

CEL 774 CONSTRUCTION PRACTISES

Acceptance & Quality Control

B. Bhattacharjee

CIVIL ENGINEERING DEPARTMENT IIT DELHI

General Outline

- Quality, its measure & sources of variation
- Acceptance criteria and implications
- Quality management of concrete at site or plant
- Role of in-situ testing

WHAT IS QUALITY? HOW'S IT MEASURED?

The totality of features or characteristics of the product that bears on its ability to satisfy stated or implied *needs*.

Characteristics of the concrete those satisfy the needs are the properties at fresh and hardened states

Most commonly 28 day compressive strength is used to judge the quality of concrete.

<u>WHAT IS QUALITY? HOW'S IT</u> <u>MEASURED?</u>

No production process is so perfect that all the products are completely alike, concrete is no exception.

There are large number of small uncontrollable factors those are responsible for variation from one lot to other and are regarded as chance variation

The purpose of quality control is to minimize this variation

SOURCES OF CONTROLLABLE VARIATIONS

- –Variations in properties of materials
- -Variation in proportions, e.g. w/c
- –Variations due to mixing process
- –Variation in compaction quality
- -Besides there are some inherent variations can be controlled partially

3 specimens in a sample

Volume of work	No of samples
1-5 m ³	1
6-15 m ³	2
16-30 m ³	3
31-50 m ³	4
>50 m ³	4+1 per additional50

NATURE OF VARIATIONS

NATURE OF VARIATIONS

NATURE OF VARIATIONS

DISTRIBUTION OF SAMPLING MEANS

ACCEPTANCE

$$f_m = f_{ck} + 1.65\sigma$$

Mean of group of 4 non-overlapping
consecutive samples
 f_m (for 4 samples) \geq
Max ($f_{ck} + 0.825\sigma$, $f_{ck} + 3$) for M15
grade
& Max ($f_{ck} + 0.825\sigma$, $f_{ck} + 4$) for M20
or higher grade

Individual test results shall be greater than

$f_c \ge f_{ck}$ –3 MPa for M15 grade and f_{ck} – 4 MPa for M20 & higher grades

Example problem: Following results are obtained for M25 concrete, check the acceptability σ =5; 22,27,29,30,26,25,24

Components of SD for concrete

strength

Cement	2.5 MPa
Aggregates	2MPa
Sampling & Testing	2MPa
Production	2.5MPa
Overall	4.5MPa

Summary

Definitations

Acceptance criteria

THANK YOU FOR HEARING

