Data Mining Course Overview

Data Mining Overview

- Understanding Data
- Classification: Decision Trees and Bayesian classifiers, ANN, SVM
- Association Rules Mining: APriori, FP-growth
- Clustering: Hierarchical and Partition approaches
- Dimensionality Reductions
- Advanced topics: Social Network graph mining, outlier detection,

What is Data Mining?

Data Mining is:

- (1) The efficient discovery of previously unknown, valid, potentially useful, understandable patterns in large datasets
- (2) The analysis of (often large) observational data sets to find unsuspected relationships and to summarize the data in novel ways that are both understandable and useful to the data owner

Overview of terms

- <u>Data</u>: a set of facts (items) D, usually stored in a database
- Pattern: an expression E in a language L, that describes a subset of facts
- <u>Attribute</u>: a field in an item *i* in D.
- Interestingness: a function I_{D,L} that maps an expression E in L into a measure space M

Overview of terms

• The Data Mining Task:

For a given dataset D, language of facts L, interestingness function $I_{D,L}$ and threshold c, find the expression E such that $I_{D,L}(E) > c$ efficiently.

Examples of Data mining Applications

- 1. Fraud detection: credit cards, phone calls
- 2. Marketing: customer targeting
- 3. Data Warehousing: Walmart
- 4. Astronomy
- 5. Molecular biology

How Data Mining is used

- 1. Identify the problem
- 2. Use data mining techniques to transform the data into information
- 3. Act on the information
- 4. Measure the results

The Data Mining Process

- 1. Understand the domain
- 2. Create a dataset:
 - Select the interesting attributes
 - Data cleaning and preprocessing
- 3. Choose the data mining task and the specific algorithm
- 4. Interpret the results, and possibly return to 2

Origins of Data Mining

- Draws ideas from machine learning/AI, pattern recognition, statistics, and database systems
- Must address:
 - Enormity of data
 - High dimensionality of data
 - Heterogeneous, distributed nature of data

Data Mining Tasks

Prediction Methods

- Use some variables to predict unknown or future values of other variables.
- Description Methods
 - Find human-interpretable patterns that describe the data.

Data Mining Tasks...

- Classification [Predictive]
- Clustering [Descriptive]
- Association Rule Discovery [Descriptive]
- Sequential Pattern Discovery [Descriptive]
- Regression [Predictive]
- Deviation Detection [Predictive]

Data Mining Tasks

- 1. Classification: learning a function that maps an item into one of a set of predefined classes
- 2. Regression: learning a function that maps an item to a real value
- 3. Clustering: identify a set of groups of similar items

Data Mining Tasks

4. Dependencies and associations:

identify significant dependencies between data attributes

5. Summarization: find a compact description of the dataset or a subset of the dataset

Data Mining Methods

- 1. Decision Tree Classifiers: Used for modeling, classification
- 2. Association Rules:

Used to find associations between sets of attributes

3. Sequential patterns:

Used to find temporal associations in time series

4. Hierarchical clustering:

used to group customers, web users, etc

Why Data Preprocessing?

Data in the real world is dirty

- incomplete: lacking *attribute values*, lacking certain *attributes of interest*, or containing only aggregate data
- noisy: containing errors or outliers
- inconsistent: containing discrepancies in codes or names
- No quality data, no quality mining results!
 - Quality decisions must be based on quality data
 - Data warehouse needs consistent integration of quality data
 - Required for both OLAP and Data Mining!

Why can Data be Incomplete?

- Attributes of interest are not available (e.g., customer information for sales transaction data)
- Data were not considered important at the time of transactions, so they were not recorded!
- Data not recorder because of misunderstanding or malfunctions
- Data may have been recorded and later deleted!
- Missing/unknown values for some data

Data Cleaning

- Data cleaning tasks
 - Fill in missing values
 - Identify outliers and smooth out noisy data
 - Correct inconsistent data

Classification: Definition

Given a collection of records (*training set*)

- Each record contains a set of *attributes*, one of the attributes is the *class*.
- Find a *model* for class attribute as a function of the values of other attributes.
- Goal: <u>previously unseen</u> records should be assigned a class as accurately as possible.
 - A *test set* is used to determine the accuracy of the model. Usually, the given data set is divided into training and test sets, with training set used to build the model and test set used to validate it.

Classification Example

	Go	Co	co	clo
Tid	Home Owner	Marital Status	Taxable Income	Default
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

? ?
?
2
f N
?
?
? Test

Example of a Decision Tree

		rical	rical	JOUS
	at s	290' atec	o' on	Int clas
Tid	Home	Marital	Taxable	
	Owner	Status	Income	Default
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Training Data

Model: Decision Tree

Another Example of Decision Tree

		norical	orical	inuous	à
	cat	cate	con	clas	MarSt Single,
Tid	Home Owner	Marital Status	Taxable Income	Default	Divorced
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	NO Taxinc
4	Yes	Married	120K	No	< 80K/ > 80K
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	NO TES
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	There could be more than one tree that
10	No	Single	90K	Yes	Tits the same data!

