MAL 609 Basic Computer Science

Tutorial Sheet -I

(Asymptotic)

1. Suppose $T_{1}(n)=\Omega(f(n))$ and $T_{2}(n)=\Omega(g(n))$. Which of the following statements are true?
(a) $\quad \mathrm{T}_{1}(\mathrm{n})+\mathrm{T}_{2}(\mathrm{n})=\Omega(\max \{\mathrm{f}(\mathrm{n}), \mathrm{g}(\mathrm{n})\})$.
(b) $\quad \mathrm{T}_{1}(\mathrm{n}) \mathrm{T}_{2}(\mathrm{n})=\Omega(\mathrm{f}(\mathrm{n}) \mathrm{g}(\mathrm{n}))$.
(c)
2. If $f(n)$ is a $k^{\text {th }}$ degree polynomial, then show that
(a) $f(n)=O\left(n^{k}\right)$.
(b) $f(n)=\Omega\left(n^{k}\right)$.
3. Order the following functions by growth rate: $N, \sqrt{ } N, N^{1.5}, N^{2}, N \log N, N \log \log N, N \log ^{2} N$, $N \log \left(\mathrm{~N}^{2}\right), 2 / \mathrm{N}, 2^{\mathrm{N}}, 2^{\mathrm{N} / 2}, 37, \mathrm{~N}^{2} \log \mathrm{~N}, \mathrm{~N}^{3}$. Indicate which functions grow at the same rate.
4. \quad Suppose $T_{1}(N)=O(f(N))$ and $T_{2}(N)=O(f(N))$. Which of the following are true ?
a. $\mathrm{T}_{1}(\mathrm{~N})+\mathrm{T}_{2}(\mathrm{~N})=\mathrm{O}(\mathrm{f}(\mathrm{N}))$
b. $\mathrm{T}_{1}(\mathrm{~N})-\mathrm{T}_{2}(\mathrm{~N})=\mathrm{o}(\mathrm{f}(\mathrm{N}))$
c. $\mathrm{T}_{1}(\mathrm{~N}) / \mathrm{T}_{2}(\mathrm{~N})=\mathrm{O}(1)$
d. $\mathrm{T}_{1}(\mathrm{~N})=\mathrm{O}\left(\mathrm{T}_{2}(\mathrm{~N})\right)$.
5. Which functions grows faster: $\mathrm{N} \log \mathrm{N}$ or $\mathrm{N}^{1+\epsilon / ~} \log \mathrm{~N}, \in>0$?
6. Prove that for any constant, $k, \log ^{k} N=o(N)$.
7. Find two functions $f(N)$ and $g(N)$ such that neither $f(N)=O(g(N))$ nor $g(N)=O(f(N))$.
8. For each function $\mathrm{f}(\mathrm{n})$ and time t in the following table, determine the largest size n of a problem that can be solved in time t assuming that the algorithm to solve the problem takes $f(n)$ microseconds.

	1 second	1 hour	1 Month	1 century
$\log \mathrm{n}$				
$\sqrt{ } \mathrm{n}$				
N				
$\mathrm{n} \log \mathrm{n}$				
n^{2}				
n^{3}				
2^{n}				
$\mathrm{n}!$				

9. Show that $\log ^{3} n$ is $o\left(n^{1 / 3}\right)$.
10. Show that $\sum_{i=1}^{n} i^{2}$ is $O\left(n^{3}\right)$.
11. Consider the following functions of n :
$\mathrm{f}_{1}(\mathrm{n})=\mathrm{n}^{2}$
$\mathrm{f}_{2}(\mathrm{n})=\mathrm{n}^{2}+1000 \mathrm{n}$
$f_{3}(n)=n$, if n is odd
n^{3}, if n is even.
$\mathrm{f}_{4}(\mathrm{n})=\mathrm{n}$, if $\mathrm{n}<=100$
n^{3}, if $n>100$
Indicate for each distinct pair i and j whether $\mathrm{f}_{\mathrm{i}}(\mathrm{n})$ is $\mathrm{O}\left(\mathrm{f}_{\mathrm{j}}(\mathrm{n})\right)$ and whether $\mathrm{f}_{\mathrm{j}}(\mathrm{n})$ is $\Omega\left(\mathrm{f}_{\mathrm{i}}(\mathrm{n})\right)$.
12. Consider the following functions of n :
$\mathrm{g}_{1}(\mathrm{n})=\mathrm{n}^{2}$ for even $\mathrm{n}>=0$
$\mathrm{g}_{2}(\mathrm{n})=\mathrm{n}, 0<=\mathrm{n}<=100$
n^{3}, for $\mathrm{n}>100$
$g_{3}(n)=n^{2.5}$
Indicate for each distinct pair i and j whether $g_{i}(n)$ is $O\left(g_{j}(n)\right)$ and whether $g_{j}(n)$ is $\Omega\left(g_{i}(n)\right)$.
13. Give, using "bog oh" notation, the worst case running times of the following procedures as a function of n.
a. procedure matmpy (n : integer);
var
i, j, k : integer;
begin

$$
\text { for } I=1 \text { to } n
$$

for $\mathrm{j}=1$ to n do begin $\mathrm{C}[\mathrm{I}, \mathrm{j}]=0$ for $\mathrm{k}=1$ to n do $C[I, j]=C[I, j]+A[I, k] * B[k, j]$
end
end
b. procedure mystery (n : integer)
var
i,j,k : integer;
begin

```
            for i=1 to n-1 do
            for j= i+1 to n do
                for k=1 to j do
                                    {some statement requiring O(1) time}
```

 end
 c. procedure veryodd (n : integer);
var
i, j, x, y : integer;
begin
for $\mathrm{i}=1$ to n
if $\operatorname{odd}(\mathrm{i})$ then begin
for $\mathrm{j}=\mathrm{i}$ to n do begin
$\mathrm{x}=\mathrm{x}+1$;
for $\mathrm{j}=1$ to ido
$\mathrm{y}=\mathrm{y}+1$;
end
end
d. function recursive(n:integer) : integer; begin

> if $\mathrm{n}<=1$ then
> return(1)
> else
return(recursive(n-1) $+\operatorname{recursive}(\mathrm{n}-1)$)
end
14. Show that the following statements are true.
a. 17 is $\mathrm{O}(1)$.
b. $n(n-1)$ is $O\left(n^{2}\right)$
c. $\sum_{i=1}^{n} i^{k}$ is $O\left(n^{k+1}\right)$ and $\Omega\left(n^{k+1}\right)$ for integer k.
d. If $\mathrm{P}(\mathrm{x})$ is any $\mathrm{k}^{\text {th }}$ degree polynomial with a positive leading coefficient, then $\mathrm{P}(\mathrm{n})$ is $\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$ and $\Omega\left(n^{k}\right)$.
15. Order the following functions by growth rate: n, sqrt(n), $\log n, \log \log n, \log ^{2} n, n / \log n, \sqrt{n} \log ^{2} n,(1 / 3)^{n}$, (3/2) ${ }^{\mathrm{n}}, 17$.

