complexity [2], [43]. In [12], a combination of surface concen-
tration observer with an adaptive observer was proposed. The
parameter adaptation in the adaptive observer demands online
computation of the uncertain parameters, thereby increasing
the computational burden. Another SPM-based observer was
proposed in [28], which dealt with output uncertainty in the
model through recursive least squares to identify uncertain
parameters. However, the structural uncertainty pertaining to
the state equation evolving out of varying conditions, such as
temperature, was not addressed. This discussion reveals that,
to obtain a highly reliable real-time SoC estimate, one needs a
high-fidelity mathematical model of the lithium-ion cell with
a robust state estimation framework to estimate the internal
states.

In this article, we propose a COSPM with the combined
dynamics of the electrodes and the electrolyte, and is based on
the reduced-order model proposed in [13]. The COSPM incor-
porates the effect of the spatial variation in ionic potential,
overpotential, and OCP on the cell voltage, thereby leading
to a better estimation of the cell voltage, as demonstrated
in this article. A semianalytical solution for the solid diffu-
sion in the battery electrodes is utilized. This method pro-
vides an accurate prediction of lithium concentration under
the influence of a highly fluctuating current while ensur-
ing computational efficiency. The proposed model is then
expressed in an observable state-space form. For an SPM-
based linearized reduced order model, the states of the two
electrodes and the electrolyte are incorporated in the state-
space system with a closed-loop observer design. The issue of
weak observability that inherently exists in such a modeling
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Fig. 1. (a) Block diagram of the proposed SoC estimation algorithm. (b) 1-D
schematic representation of the cell.

framework is overcome by computing some of the states
as secondary states. Thereby, the approximation involving a
linear relationship between the surface concentration of the
two electrodes or the usage of an open-loop observer to
overcome nonobservability is avoided. In this work, the vari-
ation in the model parameters due to changes in temperature,
modeling inaccuracies, and the presence of measurement noise
is taken into consideration. A robust nonlinear observer is
developed to estimate the SoC based on the proposed COSPM.
The LMI-based observer design has found a wide variety
of applications in control engineering [2], [44], [45] due to
their high computational efficiency. The proposed observer’s
main theoretical contribution is the handling of the nonlinear
output function for an uncertain dynamical system, with struc-
tural uncertainty and measurement noise, in a linear matrix
inequality (LMI) framework. An optimal value of the observer
feedback parameter is computed by solving a convex optimiza-
tion problem with LMI constraints. Thus, the combination of
the proposed observer and the improved SPM will provide
reliable and a robust estimate of SoC under large parametric
variability, measurement noise, and high fluctuations in the
current signal.

II. PROPOSED CONTROL-ORIENTED

SINGLE-PARTICLE MODEL

This section provides a detailed description of the physics-
based modeling of the lithium-ion cell dynamics. It is further
divided into two subsections. While the first subsection deals
with an improved version of the SPM, the second one presents
the state-space formulation of the COSPM. In addition, the
definition of SoC is provided in the second subsection. A high-
fidelity COSPM-based nonlinear observer is proposed in this

work, as illustrated in Fig. 1(a). Fig. 1(a) depicts the scheme
of the observer-based SoC estimation algorithm that takes the
current and voltage information as inputs and provides the real-
time estimation of the internal states as its output. x̂ and x̂s

represent the primary and secondary states of the state-space
model, respectively. While the primary states are determined
by solving the state-space matrix equation, the secondary states
have a linear dependence on these primary states. The output
voltage of the high-fidelity P2D model is considered to be
representative of the voltage measurement from the real cell.

A. Improved Single-Particle Model

The P2D representation of the cell is provided in Fig. 1(b).
The corresponding cell voltage is given as the potential dif-
ference between the two current collectors. Considering the
geometry in Fig. 1(b), the P2D model writes the cell voltage
for the cell as

Vcell = φs,p(L) − φs,n(0) = ηp(L) − ηn(0) + Up(L) − Un(0)

+ φe,p(L) − φe,n(0) (1)

where overpotential η = φs−φe−U . Hence, it is clear from (1)
that the spatial variation in the overpotential, OCP U , and the
ionic potential φe need to be considered in any reduced-order
model so that it is able to predict the cell voltage accurately.

The conventional SPM includes the following assumptions:
1) the electrodes are regarded to be composed of uniform-sized
spherical particles; 2) the current density is uniform across the
electrode; and 3) the electrolyte offers no limitations to the
transport of ions. Though this model can predict cell voltages
reasonably for low C-rates, it is inaccurate for C-rates greater
than C/2 [13]. To overcome this limitation, a few variants that
incorporate electrolyte dynamics in SPM have been developed.
However, these variants incorporate only the spatial variation
in the ionic potential [16], [17], [19].

In a recent work [13], it is demonstrated that the model can
be improved by including the spatial variation of overpotential
and OCP. Considering these spatial variations, the following
modified cell voltage equation is proposed:
Vcell(t)

= RT
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[
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where the first and third terms on the right-hand side represent
the averaged overpotentials, and the second and fourth terms
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TABLE I

SPECIES CONSERVATION EQUATIONS

represent the averaged OCP for the positive and the negative
electrodes, respectively. The combined effect of the spatial
variation of the ionic potential, overpotential, and OCP results
in a difference in the predicted cell voltage from the SPM and
is described by the last two terms of the equation. I is the
applied current density. As a convention, the discharge current
is taken to be positive in this work. The lithium concentration
at the surface of the electrode particle C̄s,i is obtained by solv-
ing the corresponding diffusion equation under the assumption
of a uniform current density. Furthermore, σ eff

i is the electronic
conductivities of the solid electrodes, and κeff

i is the ionic
conductivities of the electrolyte in each constituent domain
i ∈ {n, s, p}. This output voltage equation has been shown to
predict the cell voltage within 2% of the P2D model [13] and
is henceforward used in the observer design in this work.

