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Abstract
Wepresent the development and demonstration of a neural network (NN)model
for fast and accurate prediction of whether or not a chosen analyte is focused by
an isotachophoresis (ITP) buffer system. The NN model is useful in the rapid
evaluation of possible ITP chemistries applicable to analytes of interest. We
trained and tested the NN model for univalent species based on extensive data
sets of over 10,000 anionic and 10,000 cationic ITP simulations. The NN model
uses as inputs the mobilities and the acid dissociation constants of leading elec-
trolyte ion, trailing electrolyte ion, counterion, and a single analyte as well as the
leading-to-counterion concentration ratio of the leading zone. The output then
indicates whether the chosen electrolyte system yields stable ITP focusing of the
analyte. The prediction accuracy of the NNmodel is over 97.7%. We demonstrate
the applicability of the NN by validating its predictions with reported experi-
mental data for anionic and cationic ITP. We have packaged the NN model in a
free, web-based application named IONN (isotachophoresis on neural network),
which can be used to rapidly screen ITP electrolyte systems.
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1 INTRODUCTION

Isotachophoresis (ITP) is a nonlinear electrophoresis tech-
nique that can be used to purify, separate, and/or precon-
centrate ionic species in a sample mixture into distinct
zones based on their electrophoretic mobilities [1–3]. In
ITP, ionic analytes are introduced in a capillary or a
microchannel between zones of a leading electrolyte (LE)
and a trailing electrolyte (TE). The co-ions of LE andTE are
chosen to have higher and lower effective mobility mag-
nitudes than the analytes, respectively. Upon application
of an external electric field through the capillary, the ana-

Abbreviations: ITP, isotachophoresis; LE, leading electrolyte; MLP,
multilayer perceptron; NN, neural network; TE, trailing electrolyte;
ZED, zone existence diagram.

lytes focus and segregate into distinct zones in order of
their mobilities. On the other hand, analytes whose effec-
tive mobilities are outside of the range targeted by the LE
and TE buffers do not focus. In addition to the separa-
tion and identification of species, ITP has been applied to
a wide range of applications, including preconcentration
prior to other analytical techniques, DNA and RNA purifi-
cation, single-cell analyses, and acceleration of chemical
reactions [3].
ITP is a robust electrophoresis technique because the

nonlinearity in the electromigration flux causes the zone
boundaries to self-sharpen and counteract diffusion [4,
5]. This is unlike capillary zone electrophoresis (CZE),
wherein the analyte zones diffuse continuously during
separation, and the zone dispersion is typically irre-
versible. However, ITP’s robustness comes at the cost
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of a relatively complicated choice of the discontinuous
electrolyte system of ITP consisting of LE and TE (e.g.,
compared to CZE, which uses a single background elec-
trolyte). The success of ITP depends on the proper choice
of LE and TE ions and the common counterion in LE and
TE to ensure that stable analyte zones form between the
LE and TE zones with self-sharpening zone boundaries.
We here refer to an ITP analyte zone as “stable” if a fixed,
finite injection of the analyte results in a steady analyte
concentration, and the analyte is focused between the TE
and LE zones with self-sharpening zone boundaries. For
the case of constant applied current in a uniform cross-
section channel, the width of the zone and its boundaries
also reach steady-state values [3]. The difficulty in choos-
ing the proper electrolyte system for stable ITP focusing of
a given set of analytes is likely the primary barrier to the
adoption of ITP by beginners and students.
The choice of electrolyte systems in ITP often depends

on empirical experience and electrolyte systems recom-
mended in the literature [6–8]. Some formal strategies for
choosing ITP electrolytes have also been reported in the
literature based on the zone existence diagrams (ZED),
which are used to visualize the dependence of and inter-
relation among effective mobilities of LE, TE, and analyte
ions with the pH [9, 10]. However, due to the nonlinear
dynamics of ITP, the pH and effective mobilities of the
ionic species vary spatially and temporally during the ITP
process. Consequently, the pH and the order of effective
mobilities of various species during the ITP process are
not known a priori, limiting the applicability of ZEDs in
predicting whether the analyte mobilities will lie between
those of LE and TE ions during the separation. The con-
struction of ZEDs also requires significant knowledge of
ITP principles.
Over the years, numerical simulations have become a

