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Diffusion

q Mechanism of material transport by atomic motion
q Driven by thermal energy and a gradient

q Thermal energy → thermal vibrations → Atomic jumps

Concentration / chemical potential

ElectricGradient

Magnetic

Stress



Time dependent mechanism

Cu Ni When I bring it together, do they start diffusing ? 

Ink in water diffuses immediately!



q Flux  (J) (restricted definition)  → Flow / area / time     [Atoms / m2 / s]

Initial 

Final

What happens to the concentration of each species ?



Fick’s I law
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Matter transport is down the concentration gradient

Diffusion coefficient/ diffusivity

A
Flow direction

qAs a first approximation assume D ¹ f(t)



Steady State Diffusion

Constant flux of the species
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is a constant!

The solution to the Fick’s 1st equation – linearly varying concentration



D = f(c)

D ¹ f(c)C1

C2

Steady state diffusion

x  →

Co
nc

en
tra

tio
n 

 →

Steady State Diffusion

Solutions to the Fick when the diffusivity is a function of the concentration



Diffusion

Steady state
J ¹ f(x,t)

Non-steady state
J = f(x,t)

D = f(c)

D = f(c)

D ¹ f(c)

D ¹ f(c)



Non-steady state

Flux is non-uniform!

jx
Jx+Δx

If the current density at two points x and x+Δx are different,
That means, there is accumulation/depletion. 
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𝜕𝑐
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Δ𝑥 Δx is the small segment thickness

C – species concentration m-3
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This is also called as the continuity equation.
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RHS is the curvature of the c vs x curve

x →

c 
 →

x →

c 
 →

+ve curvature Þ c ↑ as t ↑ -ve curvature Þ c ↓ as t ↑

LHS is the change is concentration with time



Diffusion mechanisms

Interstitial diffusion
The solute/diffusing atom is very small!

Momentary increase in the enthalpy is 
required for the interstitials to move from A 
-B

While A and B are both interstitial 
positions.



Interstitial Diffusion

1 2

1 2

DHm

q At T > 0 K vibration of the atoms provides the energy to overcome the energy
barrier DHm (enthalpy of motion)

q n → frequency of vibrations, n’ → number of successful jumps / time
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Vacant  site

d

d

d

§ c = atoms / volume
§ c = 1 / d 3
§ concentration gradient dc/dx = (-1 / d 3)/d = - 1 / d 4
§ Flux = No of atoms / area / time = n’ / area = n’ / d 2
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2. Vacancy Mechanism



Substitutional Diffusion

§ Probability for a jump a
(probability that the site is vacant) . (probability that the atom has 

sufficient energy)
§ DHm → enthalpy of  motion of atom
§ n’ → frequency of successful jumps

÷
ø
ö

ç
è
æ D-

÷÷
ø

ö
çç
è

æ D-

= kT
H

kT
H

mf

ee   ' nn
÷÷
ø

ö
çç
è

æ D-D-

= kT
HH mf

e ' nn

÷÷
ø

ö
çç
è

æ D-D-

= kT
HH mf

eD   2dn

As derived for interstitial diffusion 24
2  ''

)/(
dnd

d
n

==
-

=
dxdc

JD



÷
ø
ö

ç
è
æ -

= kT
Q

eDD  0

Temperature dependence of diffusivity

Arrhenius type
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Examples of diffusion:

1. Diffusion couple

A B
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Cavg

↑ t

t1 > 0  | c(x,t1)t2 > t1 | c(x,t1) t = 0  | c(x,0)

Flux

f(x)|t

f(t)|x

Non-steady
state

§ If D = f(c) 
Þ c(+x,t) ¹ c(-x,t)

i.e. asymmetry about y-axis 

§ C(+x, 0) = C1
§ C(-x, 0) = C2

C1

C2



2

2

x
cD

t
c

¶
¶

=÷
ø
ö

ç
è
æ
¶
¶

÷
ø

ö
ç
è

æ-=
Dt
xerfBAtxc

2
 ),(

Solution to 2o de with 2 constants
determined from Boundary Conditions and Initial Condition
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§ Erf (¥) = 1
§ Erf (-¥) = -1
§ Erf (0) = 0
§ Erf (-x) = -Erf (x)
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A B

Applications based on Fick’s II law
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Cavg

↑ t

t1 > 0  | c(x,t1)t2 > t1 | c(x,t1) t = 0  | c(x,0)

A & B welded together and heated to high temperature (kept constant → T0)

Flux

f(x)|t

f(t)|x

Non-steady
state

§ If D = f(c) 
Þ c(+x,t) ¹ c(-x,t)

i.e. asymmetry about y-axis 

§ C(+x, 0) = C1
§ C(-x, 0) = C2

C1

C2

§ A = (C1 + C2)/2
§ B = (C2 – C1)/2

Determination of Diffusivity



Applications based on Fick’s II law Carburization of steel

q Surface is often the most important part of the component, which is
prone to degradation

q Surface hardenting of steel components like gears is done by carburizing
or nitriding

q Pack carburizing → solid carbon powder used as C source

q Gas carburizing → Methane gas CH4 (g) → 2H2 (g) + C (diffuses into steel)

x  → 0
C1

CS

§ C(+x, 0) = C1
§ C(0, t) = CS

§ A = CS
§ B = CS – C1