The diffusion equation for the electrode particles along
with the boundary conditions is provided in Table I. The
corresponding semianalytical solution results in the surface
lithium concentration, as given by [29]

C̄s,i = Cavg,i +
Ni∑

m=1

Qm,i + εN i (3)

where Cavg,i is the average lithium concentration and∑Ni
m=1 Qm,i represents the summation of the transient concen-

tration distribution existing within the electrode particles due
to different diffusion scales. Furthermore, Ni is the number of
terms retained in the truncated infinite series. Cavg,i and Qm,i

are obtained using the following set of ordinary differential
equations [13]:

dCavg,i

dt
= −3 j f,i

Rs,i
(4)

d Qm,i

dt
= −2 j f,i

Rs,i
− λ2

m Ds,i

Rs,i
2 Qm,i . (5)

Here, λm is the m th solution of the equation tan λ = λ. The
molar flux density j f,i(t) is given by

j f,i = Ii
as,i F Li

(6)

where In = I and Ip = −I . The approximation error in (3)
is [29]

εNi = −2 j f,i Rs,i

Ds,i

[(
1

10
−

Ni∑
m=1

1

λ2
m

)[
1 − e−λ2

Ni +1 Ds,i t/R2
s,i

]

+
√

Ds,i t

π R2
s,i

erfc

(
λNi +1

√
Ds,i t

R2
s,i

)]
. (7)

The solution of (5) for a given constant current profile results
in an exponentially decaying function with a time constant
of τi(m) = R2

s,i/(Ds,iλ
2
m). Furthermore, the steady-state mag-

nitude of Qm for a given current is proportional to τi(m).
Hence, as the value of λm increases (with an increase in
the number of terms), the contribution of the state Qm,i in
(3) rapidly decreases. A criterion τi(m = Ni ) < 10 s was
proposed to truncate the series in (3) while ensuring good
accuracy for highly fluctuating currents [13]. Using this crite-
rion, we can obtain a constraint on λm and, thereby, determine
the number of terms to be retained. Here, nine and three
terms have been used for the negative (graphite) and positive
(manganese oxide) electrodes, respectively. The significantly
higher diffusion time scale for the negative electrode than that
of the positive electrode is the reason for the corresponding
requirement of a greater number of terms in the former.
The parameters used for the two electrodes are provided
in Table II.

The error term in (7) can be further simplified without any
significant loss of accuracy. The second term (complementary
error term) in (7) is significant only for a very small time
interval at the start of cycling and quickly becomes negligible.
Similarly, the exponential component in the first term on the
right-hand side of (7) also quickly approaches zero as it
is a decaying function in time with a time constant of
τi(m) = R2

s,i/(Ds,iλ
2
Ni +1). In our case, the time constants

were obtained by R2
s,i/(Ds,iλ

2
Ni +1) ≈ 3 s for both electrodes.

Hence, ignoring the contribution of these terms, we write the
simplified error term as

εN,i = −2 j f,i Rs,i

Ds,i

[
1

10
−

Ni∑
m=1

1

λ2
m

]
. (8)

The use of (8) simplifies the computation by removing
the time-dependent component of the error function and the
complementary error function term that requires evaluation of
an integral.

In Fig. 2, a comparison of various linear relations used
in the literature for the second electrode (here, positive
electrode) [10], [11] is made with the proposed model.
The FVM-based solution for 100 divisions is considered
to be the benchmark as it represents the converged solu-
tion of the diffusion equation. We observe that the pro-
posed model considering the diffusion states of both elec-
trodes predicts the lithium-ion concentration in the positive
electrode with better accuracy. This improvement can be
attributed to the fact that the diffusion time scales for the
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TABLE II

MODEL PARAMETERS

Fig. 2. Comparison of the surface concentration in the second electrode
(here, positive) based on proposed state-space system with the linear models
used by Dey et al. [10] and Gu et al. [11].

two electrodes are very different, and hence, using a linear
relation between the two surface concentrations is a poor
approximation.

The volume-averaged, 1-D diffusion equation for lithium
ions for the three cell domains along with the boundary
conditions is provided in Table I. In the improved SPM [13],
a second-degree polynomial is used to approximate the spatial
variation of the electrolyte concentration in the cell compo-
nents i ∈ {n, s, p}

C̄e,i = ai,0(t) + ai,1(t)x̄i + ai,2(t)x̄2
i (9)

where

C̄e,i = Ce,i

C0,e
, x̄n = x

Ln

x̄s = x − Ln

Ls
, x̄ p = x − Ln − Ls

L p

are nondimensionalized concentration and normalized coordi-
nates. The nine unknown coefficients are obtained by solving
the six flux and continuity boundary conditions of the P2D
model, along with three integrated conservation equations [13].
This results in a system of differential-algebraic equations
given by

an,1 = 0 (10)

2ap.2 + ap,1 = 0 (11)

(
εe,n

εe,s

)brug Ls

Ln

(
2an,2 + an,1

) − as,1 = 0 (12)(
εe,s

εe,p

)brug L p

Ls

(
2as,2 + as,1

) − ap,1 = 0 (13)

an,0 + an,1 + an,2 − as,0 = 0 (14)

as,0 + as,1 + as,2 − ap,0 = 0 (15)

dan,0

dt
+ 1

2

dan,1

dt
+ 1

3

dan,2

dt
= 2Deff

e,n

εe,n L2
n

an,2

− I (1 − t+)

Ln FC0,eεe,n
(16)

das,0

dt
+ 1

2

das,1

dt
+ 1

3

das,2

dt
= 2Deff

e,s

εe,s L2
s

as,2 (17)

dap,0

dt
+ 1

2

dap,1

dt
+ 1

3

dap,2

dt
= − 2Deff

e,p

εe,p L2
p

ap,2

+ I (1 − t+)

L p FC0,eεe,p
. (18)

B. State-Space Formulation

The state-space formulation for the proposed SPM com-
prises the states of the negative and positive electrodes and the
electrolyte. Incorporating all the twenty-three variables (ten
for negative electrode, four for positive electrode, and nine
for electrolyte) in the state vector leads to nonobservability.
This issue has been overcome in previous works [10], [11] by
incorporating the states of a single electrode in the state vector,
which is then used to compute the surface concentration of the
second electrode based on a linear conservation relationship.
However, relating the surface concentrations using a linear
relation may not be able to capture the effect of significantly
different diffusion time scales that exist for the positive and
negative electrodes of a lithium-ion cell. Consequently, such
models could be extremely inaccurate for the electrode for
which this relation is used to determine the surface con-
centration. However, this relation is valid in terms of the
volume-averaged lithium concentrations of the two electrodes.
In addition, the diffusion equations for the electrodes need to
be solved separately in order to obtain their surface concentra-
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tions. The proposed model considers the individual diffusion
equations, thereby improving accuracy. In our proposed model,
the average concentration of the positive electrode Cavg,p is not
incorporated in the state vector and is instead computed by
considering species conservation of lithium (i.e., total lithium
in the electrodes is conserved)

