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1.1 Properties of Trees: 

 
Definition:  A graph G = (V, E) is called a tree if G is connected and acyclic.  

 

The following theorem captures many important facts about trees. 

 

Theorem: (Characterizations of trees) 

Let G = (V, E) be an undirected graph having n vertices and m edges. The following 

statements are equivalent. 

1. G is a tree. 

2. There is a unique path between any two vertices in G. 

3. G is connected but G-e is disconnected for every edge e of G. 

4. G is connected, and m=n-1. 

5. G is acyclic, and m=n-1. 

6. G is acyclic but G + xy is cyclic for every x, y  V with xy  E. 

 

Proof: (1) (2): Since every tree is connected,  there is at least one path between any 

two vertices in G. Hence, to show that there is a unique path between any two vertices in 

G, we have to show that there is at most one path between any two vertices in G.  We 

prove this by contradiction. So, assume that there are at least two paths between some 

pair of vertices, say between x and y. Let P1 and P2 be two distinct paths from x to y. By 

lemma 2.1, P1  P2 contains a cycle. So, G contains a cycle. This contradicts the fact that 

G is a tree. Hence, there is a unique path between any two vertices in G.  

 

 (2) (3):  Since, any two vertices in G are connected by a unique  path,  G is connected. 

Let xy be any edge in E. Then, P=xy is a path from x to y. So, it must be a unique path 

from x to y. If we remove xy from G, then there is no path from x to y. Hence, G-xy is 

disconnected. Since, xy is a arbitrary edge of G, G-e is disconnected for every edge e of 

G. Hence, G is connected but G-e is disconnected for every edge e of G. 

 

(3) (4): By assumption, G is  connected. So we need only to show that m=n-1. We 

prove this by induction. A connected graph with n=1 or n=2 vertices has n-1 edges. 

Assume that every graph with fewer than n vertices satisfying (3) also satisfy (4). 

Suppose that G has n  3 vertices and G satisfies (3), i.e. G is connected but G-e is 
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disconnected for every edge e of G. Let e=xy be any edge of G. Now, G-e is disconnected. 

Now, by lemma 3, G-e has exactly two connected components. Let G1 and G2 be the 

connected components of G. Let ni. and  mi , 1 i  2, be the number of vertices  and 

edges in Gi, 1 i 2. Now, each component satisfies (3), or else G would not satisfy (3). 

Since, ni < n, i=1,2, by induction hypothesis, mi = ni-1, 1 i 2. So, m = m1+ m2 + 1 =  

(n1-1) + (n2-1) +1 = n-1. So, by induction principle, G has exactly n-1 edges. 

 

(4) (5): We have to  show that every connected graph G with n vertices and n-1 edges 

are  acyclic. We prove this by induction. For n=1, 2 and 3, it can be easily checked that 

all connected graph with n vertices and n-1 edges are acyclic. Assume that every 

connected graph with fewer than n vertices satisfying (4) is acyclic. Let G be a connected 

graph having n vertices and n-1 edges. Since, G is connected and has n-1 edges, G has a 

vertex of degree 1. Let x be a vertex of degree 1 in G. Let G=G-x. Now, G is connected 

and has n-1 vertices and n-2 edges. So, by induction hypothesis, G is acyclic. Since, x is 

a degree 1 vertex, x can not be in any cycle of G. Since G=G-x is acyclic, G must be 

acyclic. So, by induction, every connected graph with n vertices and n-1 edges is acyclic. 

 

(5) (6): Suppose that G is acyclic and that m=n-1. Let Gi, 1 i k be the connected 

components of G. Since G is acyclic, Gi is acyclic for 1 i k. Hence, each Gi, 1 i k is 

a tree. Let ni and mi, 1 i  k, be the number of vertices and edges in Gi, 1 i k, 

respectively. Since (1) implies (5), m =


k

i

im
1

= 



k

i

in
1

)1( =n-k. So, k=1. So, G must be a 

tree. Since (1) implies (2), any two vertices in G are connected by a unique path. Thus, 

adding any edge to G creates a cycle. 

 

(6)  (1): Suppose that G is acyclic but G +xy is cyclic for every x,y in V with xy  E.  

We must show that G is connected. Let u and v be arbitrary vertices in G. If u and v are 

not already adjacent, adding the edge uv creates a cycle in which all edges but uv belong 

to G. Thus, there is a path from u to v and since u and v were chosen arbitrarily, G is 

connected.   

