MAL 609 Basic Computer Science Tutorial Sheet -I

(Asymptotic)

- 1. Suppose $T_1(n) = \Omega(f(n))$ and $T_2(n) = \Omega(g(n))$. Which of the following statements are true?
 - (a) $T_1(n)+T_2(n)=\Omega(\max \{f(n), g(n)\}).$
 - (b) $T_1(n)T_2(n)=\Omega(f(n)g(n)).$
 - (c)
- 2. If f(n) is a kth degree polynomial, then show that
 - (a) $f(n) = O(n^k)$.
 - (b) $f(n) = \Omega(n^k)$.
- 3. Order the following functions by growth rate: N, \sqrt{N} , N^{1.5}, N², N log N, N log log N, N log² N, Nlog (N²), 2/N, 2^N, 2^{N/2}, 37, N² log N, N³. Indicate which functions grow at the same rate.
- 4. Suppose $T_1(N) = O(f(N))$ and $T_2(N) = O(f(N))$. Which of the following are true ? a. $T_1(N) + T_2(N) = O(f(N))$
 - b. $T_1(N) T_2(N) = o(f(N))$
 - c. $T_1(N) / T_2(N) = O(1)$ d. $T_1(N) = O(T_2(N))$.
- 5. Which functions grows faster: N log N or N^{1+ ϵ / $\sqrt{\log N}$, $\epsilon > 0$?}
- 6. Prove that for any constant, k, $\log^k N = o(N)$.
- 7. Find two functions f(N) and g(N) such that neither f(N) = O(g(N)) nor g(N) = O(f(N)).
- 8. For each function f(n) and time t in the following table, determine the largest size n of a problem that can be solved in time t assuming that the algorithm to solve the problem takes f(n) microseconds.

	1 second	1 hour	1 Month	1 century
log n				
√n				
Ν				
n log n				
n^2				
n ³				
2 ⁿ				
n !				

- 9. Show that $\log^3 n$ is $o(n^{1/3})$.
- 10. Show that $\sum_{i=1}^{n} i^2$ is $O(n^3)$.
- 11. Consider the following functions of n: $f_1(n) = n^2$
 - $f_1(n) = n$ $f_2(n) = n^2 + 1000n$
 - $f_{3}(n) = n$, if n is odd
 - n^3 , if n is even.

 $f_4(n) = n$, if $n \le 100$ n^3 , if n > 100

Indicate for each distinct pair i and j whether $f_i(n)$ is $O(f_j(n))$ and whether $f_j(n)$ is $\Omega(f_i(n))$. 12. Consider the following functions of n:

$$g_1(n) = n^2$$
 for even $n \ge 0$
 n^3 for odd $n \ge 1$
 $g_2(n) = n, 0 \le n \le 100$
 n^3 , for $n \ge 100$

$$n^3$$
, for $n > 10$
 $g_3(n) = n^{2.5}$

Indicate for each distinct pair i and j whether $g_i(n)$ is $O(g_i(n))$ and whether $g_i(n)$ is $\Omega(g_i(n))$.

13. Give, using "bog oh" notation, the worst case running times of the following procedures as a function of n.

```
procedure matmpy ( n : integer);
             a.
                  var
                           i, j, k : integer;
                  begin
                           for I = 1 to n
                                    for j = 1 to n do begin
                                             C[I,j] = 0
                                             for k = 1 to n do
                                             C[I, j] = C[I, j] + A[I, k] * B[k, j]
                                    end
                  end
                 procedure mystery (n: integer)
             b.
                  var
                           i,j,k : integer;
                  begin
                           for i = 1 to n-1 do
                           for j = i+1 to n do
                                    for k = 1 to j do
                                             {some statement requiring O(1) time}
                  end
          c. procedure veryodd ( n : integer);
                  var
                           i, j, x, y : integer;
                  begin
                           for i = 1 to n
                                    if odd(i) then begin
                                    for j = i to n do begin
                                    x = x+1;
                                    for j=1 to ido
                                    y = y + 1;
                           end
                  end
             d. function recursive(n:integer) : integer;
                  begin
                           if n \le 1 then
                                    return(1)
                           else
                                    return(recursive(n-1) + recursive(n-1))
                  end
14. Show that the following statements are true.
        a. 17 is O(1).
```

b. n(n-1) is O(n²)
c. ∑ⁿ_{i=1} i^k is O(n^{k+1}) and Ω(n^{k+1}) for integer k.
d. If P(x) is any kth degree polynomial with a positive leading coefficient, then P(n) is O(n^k) and Ω(n^k).

15. Order the following functions by growth rate: n, sqrt(n), log n, log log n, log²n, n/log n, $\sqrt{n \log^2 n}$, $(1/3)^n$, $(3/2)^n$, 17.