

Department of Mathematics I Semester 2010-2011 MAL 609 Basic Computer Science Instructor: Dr. B. S. Panda

Contacts: MZ 194, Phone: 1448, e-mail: <u>bspanda@maths.iitd.ernet.in</u>

Homepage: http://web.iitd.ac.in/~bspanda/bcshomepage.html

Course Handout

Dt. 26.7.2010

1. **Course Outline**: Introduction to Algorithms: Definition, Pseudo code; Concepts of Analysis of Algorithms: Time complexity, space complexity, worst-case, average-case, big Oh and other notations; Recursion and recurrence relation; Introduction to basic data structures: Stack, Queue, Linked list structures, Application of Stacks, Application of Linked list, Role of data structures in efficiency of algorithm; Introduction to Trees and Graphs, Binary Tree, Tree Traversal, Application of binary trees, Height balanced trees, heap, Sorting and searching algorithms; Algorithm design techniques: Greedy, Divide and Conquer, Dynamic programming, Backtracking and Branch and Bound.

2. Course Objectives: The objectives of the course are:

- To continue developing a disciplined approach to the design, coding, and testing of programs written in a high-level language.
- To introduce basic data structures other than those normally provided as basic types in programming languages; for example, linked lists, stacks, queues, and trees.
- To provide an understanding of the different implementations of these data structures.
- To introduce the analysis of algorithm and role of data structures in algorithm analysis
- To introduce searching and sorting algorithms and their analysis.
- To introduce various algorithm design paradigms; for example, Greedy, Divide and Conquer, Dynamic Programming etc.

3. Books:

- Y. Langsam, M. Augenstein, and A. Tanenbaum, Data Structures Using C and C++, second Edition, PHI, 2001.
- Aho, Hopcroft, and Ullman, Data Structures and Algorithms, AWL, 1987.
- Kernighan and Ritchie, The C programming Language, Second Edition, PHI, 2001.

4 Lecture outline with topics and no. of lectures

Topics	No. of lectures
 Introduction to big Oh and other notations Running time of an Algorithm Recursive procedures 	6
relations	
 Data types, ADT and Data Structures Linked list 	3
Stack and its Application	4
 Queue and its Application 	4
Trees:	10
 Binary trees and their properties BST 	
 Heap Tree Traversal 	
Height Balance tree (AVL Tree)	
Sorting and Searching	5
Graphs and Their applications	6
Introduction to Algorithm Design Techniques	4

Total: 42 Lectures

5. Evaluation Scheme:

SN	Component	Weightage
1	Assignment-I	10%
2	Minor-I	20%
3	Assignment II	10%
4	Minor-II	20%
5	Major	40%

(Dr. B.S. Panda)