 

   Exercises 1.1 

 

1. If the maximum degree in a tree T is k, then prove that T has at least k pendant 

vertices (vertices of degree 1). Is the converse true? 

2. Let T1 and T2 be two spanning trees of a connected graph G. If edge e is in T1 but 

not    in T2, prove that there exists another edge f in T2 but not in T1 such that   

(T1-e)  f and (T2-f)  e are also spanning trees of G. 

3. Prove that in a tree every vertex of degree greater than one is a cut vertex. 

4. Prove that a pendant edge in a connected graph G is contained in every spanning 

tree   of G. 

5. Prove that an edge e of a connected graph G is a cut edge if and only if e belongs 

to   every spanning tree.  

6. Let T be a tree of order m, and let G be a graph with (G) = m-1.Then prove that 

T is isomorphic to some sub graph of G. 
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7. Suppose T is a tree of order n that contains only vertices of degree 1 and 3. Prove 

that T contains (n-2)/2 vertices of degree 3. 

8. Prove or disprove: if d1, d2,…dn is the degree sequence of a tree, then 1, d1+1, d2, 

d3,… .dn is the degree sequence of a tree.  

9. Let G be a connected weighted graph whose edges have distinct weights. Show 

that G    has a unique minimum spanning tree. 

10. Let T be a tree of order n and size m having ni vertices of degree i (i=1, 2…).show 

that n1= n3+2n4+3n5+4n6+….+2. 

11. Prove or disprove: if ni denotes the number of vertices of degree i in a tree T, then  

 i ni depend only on the number of vertices in T. 

12. Let T be an n vertex tree having one vertex of each degree i , 2 ≤ i ≤ k; the 

remaining n-k+1 vertices are leaves. Determine n in terms of k. 

13. Draw a weighted connected graph G on 11 vertices having 10 different MSTs. 

14. Let e be a minimum cost edge of a weighted connected graph G. Show that e 

belongs to some MST of G. 

15. If e be the only minimum cost edge of G, then e belongs to every MST of G. 

16. Describe five applications of MST. 

17. Design algorithms for a Tree for each of the following: 

1. To find a maximum independent set. 

2. To 2-color all the vertices of G. 

3. To find a path from x to y. 

18. Suppose n 2 and d1, d2, …,dn,dn+1 are n+1 positive integers such that their sum 

equals 2n. Use the pigeon principle to prove that there exists an index i such that 

di= 1 and there is an index j such that dj > 1. 

19. Use Q18.  and Mathematical induction to show that in n is an integer  2 and  d1, 

d2, …,dn are positive integers such that 


n

i

id
1

=2n-2, then there is a tree Tn with n 

vertices whose degrees are d1, d2, …, and dn. 

20. Characterize all connected graphs with same number of vertices and edges. 
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1.2: Spanning Tree: 

 
  

Definition 2: A subgraph T= (V1, E1) of a graph G = (V,E) is a spanning tree if 

(i) T is a tree, and 

(ii) V1=V. 

 

Theorem 3.1:  A graph admits a spanning tree if and only if G is connected. 

 

Proof: Necessity: 

 Suppose G admits a spanning tree, say T. We will show that G is 

connected. Let u, v be any two arbitrary vertices of G. Since, T is  a spanning 

subgraph of G, u and v are vertices of T as well. Since, T is connected, there is a 

path P(u,v) from u to v in T. As T is a subgraph of G, P(u,v) is also a path in G. 

Since, u and v are arbitrary vertices of G, there is a path between any two vertices 

of G. Hence G is connected. 

 

Sufficiency:  Let G be a connected graph with n vertices and m edges. We 

construct a spanning tree T of G. Let k=m-n+1.  Define Gi, 0 i  k, recursively, 

as follows: 

 Gi =








 .1

,0

11 kiifGofcyclesomeinedgeanisewhereeG

iifG

iiii

 

Since, Gi has exactly n-1+k-i edges, Gi is cyclic for each i, 0 i  k-1. So, each Gi, 

0 i  k-1, has a cycle. If Gi-1 is connected, then Gi is also connected, as ei belongs 

to some cycle of Gi-1, 0 i  k-1. Hence, Gk is connected and has exactly n-1 

edges. So, Gk is a tree. Let T=Gk. Now T is a spanning tree of G.   

 

Let (G) denotes the number of distinct spanning trees of a graph. So, by  

theorem 3.1, (G)  1 for a connected graph. The following graph has exactly 

three spanning trees. 

