DIFFUSION IN SOLIDS

FICK'S LAWS
KIRKENDALL EFFECT
ATOMIC MECHANISMS

Diffusion in Solids P.G. Shewmon McGraw-Hill, New York (1963)

Mechanism of material transport by atomic motion

Driven by *thermal energy* and a *gradient*

 \Box Thermal energy \rightarrow thermal vibrations \rightarrow Atomic jumps

Time dependent mechanism

When I bring it together, do they start diffusing ?

Ink in water diffuses immediately!

Initial

What happens to the concentration of each species ?

Final

□ Flux (J) (restricted definition) \rightarrow Flow / area / time [Atoms / m² / s]

□ As a first approximation assume $D \neq f(t)$

Steady State Diffusion

Constant flux of the species

 $J = \frac{dn}{dt} \frac{1}{A}$ is a constant!

The solution to the Fick's 1st equation – linearly varying concentration

Steady State Diffusion

Solutions to the Fick when the diffusivity is a function of the concentration

Non-steady state

Flux is non-uniform!

If the current density at two points x and $x+\Delta x$ are different, That means, there is accumulation/depletion.

$$j_{x} - j_{x+\Delta x} = \frac{\partial c}{\partial t} \Delta x \qquad \Delta x \text{ is the small segment thickness} \\ C - \text{species concentration m}^{-3} \\ (j_{x+\Delta x} - j_{x})/\Delta x = \frac{\partial j}{\partial x} \\ \frac{\partial c}{\partial t} \Delta x = -\frac{\partial j}{\partial x} \Delta x \\ \frac{\partial c}{\partial t} = -\frac{\partial}{\partial x} \left[-\frac{D\partial c}{\partial x} \right]$$

This is also called as the continuity equation.

Diffusion mechanisms

Interstitial diffusion

The solute/diffusing atom is very small!

Momentary increase in the enthalpy is required for the interstitials to move from A -B

While A and B are both interstitial positions.

□ At T > 0 K vibration of the atoms provides the energy to overcome the energy barrier ΔH_m (enthalpy of motion)

 $\Box \nu \rightarrow$ frequency of vibrations, $\nu' \rightarrow$ number of successful jumps / time

$$\nu' = \nu e^{\left(-\frac{\Delta H_m}{kT}\right)}$$

- $c = 1 / \delta^{3}$
- concentration gradient $dc/dx = (-1 / \delta^3)/\delta = -1 / \delta^4$
- $Flux = No \ of \ atoms \ / \ area \ / \ time = \ v' \ / \ area = \ v' \ / \ \delta^2$

2. Vacancy Mechanism

Substitutional Diffusion

- Probability for a jump α (probability that the site is vacant). (probability that the atom has sufficient energy)
- $\Delta H_m \rightarrow enthalpy of motion of atom$
- $v' \rightarrow$ frequency of successful jumps

As derived for interstitial diffusion $\longrightarrow D = \frac{J}{-(dc/dx)} = \frac{v'}{\delta^2} \delta^4 = v' \delta^2$

$$D = v \,\delta^2 \, e^{\left(\frac{-\Delta H_f - \Delta H_m}{kT}\right)}$$

Temperature dependence of diffusivity

$$D = D_0 e^{\left(-\frac{Q}{kT}\right)}$$

For interstitial

For substitutional

$$D = v \,\delta^2 \, e^{\left(\frac{-\Delta H_m}{kT}\right)}$$

$$D = v \,\delta^2 \,e^{\left(\frac{-\Delta H_f - \Delta H_m}{kT}\right)}$$

$$D_0 = v \,\delta^2$$

$$Q = \frac{\Delta H_m for interstitial}{\Delta H_m + \Delta H_f for substitutional}$$

Examples of diffusion:

1. Diffusion couple

•
$$C(+x, 0) = C_1$$

• $C(-x, 0) = C_2$

Solution to 2° de with 2 constants determined from Boundary Conditions and Initial Condition

TABLE 8.1

The Error Function

z	erf(z)	z	erf(z)
0.000	0.0000	0.85	0.7707
0.025	0.0282	0.90	0.7970
0.05	0.0564	0.95	0.8209
0.10	0.1125	1.0	0.8427
0.15	0.1680	1.1	0.8802
0.20	0.2227	1.2	0.9103
0.25	0.2763	1.3	0.9340
0.30	0.3268	1.4	0.9523
0.35	0.3794	1.5	0.9661
0.40	0.4284	1.6	0.9763
0.45	0.4755	1.7	0.9838
0.50	0.5205	1.8	0.9891
0.55	0.5633	1.9	0.9928
0.60	0.6039	2.0	0.9953
0.65	0.6420	2.2	0.9981
0.70	0.6778	2.4	0.9993
0.75	0.7112	2.6	0.9998
0.80	0.7421	2.8	0.9999

Applications based on Fick's II law

Determination of Diffusivity

A & B welded together and heated to high temperature (kept constant \rightarrow T₀)

- □ Surface is often the most important part of the component, which is prone to degradation
- Surface hardenting of steel components like gears is done by carburizing or nitriding
- \Box Pack carburizing \rightarrow solid carbon powder used as C source
- □ Gas carburizing → Methane gas $CH_4(g) \rightarrow 2H_2(g) + C$ (diffuses into steel)

