Clustering
Road map

• Basic concepts
• K-means algorithm
• Representation of clusters
• Hierarchical clustering
• Distance functions
• Data standardization
• Handling mixed attributes
• Which clustering algorithm to use?
• Cluster evaluation
• Discovering holes and data regions
• Summary
Supervised learning vs. unsupervised learning

• **Supervised learning**: discover patterns in the data that relate data attributes with a target (class) attribute.
 – These patterns are then utilized to predict the values of the target attribute in future data instances.

• **Unsupervised learning**: The data have no target attribute.
 – We want to explore the data to find some intrinsic structures in them.
Clustering

• Clustering is a technique for finding similarity groups in data, called clusters. I.e.,
 – it groups data instances that are similar to (near) each other in one cluster and data instances that are very different (far away) from each other into different clusters.

• Clustering is often called an unsupervised learning task as no class values denoting an a priori grouping of the data instances are given, which is the case in supervised learning.

• Due to historical reasons, clustering is often considered synonymous with unsupervised learning.
 – In fact, association rule mining is also unsupervised
An illustration

- The data set has three natural groups of data points, i.e., 3 natural clusters.
What is clustering for?

• Let us see some real-life examples
• **Example 1**: groups people of similar sizes together to make “small”, “medium” and “large” T-Shirts.
 – Tailor-made for each person: too expensive
 – One-size-fits-all: does not fit all.
• **Example 2**: In marketing, segment customers according to their similarities
 – To do targeted marketing.
What is clustering for? (cont...)

• **Example 3**: Given a collection of text documents, we want to organize them according to their content similarities,
 – To produce a topic hierarchy
• **In fact, clustering is one of the most utilized data mining techniques.**
 – It has a long history, and used in almost every field, e.g., medicine, psychology, botany, sociology, biology, archeology, marketing, insurance, libraries, etc.
 – In recent years, due to the rapid increase of online documents, text clustering becomes important.
Aspects of clustering

- A clustering algorithm
 - Partitional clustering
 - Hierarchical clustering
 - ...

- A distance (similarity, or dissimilarity) function

- Clustering quality
 - Inter-clusters distance \Rightarrow maximized
 - Intra-clusters distance \Rightarrow minimized

- The quality of a clustering result depends on the algorithm, the distance function, and the application.
Road map

• Basic concepts
• **K-means algorithm**
• Representation of clusters
• Hierarchical clustering
• Distance functions
• Data standardization
• Handling mixed attributes
• Which clustering algorithm to use?
• Cluster evaluation
• Discovering holes and data regions
• Summary
K-means clustering

• K-means is a **partitional clustering** algorithm

• Let the set of data points (or instances) D be

\[
\{x_1, x_2, \ldots, x_n\},
\]

where $x_i = (x_{i1}, x_{i2}, \ldots, x_{ir})$ is a **vector** in a real-valued space $X \subseteq \mathbb{R}^r$, and r is the number of attributes (dimensions) in the data.

• The k-means algorithm partitions the given data into k clusters.

 – Each cluster has a cluster **center**, called **centroid**.
 – k is specified by the user
K-means algorithm

• Given k, the k-means algorithm works as follows:
 1) Randomly choose k data points (seeds) to be the initial centroids, cluster centers
 2) Assign each data point to the closest centroid
 3) Re-compute the centroids using the current cluster memberships.
 4) If a convergence criterion is not met, go to 2).
K-means algorithm – (cont ...)

Algorithm k-means(k, D)

1. Choose k data points as the initial centroids (cluster centers)
2. repeat
3. for each data point $x \in D$ do
4. compute the distance from x to each centroid;
5. assign x to the closest centroid // a centroid represents a cluster
6. endfor
7. re-compute the centroids using the current cluster memberships
8. until the stopping criterion is met
Stopping/convergence criterion

1. no (or minimum) re-assignments of data points to different clusters,

2. no (or minimum) change of centroids, or

3. minimum decrease in the sum of squared error (SSE),

\[SSE = \sum_{j=1}^{k} \sum_{x \in C_j} \text{dist}(x, m_j)^2 \] \hspace{1cm} (1)

- \(C_i \) is the \(j \)th cluster, \(m_j \) is the centroid of cluster \(C_j \) (the mean vector of all the data points in \(C_j \)), and \(\text{dist}(x, m_j) \) is the distance between data point \(x \) and centroid \(m_j \).
An example

(A). Random selection of k centers

Iteration 1: (B). Cluster assignment

(C). Re-compute centroids
An example (cont ...)

