
PHASE TRANSFORMATIONS

q Nucleation

q Growth

qAPPLICATIONS
£ Transformations in Steel
£ Precipitation
£ Solidification & crystallization
£ Glass transition 
£ Recovery, Recrystallization & Grain growth 
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Energies involved

Bulk Gibbs free energy ↓

Interfacial energy ↑

Strain energy ↑ Solid-solid transformation

Volume of transforming material

New interface created

q The concepts are illustrated using solidification of a metal 
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Liquid → Solid phase transformation

Solid (GS)

Liquid (GL)

Tm T  →

G
  →

DT

DG

Liquid stableSolid stable

DT - Undercooling 

↑ t

“For sufficient
Undercooling”

§ On cooling just below Tm solid becomes stable
§ But solidification does not start
§ E.g. liquid  Ni can be undercooled 250 K below Tm

DG → -ve

DG → +ve



Nucleation

q The probability of nucleation occurring at point in the parent phase is
same throughout the parent phase

q In heterogeneous nucleation there are some preferred sites in the 
parent phase where nucleation can occur

Homogenous

Heterogenous

Nucleation

NucleationSolidification + Growth=

§ Liquid → solid
walls of container, inclusions

§ Solid → solid
inclusions, grain boundaries, 
dislocations, stacking faults



Homogenous nucleation
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§ By setting dDG/dr = 0 the critical values (corresponding to the maximum) 
are obtained (denoted by superscript *)

§ Reduction in free energy is obtained only after r0 is obtained
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As DGv is -ve, r*is +ve
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)( TfGv D=D The bulk free energy reduction is a function of undercooling 
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No. of critical sized 
particlesRate of nucleation x Frequency with which they 

become supercritical=

dt
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Critical sized nucleus

s* atoms of the liquid facing the nucleus

Critical sized nucleus

Jump taking particle to supercriticality
→ nucleated (enthalpy of activation = DHd)

No. of particles/volume in L
n → lattice vibration frequency (~1013 /s)