preferred approach to select electrolyte systems for suitable
ITP focusing of analytes. The most useful ITP simula-
tors are based, at least in part, on numerical solutions
of some form of the coupled set of equations for species
transport, current continuity, electroneutrality, and acid–
base equilibria in an electrolyte [11–14]. Included among
these are useful and simplified simulations that neglect the
details of the diffused interfaces of plateau-shaped zones
in ITP and apply integral conservation laws across ITP
zone boundaries. The latter integral approaches can be
used to predict steady-state ITP zone conditions and ver-
ify ITP focusing conditions [1, 2, 10, 15–18]. On the other
hand, modern electrophoresis simulation tools such as
SIMUL [19], SPRESSO [20], SPYCE [21], and CAFES [22]
allow simulation of complex time-dependent ITP dynam-
ics. While existing ITP simulation techniques can simulate
analyte focusing in ITP in a matter of minutes, the elec-
trolyte selection process is still time-consuming, given the
numerous combinations of LE ions, TE ions, and coun-

terions available for screening. Moreover, performing and
post-processing the simulations require a basic under-
standing of numericalmethods, the simulation parameters
such as time steps, number of grid points, grid-refinement
parameters, and setting up the initial conditions.
Often, ITP practitioners are interested in quickly screen-

ing electrolyte systems from a large number of combina-
tions of LE ions, TE ions, and counterions, which can then
be analyzed in detail using simulations or experiments.
For such preliminary “triage” of candidate electrolyte sys-
tems for ITP, there is a need for a computational tool that
can quickly predict whether a given electrolyte systemwill
lead to stable ITP focusing of a particular analyte with-
out performing detailed simulations. Advances inmachine
learning (ML) algorithmshave enabled the development of
models trained over a large number of simulations and/or
experimental data sets, which can have the potential to
efficiently explore a wide range of process parameters to
find high-performing designs [23, 24]. ML models trained
on simulation data can also supplement existing simu-
lation tools rather than substituting the first-principles
simulation techniques. Despite the availability of various
ITP simulators, currently, no computational tool exists that
leverages ML models to quickly select electrolyte systems
for stable ITP.
This paper presents a simple-to-use web-based appli-

cation that quickly and accurately predicts whether a
particular combination of LE, TE, and analyte results
in stable ITP focusing. The application is based on a
neural network (NN) model trained on extensive simu-
lation databases of anionic and cationic ITP simulations
with varying mobilities and acid dissociation constants
(pKa) of LE, TE, and analytes, and the relative concen-
tration of the LE ion and the background counterion.
The web application is named IONN (isotachophoresis
on neural network) and can be accessed at https://web.
iitd.ac.in/∼bahga/IONN.html. IONN is available for free
use through web browsers, including those on mobile
devices. The application includes a database of over 200
anionic and cationic LE and TE co-ions and counterions,
in addition to the ability to define a custom user-defined
species. The only inputs to IONN are the fully ionized
(limiting) mobilities and pKa of LE, TE, counterion, and
the analyte, and the ratio of background counterion and
LE ion concentrations. The trained NN gives a nearly
instantaneous prediction of whether the analyte will focus
with the chosen electrolytes. Currently, the NN model
employed by IONN is limited to analyzing buffered elec-
trolyte systems with univalent species, and, in the future,
its capability will be extended to multivalent species.
In this paper, we report the development of the NN
model for anionic and cationic ITP based on extensive
numerical simulations and its validation with published
experimental data.
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2 MATERIAL ANDMETHODS

In this work, we use an NN model trained on exten-
sive databases of anionic and cationic ITP simulations to
make fast and accurate predictions of ITP focusing of ana-
lytes. NN models are a class of ML algorithms inspired
by the biological functioning of neurons that can recog-
nize patterns from a large data set [23]. NNs have found
widespread applications in clustering, classification, and
regression using experimental and simulation data. In the
current work, an NN is trained on the simulation data for
anionic and cationic ITP for varying values of input param-
eters, which include limiting mobilities and pKa of LE and
TE co-ions, counterion, and the analyte, and the ratio of
concentrations of background counterion and LE ion. We
formulate the problem of prediction of stable ITP focusing
as a supervised learning problem for binary classification.
In this approach, the output of high-fidelity simulations
corresponding to each set of input parameters is labeled
into two classes based on whether or not stable ITP zones
form. The data set is then randomly split into two sub-
sets: the training and testing of data sets. The NNmodel is
then trained by minimizing the error in predicting stable
and unstable ITP zones compared with the training data
set. Finally, we measure the accuracy of the trained NN
by comparing its predictions with the testing data sets for
anionic and cationic ITP.
The benefit of an NN over a full-scale ITP simulation

is that, once the NN is well-trained, the prediction of
whether or not stable ITP zones form is extremely fast
and computationally efficient. This makes it possible to
deploy the NN model as a web-based application. More-
over, due to its computational efficiency, the NN model
can be used to quickly explore numerous combinations
of LE ion, TE ion, and counterion for stable ITP focusing
of given analytes. In this section, we describe the vari-
ous steps involved in the training and testing of the NN
model. We also describe the preparation of the simula-
tion databases, the NN architecture, and the methods for
training and validation.