Iteration 2: (D). Cluster assignment

(E). Re-compute centroids

Iteration 3: (F). Cluster assignment

(G). Re-compute centroids
An example distance function

The k-means algorithm can be used for any application data set where the **mean** can be defined and computed. In the **Euclidean space**, the mean of a cluster is computed with:

$$m_j = \frac{1}{|C_j|} \sum_{x_i \in C_j} x_i$$ \hspace{1cm} (2)

where $|C_j|$ is the number of data points in cluster C_j. The distance from one data point x_i to a mean (centroid) m_j is computed with

$$dist(x_i, m_j) = \| x_i - m_j \|$$

$$= \sqrt{(x_{i1} - m_{j1})^2 + (x_{i2} - m_{j2})^2 + \ldots + (x_{ir} - m_{jr})^2}$$ \hspace{1cm} (3)
A disk version of k-means

- k-means can be implemented with data on disk
 - In each iteration, it scans the data once.
 - as the centroids can be computed incrementally
- It can be used to cluster large datasets that do not fit in main memory
- **We need to control the number of iterations**
 - In practice, a limited is set (< 50).
- Not the best method. There are other scale-up algorithms, e.g., BIRCH.
Algorithm disk-k-means(k, D)
1 Choose k data points as the initial centroids \(m_j, j = 1, \ldots, k \);
2 repeat
3 initialize \(s_j = 0, j = 1, \ldots, k \); \hspace{1cm} // \(0 \) is a vector with all 0’s
4 initialize \(n_j = 0, j = 1, \ldots, k \); \hspace{1cm} // \(n_j \) is the number points in cluster \(j \)
5 for each data point \(x \in D \) do
6 \(j = \arg \min_j \text{dist}(x, m_j) \);
7 assign \(x \) to the cluster \(j \);
8 \(s_j = s_j + x \);
9 \(n_j = n_j + 1 \);
10 endfor
11 \(m_i = s_j / n_j, i = 1, \ldots, k \);
12 until the stopping criterion is met
Strengths of k-means

• Strengths:
 – Simple: easy to understand and to implement
 – Efficient: Time complexity: $O(tkn)$,
 where n is the number of data points,
 k is the number of clusters, and
 t is the number of iterations.
 – Since both k and t are small. k-means is considered a linear algorithm.

• K-means is the most popular clustering algorithm.

• Note that: it terminates at a local optimum if SSE is used. The global optimum is hard to find due to complexity.
Weaknesses of k-means

- The algorithm is only applicable if the mean is defined.
 - For categorical data, k-mode - the centroid is represented by most frequent values.
- The user needs to specify k.
- The algorithm is sensitive to outliers
 - Outliers are data points that are very far away from other data points.
 - Outliers could be errors in the data recording or some special data points with very different values.
Weaknesses of k-means: Problems with outliers

(A): Undesirable clusters

(B): Ideal clusters
Weaknesses of k-means: To deal with outliers

• One method is to remove some data points in the clustering process that are much further away from the centroids than other data points.
 – To be safe, we may want to monitor these possible outliers over a few iterations and then decide to remove them.

• Another method is to perform random sampling. Since in sampling we only choose a small subset of the data points, the chance of selecting an outlier is very small.
 – Assign the rest of the data points to the clusters by distance or similarity comparison, or classification
Weaknesses of k-means (cont ...)

- The algorithm is sensitive to initial seeds.
Weaknesses of k-means (cont ...)

- If we use different seeds: good results

There are some methods to help choose good seeds
Weaknesses of k-means (cont ...)

• The k-means algorithm is not suitable for discovering clusters that are not hyper-ellipsoids (or hyper-spheres).

(A): Two natural clusters

(B): k-means clusters
K-means summary

• Despite weaknesses, k-means is still the most popular algorithm due to its simplicity, efficiency and
 – other clustering algorithms have their own lists of weaknesses.

• No clear evidence that any other clustering algorithm performs better in general
 – although they may be more suitable for some specific types of data or applications.

• Comparing different clustering algorithms is a difficult task. No one knows the correct clusters!
Road map

• Basic concepts
• K-means algorithm
• **Representation of clusters**
• Hierarchical clustering
• Distance functions
• Data standardization
• Handling mixed attributes
• Which clustering algorithm to use?
• Cluster evaluation
• Discovering holes and data regions
• Summary
Common ways to represent clusters

- Use the centroid of each cluster to represent the cluster.

 - compute the radius and

 - standard deviation of the cluster to determine its spread in each dimension

 - The centroid representation alone works well if the clusters are of the hyper-spherical shape.

