
ELASTICITY

q Elasticity

q Plasticity

q Viscoelasticity



What kind of mechanical behaviour phenomena does one have to understand?

Elasticity

Plasticity

Fracture

Fatigue

Mechanical Behaviour

Creep Elongation at constant load at High temperatures

q Phenomenologically mechanical behaviour can be understood as in the flow diagram 
below.

q Multiple mechanisms may be associated with these phenomena (e.g. creep can occur by 
diffusion, grain boundary sliding etc.).

q These phenomena may lead to the failure of a material.

Note: above is a ‘broad’ classification for ‘convenience’. E.g. Creep is also leads to plastic deformation!

Recoverable deformation

Permanent deformation

Propagation of cracks in a material

Oscillatory loading



Elastic
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Deformation
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Instantaneous
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Permanent

Anelasticity
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Elasticity

Elasticity
Linear

Non-linear

E.g. Al deformed at small strains

E.g. deformation of an elastomer like rubber

q Elastic deformation is reversible deformation- i.e. when load/forces/constraints are 
released the body returns to its original configuration (shape and size).

q Elastic deformation can be caused by tension/compression or shear forces.
q Usually in metals and ceramics elastic deformation is seen at low strains (less than ~10–3).
q The elastic behaviour of metals and ceramics is usually linear.



Materials in Tension

For a known elongation 𝑙 − 𝑙!,  it is said that you need 2*F, for an area that is 2𝐴!

Therefore, we define 𝜎 = "
#

Engineering Stress



We also define 

Engineering Strain

𝜖 =
𝑙 − 𝑙!
𝑙!

Dimension-less quantity



Hooke’s Law

Greater the modulus 
-Stiffer the material

Slope of the stress-strain curve when linear  
is the modulus of Elasticity

What will you do when its not/never linear ?

However, the behavior is repeatable! - elastic



Secant/ tangent methods
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q Let us consider the stretching of bonds (leading to elastic deformation).
q Atoms in a solid feel an attractive force at larger atomic separations and feel a repulsive 

force (when electron clouds ‘overlap too much’) at shorter separations. (At very large 
separations there is no force felt).

q The energy and the force (which is a gradient of the energy field) display functional 
behaviour as below.

The plots of these 
functions is shown 
in the next slide
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For displacements around r0 → Force-displacement curve is approximately linear
è THE LINEAR ELASTIC REGION

Near r0 the red line (tangent to the F-r curve at r = r0)
coincides with the blue line (F-r) curve

q Elastic modulus is the slope of the Force-interatomic spacing curve (F-r curve), at the 
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Bonding and Elastic modulus

q Materials with strong bonds have a deep potential energy well with a high 
curvature Þ high elastic modulus

q Along the period of a periodic table the covalent character of the bond and
its strength increase Þ systematic increase in elastic modulus

q Down a period the covalent character of the bonding ↓ Þ ↓ in Y

q On heating the elastic modulus decrease: 0 K → M.P, 10-20% ↓ in modulus

Along the period → Li Be B Cdiamond Cgraphite
Atomic number (Z) 3 4 5 6 6

Young’s Modulus (GN / m2) 11.5 289 440 1140 8

Down the row → Cdiamond Si Ge Sn Pb
Atomic number (Z) 6 14 32 50 82

Young’s Modulus (GN / m2) 1140 103 99 52 16



Shear stresses:

Shear stress when the force is tangential to the face

𝑆ℎ𝑒𝑎𝑟 𝑆𝑡𝑟𝑒𝑠𝑠 𝜎 =
𝐹
𝐴!

𝑆ℎ𝑒𝑎𝑟 𝑆𝑡𝑟𝑎𝑖𝑛 𝛾 = tan 𝜃

Torsional stresses are a variation of the shear

𝑆ℎ𝑒𝑎𝑟 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 𝐺 = 𝜎/𝛾



Poisson’s ratio

If the material is isotropic

And stress uniaxial 𝜎$

The orthogonal strains

𝜈 = −
𝜖%
𝜖$
= −

𝜖&
𝜖$

Theoretical Poisson’s ratio = 0.25 
for isotropic materials

maximum value for no net-volume change is 0.5

However, typical value lies between 0.25 – 0.35



Other elastic moduli

q s = E.e E → Young’s modulus
q t = G.g G → Shear modulus

q shydrodynami = K.volumetric strain K → Bulk modulus
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Tensile Testing

Gauge
length

specimen



Note the strain ranges!

Tensile Stress-Strain Curves

Below point P
Linear region – Obey Hooke’s law
Elastic in the linear region.