εs,n LnCavg,n + εs,p L pCavg,p

= εs,n LnC0,n + εs,p L pC0,p. (19)

This resolves the issue of nonobservability of the state-space
model of the lithium-ion cell. The diffusion states Qm,i for
the positive electrode along with all states for the negative
electrode are retained in the state vector (primary states), and
their solution is used to compute the surface concentration for
the positive electrode (secondary state) using the following
relation:

C̄s,p = εs,n Ln

εs,p L p
C0,n +C0,p − εs,n Ln

εs,p L p
Cavg,n +

3∑
m=1

Qm,p . (20)

The above equation has been obtained by substituting the
expression for Cavg,p from (19) in (3).

Similar to the issue in the solid phase, the inclusion of all
the states related to the electrolyte also renders the system
as nonobservable. The terms leading to this nonobservability
were identified to be an,0, as,0, and ap,0. One may choose
any six of the nine electrolyte states as secondary variables
and compute them algebraically from (10) to (15). How-
ever, the three ordinary differential equations in (16)–(18)
force retention of three primary states with at least one
being an ai,0, as only two of the three ai,0 states can be
replaced using (14) and (15). Hence, the conservation of
lithium ions in the electrolyte is used to obtain an additional
equation. The state an,0 is computed as a secondary variable
using

εe,n LnCavg,e,n + εe,s LsCavg,e,s + εe,p L pCavg,e,p

= (εe,n Ln + εe,s Ls + εe,p L p)C0,e. (21)

Obtaining the average concentration of lithium ions in con-
stituent domains by integrating (9) and substituting in the
previous equation, we get

εe,n Ln

(
an,0+ an,1

2
+ an,2

3

)
+εe,s Ls

(
as,0+ as,1

2
+as,2

3

)
+ εe,p L p

(
ap,0+ ap,1

2
+ ap,2

3

)
=εe,n Ln +εe,s Ls +εe,p L p.

(22)

Equations (10)–(16) can be used to reformulate (thereby,
removing nonobservability arising due to as,0 and ap,0).
Equations (17) and (18) give

−
[

2

3
+

(
εe,n

εe,s

)brug Ls

Ln

]
dan,2

dt
−

[
1

3
+

(
εe,p

εe,s

)brug Ls

2L p

]
dap,1

dt

= 2De,n

εe,n L2
n

an,2 + De,p

εe,p L2
p

ap,1 + (1 − t0+)

FC0,e

×
[

1

Lnεe,n
+ 1

L pεe,p

]
I, (23)

−
[

2

3
+

(
εe,n

εe,s

)brug 2Ls

3Ln

]
dan,2

dt
−

(
εe,p

εe,s

)brug Ls

6L p

dap,1

dt

=
[

2De,n

εe,n L2
n

+ 2De,s

εe,s L2
s

(
εe,n

εe,s

)brug Ls

Ln

]
an,2 − De,s

εe,s L2
s

×
(

εe,p

εe,s

)brug Ls

L p
ap,1 + (1 − t0+)

FC0,e

1

Lnεe,n
I. (24)

For the electrolyte, the states an,2 and ap,1 are incorporated in
the state vector using (23) and (24). The remaining states are
computed as secondary states using the algebraic (10)–(15)
and (22). Using (4), (5), (23), and (24), the state-space system
can be written as

ẋ = Ax + Bu (25)

where x = [
xn, xp, xe

]T ∈ R
15×1, B = [

Bn, Bp, M−1
e Be

]T ∈
R

15×1, u = I , and

A = diag
(
An, Ap, M−1

e Ae
)

(26)

where diag(e1, e2, . . .) denotes diagonal matrix with diagonal
entries e1, e2, . . . Here, xn = [Cavg,n, Q1,n, Q2,n, . . . , Q9,n]T ,
xp = [Q1,p, Q2,p, Q3,p]T , and xe = [an,2, ap,1]T . O is a null
matrix. In addition, the output equation is given by (2), where

Ce(0) = C0,ean,0 (27)

Ce(L) = C0,e
(
ap,0 + ap,1 + ap,2

)
. (28)

In our proposed formulation, any additive uncertainty in the
system matrix A and the input matrix B in (25) can be
accounted for by rewriting the state-space model in the fol-
lowing form:

Px(t) = (A + �A(t))x(t) + (B + �B(t))u(t) (29)

with a scalar nonlinear output map in (2) rewritten as

y(t) = h(x(t), u(t)) + ξy (30)

where state x ∈ R
n , input u ∈ R, A ∈ R

n×n is the nominal
system matrix, B ∈ R

n×1 is the input vector, �A ∈ R
n×n

denotes the uncertainty in the system matrix, �B ∈ R
n

represents the uncertainty in the input matrix, and h(x, u) ∈ R

is the output function. The details about system matrix A, input
matrix B, and the output h(x, u) are provided in Appendix B.
In (30), ξy denotes the uncertainty in the measurement of
the output. The output function (30) can be rewritten in the
following form as:

y = Kminx + h̄(x, u) + ξy (31)

where h̄(x, u) = h(x, u) − Kminx .
The SoC for the proposed physics-based reduced-order

model can be defined as

SoC = Cavg,n − Cn,SoC=0

Cn,SoC=1 − Cn,SoC=0
. (32)

The SoC of the lithium-ion cell is defined to be 0 and 1 at 3 and
4.2 V, respectively. Cn,SoC=0 and Cn,SoC=1 are the concentra-
tions of lithium ions in the negative electrode at these SoC
levels. Furthermore, the nominal cell capacity (Q) is defined
as the charge capacity obtained on discharging the lithium-ion
cell from 4.2 to 3 V at the C/30 rate at 25 ◦C.
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III. DESIGN OF THE ROBUST NONLINEAR OBSERVER