2.1 Database preparation

In any supervised ML problem, building the predictive
model, NN in our case, requires a comprehensive data set
for training over various possible scenarios. To make the
NN model produce accurate predictions, we must have
high-fidelity data for training and testing of the model.
We generated data sets for anionic and cationic ITP focus-
ing of a single analyte using numerical simulations for
well-buffered electrolyte systems. For such electrolyte sys-
tems, hydronium and hydroxyl ion concentrations are

sufficiently small such that they have a negligible effect on
the electromigration flux of other species and contribute
negligibly to the total current [3]. In particular, we consid-
ered themostwidely used approach for pHbuffering of ITP
zones, wherein the LE counterion (which migrates from
the LE zone to the TE zone) serves as the buffering ion,
andwhere the LE, TE, and analyte ions are the titrants. For
all our simulations, we considered a typical composition of
electrolytes with initial concentrations of LE ion, TE ion,
and analyte to be 10, 5, and 1 mM, respectively. We varied
the concentration of the background counterion from 15 to
30 mM to incorporate the effect of varying LE composition
in the NN model.
In the current work, we limited the training of the NN

to univalent species only. Therefore, each data point in the
data set was characterized by the limiting (fully ionized)
ionic mobilities (𝜇) and acid-dissociation constants (pKa)
of LE and TE ions, the analyte co-ion, and counterion,
and the ratio of concentrations of background counte-
rion and LE ion (𝑐𝐵𝐺∕𝑐𝐿𝐸). That is, there were nine input
parameters (or features) based on which we predicted
whether stable ITP zones formed or not. For all the sim-
ulations, we also neglected the effects of the ionic strength
on mobility and pKa of species as the ionic strength
rarely changes the relative order of zones, particularly for
univalent valences [25].
To generate the simulation data sets for anionic and

cationic ITP, we performed 30,000 simulations each for
varying values of the nine input parameters. All the
simulations were performed using an in-house diffusion-
free solver written in Python 3 programming language.
The solver was validated with transient, one-dimensional
numerical simulations using the SPYCE simulator [21, 26]
prior to the generation of the data set. The values of mobil-
ities and pKa of the species were sampled randomly from
the corresponding uniform distributions with the ranges
mentioned in Table 1. The ratio of concentrations of the
background counterion and the LE ion (𝑐𝐵𝐺∕𝑐𝐿𝐸) was
sampled from a uniform distribution between 1.5 and 3.
Because the desired output of the simulations waswhether
the analyte focuses or not using the chosen ITP elec-
trolytes, we used a relatively fast diffusion-free simulation
approach [1, 18], for predicting the zone concentrations
and stability. The diffusion-free approach neglectsmolecu-
lar diffusion and applies species conservation and current
continuity across the sharp zone boundaries of ITP while
accounting for local acid–base equilibria. The simulations
yield the concentrations, pH, and effectivemobilities of the
species in the LE, analyte, and TE zones (upon adjusting to
a new concentration).
Finally, to verify the stability of ITP zones, we check

whether the ITP stability conditions are satisfied [3]. The
first set of conditions is that the analyte (𝐴) must have
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4 JANGRA et al.

TABLE 1 The range of physiochemical properties of species used for the simulations to generate the data sets. The mobilities and pKa
were sampled randomly from the corresponding uniform distributions over the ranges mentioned here.

Species Anionic ITP Cationic ITP
Mobility (𝝁) (𝟏𝟎−𝟗 m𝟐 V−𝟏s−𝟏) p𝑲𝒂 Mobility (𝝁) (𝟏𝟎−𝟗 m𝟐 V−𝟏s−𝟏) p𝑲𝒂

LE ion [−85, −20] [−2, 8] [20, 85] [6, 14]
TE ion [−85, −20] [−2, 10] [20, 85] [4, 14]
counterion [20, 85] [4, 10] [−85, −20] [4, 10]
Analyte [−85, −20] [−2, 10] [20, 85] [4, 14]

Abbreviations: ITP, isotachophoresis; LE, leading electrolyte; TE, trailing electrolyte.