 

 The following theorem gives the number of distinct spanning trees of a 

complete graph. 

Theorem 3.2:  (Kn) = n
n-2

 for all n 1. 

 

Proof: Since each of K1 and K2 has exactly one spanning tree (Kn) = n
n-2

 for 

n=1 and 2. So assume that n  3. Assume that  V (Kn) = {1, 2…,n}. Let X be the 

set of all spanning trees of Kn and Y be the set of all sequences a1,a2,…,an-2 of 

length n-2 such that ai  {1,2,…,n}. Note that Y has n
n-2

 sequences as each ai , 1 

i  n-2 can be selected in n different ways. So, to show that there are n
n-2

 spanning 

trees of Kn, it is enough to produce a function f: X  Y which is a bijection.  

 Let T be any spanning tree of Kn. Define f(T)= a1,a2,…,an-2  ,a unique 

sequence of length n-2 such that ai  {1,2,…,n} for each i, 1 i  n-2, in the 

following way. Among all the vertices of degree one, let s1 be the vertex such s1 
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as an integer is minimum. Let t1 be the vertex adjacent to s1 in T. Assign t1 to s1. 

Then, delete the vertex s1 from T. Next, among all the vertices of degree one in 

T-{s1}, let s2 be the vertex such s2 as an integer is minimum. Let t2 be the vertex 

adjacent to s2 in T-s1. Assign t2 to a2. Then, delete the vertex s2 from T-{s1}. 

Repeat this process until an-2 has been defined and a tree with just two vertices 

remains; the tree T  in figure 1, for instance, gives rise to the sequence 6,2,2,2,6. 

 

 

 

 

       

 

 

  

To show that f is a bijection, we have to prove that  (i) no sequence is produced 

by two different spanning trees of Kn and (ii) every sequence of Y is produced by 

some spanning tree of Kn. We shall achieve both (i) and (ii) by showing that f has 

an inverse, i.e. we can construct a spanning tree of Kn from a sequence a1,a2,…, 

an-2  of  Y by reversing the process described above of obtaining a sequence of 

length n-2 from a spanning tree of Kn. 

 Let T be any spanning tree of Kn, and let f(T)= a1,a2,…,an-2. Then, d(k), 

the degree of vertex k in T, is equal to the number of times k appears in the 

sequence a1,a2,…,an-2 , plus 1. This follows from the observation that when each, 

but the last, of the edges incident on k is deleted, k appears in the sequence; the 

last edge may never be deleted, if k is one of the two vertices remaining in the tree, 

or if it is deleted, k is now the removed leaf, and the adjacent vertex, not k, is 

included later in the sequence. Thus, if k appears in the sequence then the degree 

of k in T must be as stated. 

For example, if f(T) =6,2,2,2,6 is the sequence obtained from a tree T, 

then d(6)=3, d(2) = 4,  while d(1)=d(3)=d(4)=d(5)=1. 

So, let f(T)= a1,a2,…,an-2. We reconstruct T as follows. 

Let s1 be the vertex such that s1 is the least integer in {1, 2,…,n}  that does 

not appear in the sequence  a1,a2,…,an-2. Join s1 to a1. Then, let s2 be the vertex 

such that s2 is the least integer in {1, 2,…, n}-{s1}  that does not appear in the 

sequence  a2,…,an-2. Join s2 to a2. Follow this procedure until sn-2 is obtained from 

the sequence an-2. Join sn-2 to an-2. The tree T is obtained by adding the edge 

joining the two remaining vertices of N-{s1, s2,…,sn-2}. For example, the tree T 

for which f(T)=6,2,2,2,6 is given in figure 1. 

 

Thus, we have now established the required one-one correspondence. 

Hence, the number of distinct spanning tree of Kn  is  n
n-2

.  
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1.2 Minimum Spanning Tree; 

Let G=(V,E) be a connected weighted graph and C be the cost matrix of G. Let T=(V,E) 

be a spanning tree of G. The cost of T, denoted C(T), is defined  as follows: 

 

 

 

Definition 3: The cost of a  spanning tree T=(V, E′) of a weighted graph 

G=(V,E) with cost matrix C is defined by 

    C(T)=
Ee

eC )(  . 

 

 

  

Definition 4: A spanning tree  T of a weighted connected graph is  called a 

minimum spanning tree  if  C(T) ≤ C(T′) for any other spanning tree T′ of G.  