In this section, a robust nonlinear observer is proposed for
the SoC estimation problem using the COSPM in the LMI
framework. The observer design in [2] was based on ECM
that involved a transformation of the nonlinear output map into
a linear one with the assumption that the change in the input
current is negligible. This assumption is restrictive for dynamic
driving cycles involving huge fluctuations in the current pro-
file. To resolve this issue, an optimal feedback parameter of the
observer is obtained by solving an LMI optimization problem.
The observer ensures fast convergence of the estimated SoC
to its true value in the presence of bounded parametric uncer-
tainty. Furthermore, the proposed observer design has a lower
computational cost than its stochastic filter counterparts [2].
Consider an extended Luenberger-like observer [48] as

˙̂x(t) = Ax̂ + Bu + L
[
y − Kminx̂ − h̄(x̂, u)

]
(33)

where L is the observer gain matrix and h̄(x̂, u) = h(x̂, u) −
Kminx̂. The error in the state estimation is defined as

eo := x − x̂. (34)

Differentiating the estimation error in (34), and using (29) and
(33) yield

ėo = ẋ − ˙̂x = [A − LKmin]eo − Lφ(x, x̂, u) + �Ax + �Bu

(35)

where φ(x, x̂, u) = h̄(x, u) − h̄(x̂, u). The following assump-
tions are considered for the observer design.

1) The Jacobian of the nonlinear output map h(x, u) is
bounded as

Kmin ≤ ∂h(x, u)

∂x
≤ Kmax (36)

where Kmin and Kmax are elementwise lower and upper
bounds of the Jacobian, known a priori.

2) The nonlinear function h(x, u) satisfies the Lipschitz
condition [44]

‖h(x, u) − h(x̂, u)‖ ≤ Lh‖x − x̂‖ (37)

where ‘‖.‖’ denotes the euclidean norm and Lh > 0 ∈ R

is the Lipschitz constant. The expressions for h(x, u) and
h(x̂, u) can be obtained from (31) and (33), respectively,
and substituted for φ(x, x̂, u). Using the Lipschitz con-
dition in (37), φ(x, x̂, u) can be bounded as

‖φ(x, x̂, u)‖ ≤ (Lh + ‖Kmin‖) ‖eo‖. (38)

3) The matrices �A and �B are bounded

‖�A‖≤δa, ‖�B‖≤δb where δa >0 ∈ R, δb >0 ∈ R.

(39)

4) The state x, the input u, and the output uncertainty ξy

satisfy the following bounds:
‖x‖ ≤ X+, ‖u‖ ≤ U+‖ξy‖ ≤ Y+

where X+ > 0 ∈ R, U+ > 0 ∈ R, Y+ > 0 ∈ R.

(40)

5) The pair (A,C) of the system in (29) is observable where
the matrix C represents the linearization of the nonlinear
output function y = h(x, u) in (30) at a particular
operating point.

The Jacobian of the nonlinear output function h(x, u) in (30) is
computed numerically using MATLAB. The minimum and the
maximum of the Jacobian, Kmin and Kmax in Assumption 1,
are computed using the bounds of the underlying parameters
and variables. These bounds are determined through various
dynamic tests, such as FTP75 and US06 tests. Since the
output function h(x, u) is continuous, differentiable, and
monotonic, and its Jacobian is bounded, it satisfies the
Lipschitz condition in Assumption 2. The details about the
computation of �A and �B are provided in Remark 3.
The terminal voltage of a lithium-ion cell can never be
unbounded for a bounded input current. Thus, Assumption
4 is a bounded-input–bounded-output (BIBO) criterion for
the system [see (25)], which states that the states, input, and
measurement noise are bounded [2]. The numerical variables
of the bounds of the states, the input, and the measurement
noise are determined through various tests.

The convergence and stability analysis of the estimation
error dynamics in (35) are provided in the following theorem.
The computation of the observer gain L is obtained by solving
a convex optimization problem with LMI constraints.

Theorem 1: Consider the uncertain dynamical system in
(29) with a nonlinear output map (31), which admits an
observer (33), where the above stated Assumptions 1–5 hold
true. If there exists a symmetric positive definite matrix
P = PT > 0, an observer gain matrix L, and positive constants
α > 0, εi > 0, i = 1, 2, such that the following matrix
inequality is satisfied:
W3(P, L|α, ε1, ε2)

=
⎡
⎢⎣

�3 − PL P − PL
∗ − ε1In×n 0 0
∗ ∗ − ε2In×n 0
∗ ∗ ∗ − ε3In×n

⎤
⎥⎦ < 0 (41)

then the state estimation error eo(t) exponentially converges to
a convex set, where �3 = (A − LKmin)

T P + P(A − LKmin) +
αP + ε1(Lh + Kmin)In×n and “∗” represents the symmetric
elements of the matrix, “[.]T ” is the transpose operator, and
“|” denotes given.
The stability analysis and the proof of the Theorem 1 are
provided in Appendix A for reference. It is important to note
that the inequality in (41) is a bilinear matrix inequality (BMI)
due to the presence of some nonlinear terms PLKmin and
KT

minLT PT , where P and L are unknown variables. The BMI
is then transformed to LMI by the following corollary.

Corollary 1: Introducing the change of variable Y := PL in
(41), one can convert the BMI into LMI inequality as follows:
W̃3(P, Y | α, ε1, ε2, ε3)

=

⎡
⎢⎢⎣

�̃3 − Y P − Y
∗ − ε1In×n 0 0
∗ ∗ − ε2In×n 0
∗ ∗ ∗ − ε3In×n

⎤
⎥⎥⎦ < 0 (42)

and �̃3 = P(A + (α/2)In×n) + (A + (α/2)In×n)
T P − YKmin −

KT
minYT + ε1(Lh + ‖Kmin‖)2In×n.
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The nonlinear terms PLKmin and KT
minLT P in (41) have

been converted to linear terms YKmin and KT
minYT in (42),

respectively. It is worth mentioning at this stage that the
state estimation error eo(t) is bounded in the set for all time.
Another corollary is provided to compute the optimal value
for the observer gain matrix L∗ by minimizing the volume
of the convex set within which the state estimation error is
guaranteed to be confined by Theorem 1.