a lower mobility magnitude than the LE ion (𝐿) in the
analyte and LE zones,

|�̄�𝐿
𝐴
| < |�̄�𝐿

𝐿
| and |�̄�𝐴

𝐴
| < |�̄�𝐴

𝐿
|. (1)

Here, �̄� denotes the effective mobility, and the subscript
denotes the identity of the ion. The superscripts 𝐴 and 𝐿
denote the analyte and LE zones (locations), respectively.
This condition ensures that the interface separating the LE
and analyte zones is self-sharpening. Next, to ensure the
stability of the interface separating the adjusted TE zone
and the analyte zone, we must have,

|�̄�𝑇
𝐴
| > |�̄�𝑇

𝑇
| and |�̄�𝐴

𝐴
| > |�̄�𝐴

𝑇
|. (2)

Consistently, the subscript 𝑇 here denotes the TE ion, and
the superscript 𝑇 denotes the adjusted TE zone [3]. Lastly,
for stable ITP, the TE ion mobility magnitude must be
lower than that of the LE ion in the LE and adjusted TE
zones,

|�̄�𝑇
𝐿
| > |�̄�𝑇

𝑇
| and |�̄�𝐿

𝐿
| > |�̄�𝐿

𝑇
|. (3)

If all these stability conditions were met by the zones
computed by the diffusion-free model, we assigned the
combination of electrolytes and the analyte to a class
with label 1, corresponding to stable ITP focusing. Other-
wise, we assigned the choice of electrolytes and analytes
to class 0, corresponding to a violation of ITP focusing
conditions. Therefore, each data point in the databases
for anionic and cationic ITP consisted of the nine input
features (𝜇 and pKa of species and 𝑐𝐵𝐺∕𝑐𝐿𝐸) and the
corresponding simulated class label (0 or 1).
Because stable ITP focusing occurs for a restrictive

choice of input parameters, the databases for anionic and
cationic ITP had a large imbalance in the number of cases
for stable and unstable ITP. Such imbalance in the data
set can lead to an NN model becoming biased towards the
majority class [24]. Therefore, we performed undersam-
pling by randomly removing the simulated data points for
cases with no ITP focusing to ensure an equal number of

both classes (0 and 1) in the data sets. After undersampling,
the databases for anionic and cationic ITP had 10 950 and
11 302 data points, respectively, with an equal number of
data points for each class.

2.2 Neural network model

We used the data sets generated by running ITP simula-
tions to train and test anNNmodel for anionic and cationic
ITP. All NN models have an artificial neuron or node as
their building block. Many of these nodes are intercon-
nected, and these connections are associated with specific
weight parameters. When a node receives input signals
from the upstream nodes, the inputs get modified by
the weights corresponding to the interconnections. These
modified inputs are then summed up, and a bias value
is added to the sum to obtain the output. The output of
every node (termed activation) is typically modified using
a nonlinear function called the activation function, which
mimics the firingmechanismof a biological neuron. In this
work, we use amultilayer perceptron (MLP) NN, as shown
in Figure 1, which is a widely used NN architecture for

F IGURE 1 Schematic of the neural network (NN) based on
MLP architecture for predicting ITP focusing. The NN consists of an
input layer with nine nodes, an output layer with a single node, and
two hidden layers with 32 nodes each. The nine input features of the
NN are the mobilities and pK𝑎 of the univalent LE ion, TE ion,
counterion, and the analyte, and 𝑐𝐵𝐺∕𝑐𝐿𝐸 . The NN outputs 1 or 0
corresponding to the prediction of whether the analyte focuses
between LE and TE zones or not, respectively.
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JANGRA et al. 5

representing a nonlinear mapping between several inputs
and a single output. The MLP consists of nodes arranged
in three types of layers: (i) the input layer that receives
the model inputs, (ii) the output layer that gives the out-
put of the model (0 or 1 for binary classification), and
(iii) hidden layers whose output is not accessible outside
the network.

