Crystal Imperfections

Perfect Crystals - Natural

~ 3.6x3.2x1.3 cm

~5x3x2 cm

~ 2x2x1 cm

Emerald

30x 10x 10 cm

What is the common attribute between them ?

Man made perfect crystals

Single crystal quartz

Si ingot

Table of defect densities

Material	Impurity	Material	Impurity
Diamond	Nitrogen impurity 1%	Si wafers	10 ² cm ⁻²
Blue Sapphire	0.01% Ti and Fe	SiC Wafers	$4x10^{3} - 5x10^{3}$ cm ⁻²
Ruby	1% Chromium	GaN wafers	10 ¹⁰ cm ⁻²

An approximate defect density in steels?

Imperfect point-like regions in the crystal about the size of 1-2 atomic diameters

Vacancy

- □ Missing atom from an atomic site
- Atoms around the vacancy displaced
- □ Tensile stress field produced in the vicinity

Perfect infinite 2D lattice

Feel strained Differently coordinated

Will the neighboring atoms face tensile or compressive strain ?

https://pubs.rsc.org/en/content/articlehtml/2014/nr/c4nr01918k

Substitutional

Perfect infinite 2D lattice

Arsenic doping in Si

Substitution by a smaller atom

Boron doping in Si

Being a smaller atom, The neighboring atoms are in tensile stress

Substitution by a larger atom

Being a larger atom, The neighboring atoms are squeezed. There exists a compressive strain field

FCC Voids – Octahedral

Size of atom that can be squeezed inside an octahedral voild

Octahedral void. $\mathbf{r} = 0.414R$

FCC Voids - Tetrahedral

Geometric arguments leads to the size of atom squeezed into tetragonal void

Tetrahedral void. r = 0.225R

Interstitial **C** sitting in the octahedral void in HT FCC-**Fe**

 $\begin{array}{|c|c|c|} \hline r_{Octahedral \,void} / r_{FCC \,atom} = 0.414 \\ \hline r_{Fe-FCC} = 1.29 \ \text{\AA} \qquad \Rightarrow \qquad r_{Octahedral \,void} = 0.414 \ \text{x} \ 1.29 = 0.53 \ \text{\AA} \\ \hline r_{C} = 0.71 \ \text{\AA} \\ \hline \Rightarrow \text{Compressive strains around the C atom} \\ \hline \text{Solubility limited to } 2 \ \text{wt\%} \ (9.3 \ \text{at\%}) \end{array}$

What happens in BCC ? (Iron at low temperatures)

Two tetrahedral voids for each line of the cube – 12 TV One octahedral void for each plane – 3 OV For each line, there is another octahedral shared by four - 3

Voids Comparison

	BCC	FCC
Tetrahedral void centers	Face (1/2,1/4,0) and equivalent	Body diagonals(1/4,1/4,1/4) and (3/4,3/4,3/4)
Number of tetrahedral voids	12	8
Tetrahedral void sizes	0.29 R	0.225R
Octahedral voids sizes	0.15 R	0.414R
Number of Octahedrons	6	4
Octahedron centers	Mid point of edges (0,0,1/2) and equivalent	Body center(1/2,1/2,1/2) and cell edges (1/2,0,0) and equivalent

What does these information tell us about the carbon solubility in Iron at different temperatures ?

Interstitial **C** sitting in the octahedral void in LT BCC-**Fe**

- Remember, voids in BCC are all distorted.
- Octahedral is asymmetric with two atoms very close