Corollary 2: The optimal observer feedback parameter L∗
can be numerically calculated if the following LMI optimiza-
tion problem is solved:

minimize
P>0,L,α>0,ε1>0,ε2>0

tr(Pattr) (43)

while satisfying the following inequality:
P > 0, W̃3(P, Y|α, ε1, ε2, ε3) < 0 (44)

where the operator tr(.) represents the trace of a matrix,
Pattr = αP/c, and c = ε2(δ

2
a X2+ + δ2

bU 2+) + ε3Y2+.

IV. RESULTS

Simulations were carried out to evaluate the efficacy of the
proposed observer (33) for estimating SoC under different
current and temperature conditions. As shown in Fig. 1(a),
the observer utilizes the current and voltage information to
provide the real-time estimation of the primary states. The
secondary states are determined from the primary states. The
estimation results are also compared with the SoC predictions
of the P2D model that is solved using COMSOL Multiphysics.
The temperature dependence of the transport parameters has
been assumed to follow Arrhenius relationships with their
activation energies given in Table II. The numerical values
of the parameters for the COSPM appearing in the matri-
ces A and B in (29) and the observer equation in (33) are
given in Table II. The negative and positive electrodes are
considered to be graphite and manganese-oxide (LiyMn2O4),
respectively. The electrolyte is 1-M LiPF6 in 2:1 EC:DMC.
The numerical values for the optimal feedback parameter
L∗ = [li ]T , l1 = 376, li = −27.63, i = 2, . . . , 14, in (43) for
the proposed observer are computed by solving the convex
optimization problem presented in (43). The values of the
design parameters are chosen to be α = 5 × 104, ε1 =
1 × 1013, ε2 = 1 × 10−17, ε3 = 1 × 10−10, Lh = 0.01, and
Kmin = [ki ], ki = 0.0001, i = 1, . . . , 6. While the parameters
Lh, Kmin, δa = 0.2884, and δb = 0.5383 are computed using
the uncertainty bounds of the system dynamics, the numerical
values of the design parameters α, εi , i = 1, . . . , 3, are chosen
such that the solution to the LMI problem (43) is feasible. The
OCP–SoC relationship for the anode and the cathode are taken
from [47] as

Un(xn) = −0.16 + 1.32 exp(−3xn) + 10 exp(−2000xn) (45)

Up(x p) = 4.19829 + 0.565661 tanh(−14.5546 x p + 8.60942)

− 0.0275479

[
1

(0.998432 − x p)0.492465
− 1.90111

]
− 0.157123 exp

(−0.04738 x8
p

)
+ 0.810239 exp

[−40(x p − 0.133875)
]

(46)

where xn = Cs,n/Cmax,n and x p = Cs,p/Cmax,p.

Fig. 3. Verification of the proposed model. Comparison of (a) surface lithium
concentration for the negative electrode based on the proposed semianalytical
model with FVM and Guo and White’s [29] model for a 3C-pulse test and
(b) lithium concentration in the electrolyte for the polynomial model with the
P2D model for the US06 drive cycle.

A. Verification of the Proposed Model

A comparison of the lithium surface concentration for the
proposed semianalytical diffusion model to that of FVM with
100 nodes demonstrates the applicability of the error simpli-
fication. The simulation consists of the application of a 3-C
rate discharge current for 100 s followed by a 3-C rate charge
current for 100 s. As shown in Fig. 3(a) for the negative
electrode, the proposed model is in excellent agreement with
FVM and results of [29]. The maximum absolute difference
between the SoCs of the proposed model and [29] is bounded
within 0.01. Furthermore, the two models provide identical
surface concentration predictions after the first 25 s, thereby
validating the fast convergence of the error term in (8) to that
of (7).

The electrolyte concentration distribution across the cell
domain obtained from the polynomial model is verified against
that of the P2D model for the US06 drive cycle. The discharge
current profile consists of a rest period of 20 minutes, followed
by the US06 drive test. The maximum current reached in the
US06 test was 3 C. Fig. 3(b) demonstrates that the polynomial
approximation is in excellent agreement with the P2D model.
Though being a highly simplified representation, the former
closely captures the diffusion dynamics of the electrolyte.

B. Evaluation of Nominal Performance of the Observer

Two dynamic tests, FTP75 and US06, are considered to
evaluate the effectiveness of the robust observer in estimating
the SoC at 15 ◦C, 25 ◦C, 35 ◦C, and 45 ◦C. These are standard
drive cycles used for testing of light-duty vehicles [2]. The
FTP75 test profile represents the transient driving behavior
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Fig. 4. Input current and corresponding output voltage for (a) FTP75 and
(b) US06 tests at 25 ◦C.

with a large number of start-stops experienced while driving
in cities. The US06 test profile comprises rapid acceleration
and high-speed driving characteristics, and is a representation
of the driving behavior on highways. However, the dynamic
tests are also conducted at −10 ◦C and 0 ◦C to investigate the
observer’s performance at low temperatures. The input current
and voltage data of the P2D model were obtained for the
FTP75 and US06 after ensuring that the initial SoC was 100%.
The input current and output voltage curves for the two tests
are provided in Fig. 4 for 25 ◦C. The details of the estimation
results for the dynamic tests are given in the following.

Remark 1: For all the simulations, it is assumed that the
high-fidelity P2D model of the lithium-ion cell represents
the physical system. The P2D model is the most successful
electrochemical model for lithium-ion cells and has been
thoroughly tested and validated [7], [47], [49]. It has also
found application as the representation for the real cell in
estimation-based works [50], [51]. As a standard practice in
the literature [2], [3], the coulomb counting method (CCM)
is assumed to provide the “true” SoC for the P2D model.
The CCM is known to give precise SoC values since
the initial SoC is known a priori exactly in a controlled
environment.