2.2.1 Neural network architecture

Figure 1 shows a schematic of theMLP architecture used in
the current work. The MLP consists of two hidden layers,
each having an equal number of nodes, 𝑁 = 32, in addi-
tion to the input and output layers. Therefore, the input
and output layers are the first and fourth layers of theMLP,
while the second and third layers are the hidden layers.
Each node 𝑥𝑖 of the input layer represents the input fea-
tures such as mobilities, acid dissociation constants, and
the counterion-to-LE concentration ratio. The 𝑁 nodes of
the second layer (first hidden layer) transform the input
features to

𝑧
(2)

𝑖
=

9∑
𝑗=1

𝑤
(2)

𝑖𝑗
𝑥𝑗 + 𝑏

(2)

𝑖
, 𝑖 = 1, … ,𝑁. (4)

Here𝑤(2)

𝑖𝑗
denote the weights for the second layer acting on

the input features 𝑥𝑗 , and 𝑏
(2)

𝑖
are the bias values. Tomodel

the nonlinear dependence of the output on the inputs, the
linear combinations 𝑧(2)

𝑖
are transformed using a nonlinear

activation function, 𝑔(2)(𝑧), to get the activations (outputs)
𝑎
(2)

𝑖
of the nodes of the second layer. We use the rectified

linear unit (RELU) activation function, which yields the
following activations:

𝑎
(2)

𝑖
= 𝑔(2)(𝑧

(2)

𝑖
) = max(0, 𝑧

(2)

𝑖
), 𝑖 = 1, … ,𝑁. (5)

Following the same procedure, the activations of the sec-
ond layer nodes are used to obtain the activations of the
third layer nodes. In the current work, we use the same
nonlinear activation function (RELU) and the same num-
ber of nodes 𝑁 for all the hidden layers (layers 2 and 3).
Therefore, the activation 𝑎(3)

𝑖
of 𝑖th node of the third layer

is given by

𝑎
(3)

𝑖
= 𝑔(3)

(
𝑁∑
𝑗=1

𝑤
(3)

𝑖𝑗
𝑎
(2)

𝑗
+ 𝑏

(3)

𝑖

)
, 𝑖 = 1, … ,𝑁. (6)

Similarly, we obtain the output 𝑦 of the single node in the
output layer using the activations of the third layer nodes.
However, we use a logistic sigmoid function as the activa-

tion function for the output node. If the resulting value is
greater than a threshold (0.5), the final output of the NN
is assigned to the class with label 1 corresponding to sta-
ble ITP; otherwise, the output is set to 𝑦 = 0. That is, the
network output 𝑦 for binary classification is given by

𝑦 = 𝑔(4)
(
𝑧(4)

)
, 𝑧(4) =

𝑁∑
𝑗=1

𝑤
(4)

1𝑗
𝑎
(3)

𝑗
+ 𝑏(4). (7)

Here, the activation function 𝑔(4) is defined as

𝑔(4)(𝑥) = 𝐻(𝜎(𝑥) − 0.5), 𝜎(𝑥) =
1

1 + e−𝑥 , (8)

where 𝐻 is the Heaviside function and 𝜎 is the logistic
sigmoid function. Therefore, the output 𝑦 takes on values
of 1 or 0 depending on whether the input features corre-
spond to stable or unstable ITP, respectively. On the other
hand, the output of the sigmoid function 𝜎(𝑧(4)) can be
interpreted as a probability-like score that provides confi-
dence in the predictions. That is, the values of 𝜎(𝑧(4)) close
to 1 and 0 correspond to a higher likelihood of stable and
unstable ITP, respectively.
The data-fitted values for the weights and biases for all

the layers are computed using an optimization approach
byminimizing the error between themodel’s predicted val-
ues and the ground-truth values for the training data set. In
particular, the training of an NN model begins by assign-
ing random values to the weights and biases. The outputs
predicted by Equation (7) are compared with the corre-
sponding labels in the training data set, and the resulting
error is calculated. Based on the error, the weights and
the biases are updated using the backpropagation algo-
rithm [23, 27]. This procedure is iteratively repeated to
update the weights and biases until the error is contained
within an acceptable tolerance limit.

2.2.2 Model implementation, training, and
validation

We implemented and trained the NN model in Python 3
programming language using the MLPClassifier func-
tion and Adams optimizer available in the Scikit-learn
library [28]. In particular, we optimized a separate set
of weights and biases for anionic and cationic ITP using
the respective data sets. We used the GridSearchCV func-
tion for cross-validation purposes and for tuning the
hyperparameters of NN. In Figure S1 of the Supporting
Information, we show the model training and validation
workflow. We began by preprocessing the data by scal-
ing the input features between 0 and 1. Next, we split
each simulation data set into training and testing sets,
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6 JANGRA et al.