Beyond P
Deviation from linearity
Permanent – non recoverable damage
Atoms finding new equilibrium

In crystalline solids deformation is via plane slips
In non-crystalline solids – viscous flow



Yielding
Yield stress – The stress point at which the deviation from linearity happens

In places where the yielding point is not clear, a convention (0.2%) is employed. 

0.2%



The limits

Strain hardening can also be observed. However, a maximal stress point is achieved

Maximum strength!
The strength then decays to eventual fracture



What happens in polymers?

Polymers are long chain molecules of repeating units

Cellulose –
Present in cotton, wood, cell walls …

DNA, RNA, …



Elastomers

Long chain molecules when bent tend to cross-link.

Thermodynamically favored to cross-link and stay bent

Higher configurational entropy -> lower Δ𝐺

So, when stretched, work is done on a polymer

- No bonds are stretched
- The chain is straightened (reduced entropy) at T

𝐹 = −𝑇
𝜕𝑆
𝜕𝐿

Calculations yield:

𝐹 = '!()
*!

*
*!

− *!
*

+

P. Flory, J. Chem. Phys. 11, 512–520 (1943)



Stress-strain curve for an elastomer

The dotted line is from the equation 𝐹 = '!()
*!

*
*!

− *!
*

+

However, after a large strain, there is deviation – largely due to bond stretching.! 

Check the strain values



Anisotropy in the Elastic modulus

q In a crystal the interatomic distance varies with direction 
→ elastic anisotropy

q Elastic anisotropy is especially pronounced in materials with 
► two kinds of bonds

E.g. in graphite E [10`10] = 950 GPa, E [0001] = 8 GPa



Estimation of mechanical properties



Ultimate Tensile Strength – Stress at the maximum of engineering stress-Strain 
curve

Yield Strength – The stress point of deviation from linearity

Elastic modulus –Slope of the stress-strain curve 

Fracture Strength – Point of strain at which fracture is witnessed in the 
engineering stress-Strain curve 

Fracture Toughness – Total area under the engineering stress-strain curve –
energy/volume required for fracture

Ductility – Percentage elongation at/near fracture 𝐷% =
," -,!
,!

∗ 100



Parameters for design:



Property
Material dependence

Geometry dependence

Elastic modulus

q Stiffness of a material is its ability to resist elastic deformation of 
deflection on loading → depends on the geometry of the component.

q High modulus in conjunction with good ductility should be chosen (good
ductility avoids catastrophic failure in case of accidental overloading)

q Covalently bonded materials- e.g. diamond have high E (1140 GPa) 
BUT brittle

q Ionic solids are also very brittle

Elastic modulus in design

Ionic solids → NaCl MgO Al2O3 TiC Silica glass
Young’s Modulus (GN / m2) 37 310 402 308 70



q METALS

► First transition series → good combination of ductility &
modulus (200 GPa)

► Second & third transition series → even higher modulus, but higher
density (cost)

q POLYMERS
► Polymers can have good plasticity → but low modulus 

dependent on

◘ the nature of secondary bonds- Van der Walls / hydrogen
◘ presence of bulky side groups
◘ branching in the chains 

Ø Unbranched polyethylene E = 0.2 GPa, 
Ø Polystyrene with large phenyl side group E = 3 GPa, 
Ø 3D network polymer phenol formaldehyde E = 3-5 GPa

◘ cross-linking



Increasing the modulus of a material

q METALS

► By suitably alloying the Young’s modulus can be increased

► But E is a structure (microstructure) insensitive property 
Þ the increase is a fraction added

► TiB2 (~ spherical, in equilibrium with matrix) added to Fe to increase E

q COMPOSITES
► A second phase (reinforcement) can be added to a low E material to ↑ E

(particles, fibres, laminates)
► The second phase can be brittle and the ductility is provided by the

matrix → if reinforcement fractures the crack is stopped by the
matrix ( Examples are Boron and Al composites)



COMPOSITES

Laminate 
composite

Aligned
fiber 

composite

Particulate 
composite

mmffc VEVEE +=

Modulus parallel to the direction of the fiberes

Volume fractions

§ Under iso-strain conditions
§ I.e. parallel configuration
§ m-matrix, f-fibre, c-composite



Composite modulus in isostress and isostrain conditions

mmffc VEVEE += § Under iso-strain conditions [em = ef = ec] 
§ I.e. ~ resistances in series configuration
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1 § Under iso-stress conditions [sm = sf = sc] 
§ I.e. ~ resistances in parallel configuration
§ Usually not found in practice
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For a given fiber fraction f, the modulii of 
various conceivable composites lie between an 
upper bound given by isostrain condition
and a lower bound given by isostress condition

f

Voigt averaging

Reuss averaging

By rule of mixtures