1) FTP75 Test: Fig. 5(a) illustrates a comparison of the
temporal variation of the estimated SoC obtained from the
proposed observer with the true SoC (P2D model) at −10 ◦C,
0 ◦C, 15◦C, 25 ◦C, 35 ◦C, and 45 ◦C for FTP75 tests with
maximum current of 3-C rate. The initial guess for the SoC
is considered to be 0.6. From Fig. 5(a), it is evident that,
despite an initial error of 40% in the initial SoC estimate,
the observer could faithfully track the true SoC using the
voltage measurements from the P2D model within 50 s at
different temperatures. The ISE of SoC estimation error for
each case is reported in Table III. The SoC estimation errors

TABLE III

PERFORMANCE INDICES (PIS), ME AND INTEGRAL SQUARE ERROR (ISE),
FOR THE SoC ESTIMATION BY THE PROPOSED OBSERVER FOR FTP75

AND US06 DYNAMIC TESTS AT 15 ◦C, 25 ◦C, 35 ◦C, AND 45 ◦C AT

3-, 5-, AND 7-C CURRENT RATES

provided by the COSPM-based observer remain bounded
within a maximum error bound of 0.01 for 15 ◦C, 25 ◦C,
35 ◦C, and 45 ◦C. However, the maximum SoC errors are
within 0.025 at extremely low temperatures of −10 ◦C and
0◦C. During the FTP75 tests, the terminal voltage profiles at
different temperatures are shown in Fig. 5(b). A maximum
variation of 20 mV in the terminal voltage profiles is recorded
against the variation of the order 10−4 in the estimated SoC
signals at different temperatures.

Remark 2: The P2D model was implemented in COM-
SOL at various temperatures with temperature-dependent OCP
transport properties. The corresponding output cell voltage is
utilized in the estimation algorithm as the real-time measure-
ment data.

2) US06 Test: The US06 dynamic test is considered to
evaluate the observer’s performance for a driving cycle
with high fluctuations in the input current profile with a
maximum current of the 3-C rate. The time evolution of the
estimated SoC at −10 ◦C, 0 ◦C, 15 ◦C, 25 ◦C, 35 ◦C, and
45 ◦C utilizing the terminal voltage measurements of the
P2D model is depicted in Fig. 5(c). The initial states of the
proposed observer are kept the same as in the previous case.
From Fig. 5(c), it can be verified that the estimated SoC
converges to the true SoC within 60 s. The statistical results
for the US06 tests at different temperatures are provided
in Table III. For the temperatures of 15 ◦C, 25 ◦C, 35 ◦C,
and 45 ◦C, the maximum SoC estimation errors are confined
to an error margin of 0.02, which is slightly more than
that of the FTP75 test that could be attributed to increased
fluctuations in the input current profile. During the US06
tests, the terminal voltage profiles at different temperatures
are shown in Fig.5(d). Similar to the previous case, despite a
variation of 48 mV in the voltage profiles, the variation in the
estimated SoC is confined within the order of 10−5. The above
simulation studies reveal that the estimated SoC does not
substantially change with temperature. However, at very low
temperatures of −10 ◦C and 0 ◦C, the estimation performance
deteriorated with maximum error increasing up to 0.06.

Thus, it can be concluded that the proposed observer per-
forms well for dynamic driving cycles in a wide temperature
range of 15 ◦C–45 ◦C. In the presence of fluctuating current
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Fig. 5. Plots for (a) SoC estimation and (b) terminal voltages for FTP75 tests at −10 ◦C, 0 ◦C, 15 ◦C, 25 ◦C, 35 ◦C, and 45 ◦C using the measurements
from the P2D model. Plots for (c) SoC estimation and (d) terminal voltages for US06 tests at −10 ◦C, 0 ◦C, 15 ◦C, 25 ◦C, 35 ◦C, and 45 ◦C using the
measurements from the P2D model.

profile with maximum variation up to 3-C rate, the estimation
performance degrades at low temperatures.

Furthermore, US06 tests are carried out at various temper-
atures in the range of −10 ◦C–45 ◦C to evaluate the per-
formance of the observer-based SoC estimation algorithms at
high current rates of 5 and 7 C. Fig. 6(a) and (b) illustrates the
temporal profile of SoC estimation error for the above tests at
various temperatures. It is worth mentioning that the maximum
SoC error is limited within 6% in the temperature range of
15 ◦C–45 ◦C. However, at low temperatures of −10 ◦C and
0 ◦C, the maximum errors are as high as 10%.

The above discussion reveals that the proposed observer is
effective in estimating SoC for a wide range of temperatures
from 15 ◦C to 45 ◦C for high C-rate fluctuating current
profiles. However, the performance degrades substantially at
low temperature −10 ◦C and 0 ◦C for higher C-rates of
5 and 7 C. At these temperatures, the COSPM should be
augmented with an appropriate thermal model of the lithium-
ion cell to explicitly deal with the temperature variations.

C. Comparative Analysis

Two cases are considered to assess the SoC estimation
results with: 1) the proposed observer and 2) the UKF tech-
niques [3], [36]. The parameters for the observer in (33)
applied to the COSPM in (29) were the same as before. The
UKF is designed for the COSPM in (25) following the design
steps given in [3]. The initial covariance matrix, the process
noise covariance matrix, and the measurement covariance are
chosen as [c1, ci ], c1 = 10−5, ci = 10−3, i = 2, . . . , 14,
[pc1, pci ], pc1 = 5 × 10−4, pci = 10−6, i = 2, . . . , 14, and
10−10, respectively. The parameters concerning the unscented
transformation are taken as α = 1, β = 2, and κ = 0 [33]. The
design parameters of the UKF-based SoC estimation algorithm
for the COSPM are obtained by running extensive numerical

Fig. 6. Plots for SoC estimation error for US06 tests at −10 ◦C, 0 ◦C, 15 ◦C,
25 ◦C, 35 ◦C, and 45 ◦C using the measurements from the P2D model for
(a) 5- and (b) 7-C rates.

simulations and are tuned based on trial and error. The readers
are advised to refer [3] for further details of the design of the
UKF. The SoC estimation results of the proposed observer and
the UKF applied to the COSPM are compared with that of true
SoC for the US06 test with maximum current fluctuations up
to the 3-C rate at 25 ◦C. When the voltage information of
the COSPM is utilized to estimate the SoC, the mean and
the maximum values of the SoC estimation error are found
to be 4.02 × 10−4 and 5.12 × 10−3, respectively, for the
proposed observer compared to 3.5806 × 10−4 and 4.6 × 10−3
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Fig. 7. Comparison of SoC estimated by the proposed observer and the UKF
that utilizes the voltage measurements of the P2D model.

for the UKF. The mean and maximum SoC errors for both
cases are almost of the same order. Next, the performance of
SoC estimation by the observer and the UKF is investigated
while utilizing the voltage information of the P2D model for
the same test. Fig. 7 illustrates the temporal profile of the
estimated SoC using the voltage measurement from the P2D
model. A zoomed-in view of the initial portion of the plot
shows that the convergence time for all the cases is nearly
the same. The maximum SoC estimation error is bounded
within the 3% band for the observer, while it reaches up to
20% for the UKF when the current fluctuations are high. The
mean error (ME) and ISE for the observer are computed as
3.1 × 10−3 and 2.019, and for the UKF as 3.03 × 10−2

and 6.121, respectively. The above discussion indicates that
the proposed observer, when applied to the reduced-order
COSPM, provides a more accurate SoC estimate despite a
large initial error due to the choice of guess.