with 80% and 20% data from the original data set. The
training set was used to optimize the parameters of the
NN using the cross-entropy loss function, and the test set
was used for the final evaluation of the model. We used
fivefold cross-validation on the training set to ensure that
training leads to a generalized NN model. That is, the
training set was partitioned into five subsets, and multi-
ple training rounds were done by rotating between four
subsets for training and the remaining subset for valida-
tion. We also used the grid-search-based hyperparameter
tuningmethod of the Scikit-learn library to tune the hyper-
parameters (parameters whose values remain constant
during the training), such as the number of hidden layers,
the number of nodes in each hidden layer, and the reg-
ularization parameter. Hyperparameter tuning suggested
the MLP architecture with two hidden layers having 32
nodes each.
The trained NN model yields a rapid prediction of ITP

zone stability. A single prediction using the NN model
takes, on average, 0.15 ms on a personal computer (AMD
Ryzen 7 6800H, 16 GB RAM), which is over 400 times
faster than a single calculation based on the diffusion-
free model. By comparison, the computational time for
a typical calculation based on the diffusion-free model
is approximately 60 ms. Hence, the NN model has the
potential for exploring and comparing among numerous
combinations of LE ion, TE ion, and counterions. For
example, consider the evaluation of ITP chemistries for a
single analyte. Given 10 choices each of LE ion, TE ion,
and counterion at specified (fixed) concentrations, the NN
model can make 1000 predictions in less than a second on
a personal computer.
The final performance of the trainedNNmodelwas eval-

uated using the unseen test data set. The evaluation was
based on the usual performance metrics, including accu-
racy, precision, recall, and F1-score [24]. These metrics are
based on the number of true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN). The
accuracy (ACC) is defined as

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
. (9)

Here, positive and negative cases correspond to stable ITP
and no ITP, respectively. The accuracy (ACC) represents
the fraction of cases for which a correct prediction of ITP
(whether stable or unstable) is made. While accuracy is a
good metric for balanced data with similar data points for
both classes in a binary classification problem, we also cal-
culated the precision and recall metrics. Precision or the
positive predictive value (PPV) is defined as

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, (10)

and recall or the true positive rate (TPR) metrics is defined
as

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. (11)

PPV measures how many predictions of a particular class
(stable or no ITP) by the NN model actually belong to the
same class. Additionally, TPRmeasures the fraction of cor-
rect predictions of a particular class by theNNmodel out of
all the class cases in the testing data set. For a perfect pre-
dictive model, PPV and TPR should be unity. The PPV and
TPR scores are usually combined in the formof a geometric
mean to get the F1 score,

𝐹1 = 2 ×
𝑃𝑃𝑉 × 𝑇𝑃𝑅

𝑃𝑃𝑉 + 𝑇𝑃𝑅
. (12)

2.2.3 Web application

We packaged the final NN model into a web application
using the Flask framework in Python 3. Figure S2 of the
Supporting Information shows the graphical user inter-
face (GUI) of the application, which we named IONN. The
GUI allows the users to input the mobilities and pKa of
LE and TE co-ions, the counterion and the analyte, and
the counterion to LE concentration ratio (𝑐𝐵𝐺∕𝑐𝐿𝐸). The
GUI then calls the NN model to predict whether or not
stable ITP focusing of the analyte will occur, along with
a probability-like score. The IONN application allows the
users to input the mobilities and pKa from a database
of commonly used species, in addition to custom user-
defined species. The NN model should preferably be used
for input values within their respective ranges used for
the model training. That is, the mobility and pKa values
should preferably lie within the bounds given in Table 1
and 𝑐𝐵𝐺∕𝑐𝐿𝐸 should be chosen between 1.5 and 3. There-
fore, the GUI suggests these ranges to the user during
input, although the user can override these suggestions.

3 RESULT AND DISCUSSION

This section presents the results of testing the NN model
with the test data sets and experimental observations of
anionic and cationic ITP.

3.1 Model testing

First, we tested the trained NN model using the testing
data sets for anionic and cationic ITP with 2190 and 2261
test cases, respectively. In Figure 2, we present the results
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JANGRA et al. 7

TABLE 2 The results of testing the NN model for anionic and cationic ITP cases in terms of precision (PPV), recall (TPR), and F1 scores.
The classes 0 and 1 correspond to no ITP and stable ITP, respectively.