 

 Note that there many be more than one minimum spanning tree of a graph. For 

example, the graph G in the following figure has exactly two minimum spanning trees. 

 

 

  

 

 
 

1.4  Minimum Spanning Tree Algorithms 
 

In this section, we will discuss two popular algorithms to construct a minimum 

spanning tree of a weighted connected graph.  

1 

2 

3 
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A graph G having two minimum spanning trees. 



 7 

 

1.4.1  Kruskal’s Algorithm 

 
As we have seen in the previous section that an acyclic graph with n vertices and 

n-1 edges is a tree. The first algorithm, known as Kruskal’s Algorithm, uses this fact to 

construct an MST of a connected weighted graph G.  

We first describe the algorithm informally. First, the algorithm arranges the edges 

of the graph G in the non-decreasing order of their costs. It starts with the graph T=(V,E), 

where E =  initially. It then examines each edge for inclusion into the T. If the current 

edge e under examination does not form a cycle with the so far selected edges, then the 

edge e is included in T. If e forms a cycle with the so far selected edges, then e is rejected. 

After the decision of selecting or rejecting the current edge e, the next edge in the list 

becomes current edge. The algorithm terminates once n-1 edges have been selected or 

there is no edge left for consideration. The algorithm, thus, maintains acyclicity at each 

stage of inclusion of edge to T. If the algorithm is successful in adding n-1 edges to T, 

then T becomes a spanning tree of G. Since the edges are examined for inclusion in the 

non-decreasing order of their costs, T turns out to be an MST. 

 

We, next describe the Kruskal’s Algorithm formally. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next, we prove that the graph T=(V,E) obtained by Kruskal’s algorithm is in fact 

a minimum spanning tree. 

 

Theorem 1.4.1:  Kruskal’s Algorithm produces a minimum spanning tree in a 

connected weighted graph. 

Kruskal’s Algorithm 
 

Input:    A connected Graph G=(V,E) and the cost matrix C  of G. 

Output:  A Minimum spanning tree T=(V,E) of G. 

 

Method: 

 

       Step 1: Sort the edges of G in the non-decreasing order of their costs. 

                   Let the sorted list edges be e1, e2,…., em. 

        

       Step 2: T=(V, E), where  E=. i=1; count=0; 

                    while ( count < n-1 and i < m) 

                      { 

                       if ( T=(V, E  { ei }) is acyclic) 

                             {  E = E  { ei }; count= count+1;} 

                       i=i+1; 

                      } 
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Proof:  Let G = (V,E)  be a connected weighted graph and let T=(V,E) be the 

subgraph produced by Kruskal’s algorithm for G. Each edge is added to T by Kruskal’s 

algorithm if it does not form a cycle with the already added edges. Hence, T must be 

acyclic. Next we show that T is connected. If possible T is disconnected and let G1= (V1, 

E1) be a connected component of T. Let V2=V-V1.  Let f1,f2,…,fk be the edges of T such 

that cost(fi)  cost (fi+1). Since T is disconnected, k < n-1. Let E2=(xyE | x  V1 and y  

V2}. Since, G is connected, E2 is non empty. Let e  E2 be the least cost edge among all 

edges of E2.  Let  f1, f2,…,fi be the edges that have already been selected by Kruskal’s 

Algorithm when the edge e was examined. Since T +e is acyclic, e does not for a cycle 

with the edges f1,f2,…,fi. So, Kruskal’s algorithm would have selected the edge e after 

selecting the edge fi. This is a contradiction to the fact that T is the graph produced by 

Kruskal’s algorithm. Hence, T must be connected. Hence, T is a spanning tree. 

Next, we show that T  has least cost among all spanning trees of G. We prove this 

by contradiction. Suppose, to the contrary, that T is not a minimum spanning tree. Let 

E(T)={ f1,f2,…,fn-1 } such that w(fi)   w (fi+1), 1 i  n-2.    Note that G may have more 

than one minimum spanning tree. Let T1 be a minimum spanning tree of G having 

maximum number of edges in common with T. Let i be the smallest index,  1 i  n-1 

such that fi is not an edge in T. Such an index exists since T and T1 are two distinct trees 

of G. Let T2= T1+fi. Now, T2 has a unique cycle C containing fi. Note that C contains at 

least one edge e0 such that e0 is not an edge of T. Let T3=T2-e0. Now T3 is a spanning tree 

of G and W(T3)= W(T1)+W(fi)-W(e0). Since, W(T1) W(T3), we have w(e0) w(fi).  By 

Kruskal’s algorithm, fi is an edge of minimum cost such that G[{f1, f2,…,fi-1}  {fi}] is 

acyclic. However, G[{f1, f2,…,fi-1}  {e0}] is a subgraph of T1, and hence acyclic. So, 

w(e0)=w(fi), otherwise Kruskal’s algorithm would have chosen e0 instead of fi. Thus, 