D. Robustness Analysis

We now investigate the robustness issues and evaluate the
proposed observer’s efficacy based on the COSPM in (29) in
the presence of bounded uncertainty in the parameters, Rs,i ,
Ds,i , and De,i . In a practical situation, it is difficult to obtain
accurate information about the initial SoC of the lithium-ion
cell [3]. Hence, the initial SoC guess value is chosen randomly
between (0, 1). Monte Carlo simulations with 200 trials were
performed at 15 ◦C, 25 ◦C, 35 ◦C, and 45 ◦C for the US06
dynamic current test.

Remark 3: The temperature-dependent variations in Ds,i ,
De,i , and κi are obtained using the Arrhenius equation. It is
important to note that a lumped uncertainty of ±30% in the
elements of the matrices, �A(t) and �B(t) in (29), is con-
sidered. The parametric uncertainties can be due to factors,
such as measurement uncertainties and modeling inaccuracies.
This study considers a ±10 ◦C uncertainty in cell temperature,
which corresponds to an uncertainty of ±26% in the elements
of A for the diffusion coefficient of the positive electrode. With
the positive electrode’s diffusion coefficient being the most
sensitive temperature-dependent parameter, a global ±30%
uncertainty is considered for the matrices A and B .

The statistical results of the random numerical simulations
for the proposed observer and the UKF are presented in
Table IV. It is found that the ME and the ISE for the SoC
estimation error with the COSPM-based observer are about ten
times lower than that of the UKF at all temperatures. It can

TABLE IV

MEAN VALUES AND STANDARD DEVIATIONS (SDS) OF THE PI ME AND
ISE FOR 200 MONTE CARLO SIMULATIONS OF SOC ESTIMATION BY

THE PROPOSED OBSERVER AND UKF FOR US06 DYNAMIC TESTS

AT −10 ◦C, 0 ◦C, 15 ◦C, 25 ◦C, 35 ◦C, AND 45 ◦C

Fig. 8. SoC estimation errors of (a) proposed observer and (b) UKF for
200 random Monte Carlo simulations for US06 at 25 ◦C. (c) Plots for
estimated SoC in the presence of measurement noise for the observer utilizing
the voltage measurements from the P2D model.

be inferred from Fig. 8(a) and (b) that the maximum values
of the SoC estimation error for the proposed observer are at
least one order of magnitude smaller than that of the UKF. It is
important to note that, for both the observer and the UKF, the
voltage from the COSPM is used for the estimation purpose.
It can be observed from Fig. 8(c) that the convergence time
for both the proposed observer and the UKF is approximately
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the same (<70 s). It can be inferred from Table IV that the
proposed observer is superior to the UKF in providing more
accurate SoC estimates in the presence of large variation in
the system parameters and unknown initial conditions. Further-
more, the uncertainty in lithium-ion cells due to temperature
difference is also accounted for in the robust framework of
the observer design since the proposed observer ensured low
values of ME and ISE at different temperatures, as provided
in Table IV.

The effect of measurement noise on the SoC estimation
by the proposed observer is also studied. Current and voltage
measurements utilized in the observer algorithm are assumed
to be corrupted with white noise with C/120 and 10-mV vari-
ances, respectively. Fig. 8(c) shows that, despite the presence
of measurement noise in the current and voltage measurement
channels of the P2D model for the US06 test at 25 ◦C, the
observer is still able to provide estimates of the SoC within
an absolute error bound of 1 × 10−2.

V. CONCLUSION

The practical applicability of the existing reduced-order
electrochemical model of the lithium-ion cell is limited by
their low accuracy in high-current applications. To address
this issue, an improved version of the SPM based on a semi-
analytical solution is presented that accounts for transport in
the positive electrode, negative electrode, and electrolyte. The
model’s predictions are shown to be significantly closer to that
of the high-fidelity P2D model compared to its SPM counter-
parts [8], [16]. The issue of nonobservability that appears in
modeling the combined dynamics of the positive and negative
electrodes, and the electrolyte is addressed in this work via the
proposed control-oriented model. The retention of diffusion
dynamical states for both the electrodes makes the model sig-
nificantly more accurate than using a simple linear approxima-
tion between the surface concentrations of the two electrodes.
Since SoC estimation is an integral function of the BMS,
it is important to obtain a reliable estimate in the presence
of large uncertainties in the lithium-ion cells for applications
where high current fluctuations can be anticipated. Based
on the proposed model, a nonlinear observer was proposed
in a robust LMI framework with guaranteed convergence of
the SoC estimate to its actual value despite large modeling
uncertainties. The observer feedback parameters’ optimal val-
ues were derived by solving a convex optimization problem
with LMI constraints. The estimation results of the proposed
observer for the dynamic tests with high current fluctuations
performed at several temperatures validated its effectiveness in
SoC estimation. The problems that arise in dynamic tests at
high C-rates when using empirical models, such as ECM and
SPM, were circumvented. Furthermore, in-depth robustness
analysis for large temperature-induced parametric variability,
modeling inaccuracies, and measurement noise was carried out
using Monte Carlo simulations. The SoC estimation results
with the proposed technique were found to be superior to
the existing UKF-based SoC estimation algorithms, especially
under high current fluctuation. In summary, the presented
work provides a unified framework incorporating the blend
of physics and estimation theory for robust model-based SoC

estimation. Future work is directed toward the cell’s SoH and
internal temperature estimation by incorporating the proposed
physics-based model’s framework along with thermal and
degradation models.