Classes Anionic ITP Cationic ITP
Precision (PPV) Recall (TPR) F1 Precision (PPV) Recall (TPR) F1

0 0.99 0.97 0.98 0.99 0.97 0.98
1 0.97 0.99 0.98 0.97 0.99 0.98

Abbreviations: ITP, isotachophoresis; PPV, positive predictive value; TPV, true predictive value.

of testing the NN model for binary classification in the
form of confusion matrices. The diagonal terms of a con-
fusion matrix represent the number of correctly classified
cases (true negatives and true positives). In contrast, the
off-diagonal terms correspond to the number of misclas-
sified cases (false negatives and false positives). The data
presented in Figure 2 yields an accuracy of 97.7% and
98.0% for anionic and cationic ITP, respectively. The pre-
cision, recall, and F1 scores, presented in Table 2, suggest
that the trained NN model accurately predicts the elec-
trolyte system and analyte combination that results in
stable ITP zones.
We also analyzed the small number of misclassified

cases and identified two primary types of incorrect (false)
predictions by the NN model. These types of false pre-
dictions can be described in terms of the thermophysical
parameters governing the physics of the problem. The
majority of misclassified cases involved pKa of one ormore
co-ions (LE, TE, and analyte ions) close to the pH of one or
more ITP zones, with the difference between pKa and pH
less than 0.5 pH units. The effective mobilities of such co-
ions are most sensitive to the pH, which led to incorrect
prediction of ITP focusing conditions by the NN model.
The second type of misclassification was associated with
extreme values of either one or more of the mobility and
pKa of the species. This type of misclassification is asso-

F IGURE 2 Results of testing the NN model for anionic and
cationic ITP presented in the form of confusion matrices. Label 0
corresponds to the violation of ITP focusing conditions, and label 1
corresponds to the formation of stable ITP zones. We tested the NN
model with 2190 and 2261 test cases for anionic and cationic ITP,
respectively. The confusion matrices show that the trained NN
model accurately predicts ITP focusing.

ciated with values of these parameters that were close to
the limits of these physical parameters under which the
NN model was trained. Irrespective of the type of mis-
classification, the probability-like scores given by the NN
model indicated a degree of uncertainty in the predic-
tion for most misclassified cases. A detailed analysis of
the misclassified cases and their relation to the physical
parameters of the problem is presented Tables S2 and S3
of the Supporting Information.

3.2 Validation with experimental data

In addition to testing the performance of the NN using
the simulated data, we also validated the NN model using
published experimental data for anionic and cationic ITP.
The mobility and pKa values for all the species used for
validation are provided in Table S1 of the Supporting Infor-
mation. For anionic ITP, we considered the experiments of
Chambers et al. [29], where an anionic nonfocusing fluo-
rescent tracer, Alexa Fluor (AF488), wasmixedwith the TE
to visualize the various zones in ITP. In the experiment, the
LE ion was 100 mMMES, the TE ion was 100 mM tricine,
and the counterion was 200 mM bis-tris (𝑐𝐵𝐺∕𝑐𝐿𝐸 = 2).
The analytes wereMOPS andHEPES, which formed stable
zones between the LE and adjusted TE zones. In con-
trast, AF488 did not focus between the LE and TE zones.
In Table 3, we compare the predictions of the NN model
with experimental observations. The NN model correctly
predicts stable ITP focusing of MOPS and HEPES. More-
over, themodel correctly predicts that AF488will not focus
between LE and TE zones.
Next, we compared the predictions of the NN model

with the anionic ITP experiments of Everaerts et al. [6],
wherein the LE ion was chloride, and the TE ion wasMES.
The buffering counterion was histidine, and the pH of LE
was 6.02, corresponding to 𝑐𝐵𝐺∕𝑐𝐿𝐸 = 2. Note that histi-
dine has ionization states of−1,+1, and+2with pKa values
of 9.33, 6.04, and 2.01, respectively. However, these multi-
ple pKa values are sufficiently spaced apart (in pH units)
such that histidine behaves as an univalent weak base at
the pH at which the experiment was performed. Therefore,
even though our NN model was trained using only univa-
lent species, the model can be applied to this electrolyte
system. We predicted ITP focusing of five anionic analyte
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8 JANGRA et al.

TABLE 3 Comparison of the predictions of the NN model with published experimental data for anionic and cationic ITP.

ITP LE TE 𝒄𝑩𝑮

𝒄𝑳𝑬
Analyte Experiment

NN
prediction Data source

Anionic MES + Bis-tris Tricine + bis-tris 2 MOPS Focused Focused Chambers and
Santiago [29]

HEPES Focused Focused
AF488 Not focused Not focused

Chloride + Histidine MES + histidine 2 Perchloric acid Focused Focused Everaerts et al. [6]
Formic acid Focused Focused
Acetic acid Focused Focused
Lactic acid Focused Focused
Caproic acid Focused Focused

MOPS + imidazole Taurine + imidazole 2.8 HEPES Focused Focused Bahga and Santiago
[30]