W(T3)=W(T1). Hence, T3 is a minimum spanning tree. But, T3 has more edges in 

common with T than T1 has with T. This contradicts the fact that T1 has maximum 

number of edges in common with T than any other spanning tree of G. Hence, T must a 

minimum cost spanning tree.  

 

We, next, consider another popular algorithm for finding a minimum spanning 

tree in a connected weighted graph. 

 

1.4.2 Prim’s Algorithm 
As we have seen above, Kruskal’s algorithm starts with the vertex set V and 

empty edge set and keeps on adding edges maintaining acyclicity throughout. Once n-1 

edges are added, it becomes a tree because of the fact that an acyclic graph with n 

vertices and n-1 edges is a tree. Prim’s algorithm adopts a different strategy. It uses the 

fact that a connected graph with n vertices and n-1 edges is a tree. It starts with vertex set 

V= {v} where v is any arbitrary vertex of G and E, where E =  . It then selects a least 

cost edge e= xy with x  V and y  V- V from V to V- V and updates E= E{e} and 

V= V {y}. It stops when V=V. Thus, it maintains throughout that G=(V, E) is 

connected. Once V=V, G becomes a spanning tree of G. We next describe the algorithm 

formally. 
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Next, we show that Prim’s algorithm produces a minimum spanning tree of a connected 

weighted graph. 

Theorem 2.3.2:  Prim’s Algorithm produces a minimum spanning tree in a connected 

weighted graph. 

 

Proof:  Let G be a connected weighted graph and let T be the subgraph produced by 

Prim’s algorithm. Since, G is connected, T is a spanning tree of G. Next, we show that T 

is a minimum spanning tree of G. We prove this by method contradiction. Suppose, to the 

contrary, that T is not a minimum spanning tree of G.  Let E(T)={ f1,f2,…,fn-1 } such that 

w(fi)   w (fi+1), 1 i  n-2.    Note that G may have more than one minimum spanning 

tree. Let T1 be a minimum spanning tree of G having maximum number of edges in 

common with T. Let i be the smallest index,  1 i  n-1 such that fi is not an edge in T. 

Such an index exists since T and T1 are two distinct trees of G.  For i=1, let U={u}, where 

u is the first vertex added to V by the Prim’s algorithm. If  i 2, then let U be the vertex 

set of the subgraph induced by the edges f1,f2,…,fi-1.  Now, fi  joins a vertex of U to a 

vertex of V-U. Let T2= T1+fi. Now, T2 has a unique cycle C containing fi. The cycle C 

contains an edge e0  that joins a vertex of U to a vertex of V-U. Let T3= T1+fi – e0. Then, 

T3 is a spanning tree of G. Since fi and e0 are both edges from U to V-U and fi is selected 

by Prim’s algorithm, w(fi)  w(e0). Therefore, w (T3)  w (T1). Since, T1 is a minimum 

spanning tree, T3 is also a minimum spanning tree of G. But, T3 has more edges in 

common with T than T1 has with T. This contradicts the choice of T1. Hence, T must be a 

minimum spanning Tree. 

Exercise 

1. Let G be a connected weighted graph whose edges have distinct weights. Show 

that both Prims’ algorithm as well as Kruskal’s algorithm produces the same tree. 

2. Show, for  every integer n  2,  there a connected weighted graph having exactly 

             n minimum spanning trees. 

  

Prim’s Algorithm 
 

Input:    A connected Graph G=(V,E) and the cost matrix C  of G. 

Output:  A Minimum spanning tree T=(V,E) of G. 

 

Method: 

       { 

       Step 1: Let u be any arbitrary vertex of G. 

                   T=(V,E), where  V = {u} and E = . 

        

       Step 2:  while (   V  V) 

                      { 

                       Choose a least cost edge from V to V-V. 

                       Let e=xy be a least cost edge such that x V and y  V-V. 

                       V= V {x};  

                       E = E  { e }; 

                      } 

          } 