APPENDIX A
PROOF OF THEOREM 1

Consider a positive definite storage function

V (eo(t)) := eo(t)
T Peo(t) (47)

where P = PT > 0. Differentiating on both sides with respect
to time yields

V̇ (eo(t)) = 2eᵀ
o (t)Pėo(t). (48)

Substituting (35) in (48) and expressing it in the quadratic
form, one can get

V̇ (eo(t)) = eT
o

[
(A − LKmin)

T P + P(A − LKmin)
]
eo

− 2eT
o PLφ(x, x̂, u) + 2eT

o P(�Ax + �Bu)

− 2eT
o PLξy . (49)

Let us introduce a new variable that contains the uncertain
terms in (49) as

ξ � �Ax + �Bu. (50)

Furthermore, (49) can be modified as

V̇ (eo(t)) = zT W1z (51)

where

z = [
eo φ(x, x̂, u) ξ ξy

]T

W1 =

⎡
⎢⎢⎣

�1 −PL P −PL
∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0

⎤
⎥⎥⎦

and �1 = (A − LKmin)
T P + P(A − LKmin). Now, adding and

subtracting ε1‖φ(x, x̂, u)‖2, ε2‖ξ‖2, ε3‖ξy‖2 and αV (eo) on
the right-hand side of (51), one can obtain

V̇ (eo(t)) = zT W2z − αV (eo) + ε1‖φ(x, x̂, u)‖2 + ε2‖ξ‖2

+ ε3‖ξy‖2

W2 =

⎡
⎢⎢⎣

�2 − PL P − PL
∗ − ε1In×n 0 0
∗ ∗ − ε2In×n 0
∗ ∗ ∗ − ε3In×n

⎤
⎥⎥⎦ (52)

and �2 = (A − LKmin)
T P + P(A − LKmin) + αP. From

Assumptions 2 and 3, (52) can be modified further as

V̇ (eo(t)) = zT W3z − αV (eo(t)) + ε2‖ξ‖2 + +ε3‖ξy‖2 (53)

where

W3 =

⎡
⎢⎢⎣

�3 − PL P − PL
∗ − ε1In×n 0 0
∗ ∗ − ε2In×n 0
∗ ∗ ∗ − ε3In×n

⎤
⎥⎥⎦
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Bp =
[

2
Rs,pas,p F L p

2
Rs,pas,p F L p

2
Rs,pas,p F L p

]T ∈ R
3×1 (61)

Me =

⎡
⎢⎢⎢⎢⎣

−
[

2

3
+

(
εe,n

εe,s

)brug Ls

Ln

]
−

[
1

3
+

(
εe,p

εe,s

)brug Ls

2L p

]

−
[

2

3
+

(
εe,n

εe,s

)brug 2Ls

3Ln

]
−

(
εe,p

εe,s

)brug Ls

6L p

⎤
⎥⎥⎥⎥⎦ ∈ R

2×2 (62)

Ae =

⎡
⎢⎢⎢⎣

2De,n

εe,n L2
n

De,p

εe,p L2
p

2De,n

εe,n L2
n

+ 2De,s

εe,s L2
s

(
εe,n

εe,s

)brug Ls

Ln
− De,s

εe,s L2
s

(
εe,p

εe,s

)brug Ls

L p

⎤
⎥⎥⎥⎦ ∈ R

2×2 (63)

Be =
[

(1 − t0+)

FC0,e

[
1

Lnεe,n
+ 1

L pεe,p

]
(1 − t0+)

FC0,e

1

Lnεe,n

]T

∈ R
2×1 (64)

and �3 = (A − LKmin)
T P + P(A − LKmin) + αP + ε1(Lh +

Kmin)In×n. Using the bounds mentioned in (39) and (40) in
Assumptions 3 and 4, V̇ (eo) in (53) can be expressed as

V̇ (eo(t)) ≤ zT W3z − αV (eo(t)) + c (54)

where c = ε2(δ
2
a X2+ + δ2

bU 2+) + ε3Y2+. If the following matrix
inequality is satisfied

W3 < 0 (55)

then the time derivative of the Lyapunov function in (54) can
be expressed as

V̇ (t) ≤ −αV (t) + c. (56)

Solving (56) and taking the limit, one can substitute the
expression for V (eo) from (47) and obtain

lim sup
t→∞

eT
o Peo ≤ c

α

⇒ lim sup

t→∞
eT

o [Pattr]eo ≤ 1 (57)

where Pattr = (α/c)P. Hence, the trajectories of the estimation
error eo(t) exponentially converge to the convex set as t → ∞.
This proves the theorem.

APPENDIX B
STATE-SPACE DESCRIPTION OF THE

PROPOSED COSPM

The different matrices involved in the state-space represen-
tation of the proposed model in (25) are given as

An = diag

(
0,

λ2
1, Ds,n

Rs,n
2 ,

λ2
2, Ds,n

Rs,n
2 , . . . ,

λ2
9, Ds,n

Rs,n
2

)
∈ R

10×10

(58)

where diag(a, b, . . .) denotes the diagonal matrix with
elements a, b, . . .

Bn = [−3/A1 − 2/A1, . . . ,−2/A1]T ∈ R
10×1 (59)

where A1 = Rs,nas,n F Ln

Ap = diag
(
λ2

1 A2, λ
2
2 A2, λ

2
3 A2

) ∈ R
3×3 (60)

where A2 = Ds,p/Rs,p
2. (61)–(64), as shown at the top of the

page, and the nonlinear output equation in (30) for the cell
voltage is given by

y = h(x, u) = RT

αa F
sinh−1

[
I

as,p F L p j0,p
(
C̄s,p

)
]

− RT

αa F
sinh−1

[
− I

as,n F Ln j0,n
(
C̄s,n

)
]

+ Up
(
C̄s,p

)

− Un
(
C̄s,n

) − RT (t0+ − 1)

F

×
[

2(an,1 + 2an,2)

3(an,0 + an,1 + an,2)
+ (as,1 + 2as,2)

(as,0 + as,1 + as,2)

+ as,1

as,0
+ 2ap,1

3ap,0

]
.

×
[

L p

3κeff
p

+ Ls

κeff
s

+ Ln

3κeff
n

+ L p

3σ eff
p

+ Ln

3σ eff
n

]
u. (65)
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