Tricine Focused Focused
Cationic Ethanolamine + tricine Tris + tricine 2 Lysine Focused Focused Garcia-Schwarz

et al. [8]
Arginine Focused Focused
R6G Not focused Not focused

Sodium + HEPES Pyridine + HEPES 2 Bis-tris Focused Focused Bahga et al. [18]

Abbreviations: ITP, isotachophoresis; LE, leading electrolyte; TE, trailing electrolyte; NN, neural network.

ions: perchlorate, formate, acetate, lactate, and caproate
ions. As shown in Table 3, the NN model for anionic ITP
correctly predicts stable analyte zones for these ions, as
observed in the experiment of Everaerts et al. [6].
We also tested theNNmodelwith the data of anionic ITP

experiments of Bahga and Santiago [30] for 𝑐𝐵𝐺∕𝑐𝐿𝐸 = 2.8.
In this experiment, the LE and TE ions were MOPS and
taurine, respectively, and imidazole was the background
counterion. In the pH range of this experiment, taurine can
be modeled as a univalent acid despite having ionization
states of −1 and +1. As shown in Table 3, the NN model
correctly predicts the focusing of two analytes, HEPES
and tricine.
To validate the NNmodel’s capability to predict cationic

ITP focusing, we considered the ITP experiments of
Garcia-Schwarz et al. [8] for separating two amino acids
(lysine and arginine). In the latter experiment, the LE ion
was 100 mM ethanolamine, the TE ion was 20 mM tris,
and the buffering counterion was tricine with concentra-
tions of 200 and 40mM in LE and TE, respectively. The ITP
zones were visualized using Rhodamine 6G, which was a
nonfocusing tracer. Even though arginine and lysine are
multivalent amino acids, under the pH conditions of the
experiment, both behaved as univalent weak bases. Hence,
we can apply our NN model to this case. The compari-
son of model predictions and experimental observations
in Table 3 shows that the NN model correctly predicts
that arginine and lysine will focus between LE and TE
zones, and Rhodamine 6G will not focus for the chosen
electrolyte system.

Lastly, we compared the predictions of the NN model
with the data for the cationic ITP experiment of Bahga
et al. [18]. In the latter experiment, LE was 10 mM sodium
hydroxide and 20 mM HEPES, and TE was 10 mM pyri-
dine and 20mMHEPES. One analyte, bis-tris, was focused
between LE and TE zones. The NN model also predicts
stable ITP focusing of bis-tris with these LE and TE.

4 CONCLUSION

We demonstrated an NN model for fast and accurate pre-
diction of stable and unstable zones in ITP. We separately
trained the NNweights and biases for anionic and cationic
ITPusing extensive data sets of ITP simulations. In particu-
lar, the NNmodel uses the mobilities and acid dissociation
constants of the species and the LE solution composition
to predict whether the chosen electrolyte chemistry yields
stable analyte focusing on ITP. We have presented the
benchmarking of the NN model with simulated test data
and validation with published experimental data. The NN
model rapidly identifies whether or not a given electrolyte
system results in stable ITP focusing of a particular analyte
with an accuracy of over 97%.
We have packaged the NN model in a free, web-based

application named IONN. The IONN application enables
fast and computationally efficient prediction of ITP focus-
ing, with the choice of electrolytes and analytes as the
only user-defined inputs. Therefore, IONN can be used
by experimenters to quickly screen various ITP electrolyte
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JANGRA et al. 9

systems without prior experience in performing elec-
trophoresis simulations. We note that ML-based models,
such asNN, are not substitutes for high-fidelity ITP simula-
tions but offer amethod of rapid calculation for design and
optimization applications. A small number of predicted
system designs offered by the NN can then be validated
using more accurate, high-fidelity simulations.
Currently, our NN model is trained for handling uni-

valent species. This limitation is primarily because the
mobilities and pKas of higher ionization states of mul-
tivalent species lead to additional input features of the
NN model. Training an NN model with additional input
features will require more layers and nodes and, corre-
spondingly, much more training simulations. However, in
many ITP applications, the pH ranges of interest and pKa
values of interest are such that the multivalent species
behave as univalent acids or bases. Our NN model accu-
rately predicts ITP focusing with such multivalent species,
as demonstrated by model validation based on ITP exper-
iments involving multivalent amino acids. In the future,
we will work towards extending the capability of the
NN model to handle multivalent species. The fast predic-
tion capability of the NN model can also be leveraged to
develop computational tools to automatically suggest the
electrolytes for ITP focusing of given analytes by rapidly
screening numerous possible combinations of the LE and
TE co-ions and the counterion.
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