Classification: Application 1

Direct Marketing

- Goal: Reduce cost of mailing by *targeting* a set of consumers likely to buy a new cell-phone product.
- Approach:
 - Use the data for a similar product introduced before.
 - We know which customers decided to buy and which decided otherwise. This {buy, don't buy} decision forms the class attribute.
 - Collect various demographic, lifestyle, and company-interaction related information about all such customers.
 - Type of business, where they stay, how much they earn, etc.
 - Use this information as input attributes to learn a classifier model.

Classification: Application 2

Fraud Detection

- Goal: Predict fraudulent cases in credit card transactions.
- Approach:
 - Use credit card transactions and the information on its accountholder as attributes.
 - When does a customer buy, what does he buy, how often he pays on time, etc
 - Label past transactions as fraud or fair transactions. This forms the class attribute.
 - Learn a model for the class of the transactions.
 - Use this model to detect fraud by observing credit card transactions on an account.

Clustering Definition

- Given a set of data points, each having a set of attributes, and a similarity measure among them, find clusters such that
 - Data points in one cluster are more similar to one another.
 - Data points in separate clusters are less similar to one another.
- Similarity Measures:
 - Euclidean Distance if attributes are continuous.
 - Other Problem-specific Measures.

Illustrating Clustering

Euclidean Distance Based Clustering in 3-D space.

Intracluster distances Intercluster distances are minimized are maximized

Clustering: Application 1

Market Segmentation:

- Goal: subdivide a market into distinct subsets of customers where any subset may conceivably be selected as a market target to be reached with a distinct marketing mix.
- Approach:
 - Collect different attributes of customers based on their geographical and lifestyle related information.
 - Find clusters of similar customers.
 - Measure the clustering quality by observing buying patterns of customers in same cluster vs. those from different clusters.

Clustering: Application 2

Document Clustering:

- Goal: To find groups of documents that are similar to each other based on the important terms appearing in them.
- Approach: To identify frequently occurring terms in each document. Form a similarity measure based on the frequencies of different terms. Use it to cluster.
- Gain: Information Retrieval can utilize the clusters to relate a new document or search term to clustered documents.

Association Rule Discovery: Definition

- Given a set of records each of which contain some number of items from a given collection;
 - Produce dependency rules which will predict occurrence of an item based on occurrences of other items.

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Rules Discovered: {Milk} --> {Coke} {Diaper, Milk} --> {Beer}

Association Rule Discovery: Application 1

- Marketing and Sales Promotion:
 - Let the rule discovered be

{softdrinks, ... } --> {Potato Chips}

- Potato Chips as consequent => Can be used to determine what should be done to boost its sales.
- <u>Softdrinks in the antecedent</u> => Can be used to see which products would be affected if the store discontinues selling softdrinks.
- Softdrinks in antecedent and Potato chips in consequent => Can be used to see what products should be sold with softdrinks to promote sale of Potato chips!

Association Rule Discovery: Application 2

Supermarket shelf management.

- Goal: To identify items that are bought together by sufficiently many customers.
- Approach: Process the point-of-sale data collected with barcode scanners to find dependencies among items.
- A classic rule --
 - If a customer buys diaper and milk, then he is very likely to buy beer.
 - So, don't be surprised if you find six-packs stacked next to diapers!

Association Rule Discovery: Application 3

- Inventory Management:
 - Goal: A consumer appliance repair company wants to anticipate the nature of repairs on its consumer products and keep the service vehicles equipped with right parts to reduce on number of visits to consumer households.
 - Approach: Process the data on tools and parts required in previous repairs at different consumer locations and discover the co-occurrence patterns.

Regression

- Predict a value of a given continuous valued variable based on the values of other variables, assuming a linear or nonlinear model of dependency.
- Greatly studied in statistics, neural network fields.
- Examples:
 - Predicting sales amounts of new product based on advetising expenditure.
 - Predicting wind velocities as a function of temperature, humidity, air pressure, etc.
 - Time series prediction of stock market indices.

Deviation/Anomaly Detection

Detect significant deviations from normal behavior

- Applications:
 - Credit Card Fraud Detection

Network Intrusion
Detection

Typical network traffic at University level may reach over 100 million connections per day

Challenges of Data Mining

- Scalability
- Dimensionality
- Complex and Heterogeneous Data
- Data Quality
- Data Ownership and Distribution
- Privacy Preservation
- Streaming Data

Data Compression

Numerosity Reduction: Reduce the **volume** of data

Parametric methods

- Assume the data fits some model, estimate model parameters, store only the parameters, and discard the data (except possible outliers)
- Non-parametric methods
 - Do not assume models
 - Major families: histograms, clustering, sampling

Clustering

- Partitions data set into clusters, and models it by one representative from each cluster
- Can be very effective if data is clustered but not if data is "smeared"
- There are many choices of clustering definitions and clustering algorithms, more later!

- J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques. Morgan Kaufmann, 3rd ed., 2011
- P.-N. Tan, M. Steinbach and V. Kumar, Introduction to Data Mining, Wiley, 2005 (2nd ed. 2016)
- Mohammed J. Zaki and Wagner Meira Jr., Data Mining and Analysis: Fundamental Concepts and Algorithms 2014