 - If clusters are elongated or are of other shapes, centroids are not sufficient
Using classification model

- All the data points in a cluster are regarded to have the same class label, e.g., the cluster ID.
 - run a supervised learning algorithm on the data to find a classification model.

\[
\begin{align*}
x \leq 2 & \rightarrow \text{cluster 1} \\
x > 2, y > 1.5 & \rightarrow \text{cluster 2} \\
x > 2, y \leq 1.5 & \rightarrow \text{cluster 3}
\end{align*}
\]
Use frequent values to represent cluster

• This method is mainly for clustering of categorical data (e.g., k-modes clustering).

• Main method used in text clustering, where a small set of frequent words in each cluster is selected to represent the cluster.
Clusters of arbitrary shapes

• Hyper-elliptical and hyper-spherical clusters are usually easy to represent, using their centroid together with spreads.

• Irregular shape clusters are hard to represent. They may not be useful in some applications.
 – Using centroids are not suitable (upper figure) in general
 – K-means clusters may be more useful (lower figure), e.g., for making 2 size T-shirts.
Road map

- Basic concepts
- K-means algorithm
- Representation of clusters
- Hierarchical clustering
- Distance functions
- Data standardization
- Handling mixed attributes
- Which clustering algorithm to use?
- Cluster evaluation
- Discovering holes and data regions
- Summary
Hierarchical Clustering

- Produce a nested sequence of clusters, a tree, also called Dendrogram.
Types of hierarchical clustering

• **Agglomerative (bottom up) clustering**: It builds the dendrogram (tree) from the bottom level, and
 – merges the most similar (or nearest) pair of clusters
 – stops when all the data points are merged into a single cluster (i.e., the root cluster).

• **Divisive (top down) clustering**: It starts with all data points in one cluster, the root.
 – Splits the root into a set of child clusters. Each child cluster is recursively divided further
 – stops when only singleton clusters of individual data points remain, i.e., each cluster with only a single point
Agglomerative clustering

It is more popular than divisive methods.

• At the beginning, each data point forms a cluster (also called a node).
• Merge nodes/clusters that have the least distance.
• Go on merging
• Eventually all nodes belong to one cluster
Agglomerative clustering algorithm

Algorithm Agglomerative(D)
1. Make each data point in the data set D a cluster,
2. Compute all pair-wise distances of $x_1, x_2, \ldots, x_n \in D$;
3. repeat
4. find two clusters that are nearest to each other;
5. merge the two clusters form a new cluster c;
6. compute the distance from c to all other clusters;
7. until there is only one cluster left
An example: working of the algorithm
Measuring the distance of two clusters

• A few ways to measure distances of two clusters.

• Results in different variations of the algorithm.
 – Single link
 – Complete link
 – Average link
 – Centroids
 – ...

Single link method

- The distance between two clusters is the distance between two closest data points in the two clusters, one data point from each cluster.
- It can find arbitrarily shaped clusters, but
 - It may cause the undesirable “chain effect” by noisy points

Two natural clusters are split into two
Complete link method

• The distance between two clusters is the distance of two furthest data points in the two clusters.
• It is sensitive to outliers because they are far away.
Average link and centroid methods

• **Average link**: A compromise between
 – the sensitivity of complete-link clustering to outliers and
 – the tendency of single-link clustering to form long chains that do not correspond to the intuitive notion of clusters as compact, spherical objects.
 – In this method, **the distance between two clusters is the average distance of all pair-wise distances between the data points in two clusters**.

• **Centroid method**: In this method, the distance between two clusters is the distance between their centroids
The complexity

• All the algorithms are at least $O(n^2)$. n is the number of data points.

• Single link can be done in $O(n^2)$.

• Complete and average links can be done in $O(n^2 \log n)$.

• Due the complexity, hard to use for large data sets.
 – Sampling
 – Scale-up methods (e.g., BIRCH).
Road map

• Basic concepts
• K-means algorithm
• Representation of clusters
• Hierarchical clustering
• Distance functions
• Data standardization
• Handling mixed attributes
• Which clustering algorithm to use?
• Cluster evaluation
• Discovering holes and data regions
• Summary
Distance functions

• Key to clustering. “similarity” and “dissimilarity” can also commonly used terms.

• There are numerous distance functions for
 – Different types of data
 • Numeric data
 • Nominal data
 – Different specific applications
Distance functions for numeric attributes

• Most commonly used functions are
 – Euclidean distance and
 – Manhattan (city block) distance

• We denote distance with: \(\text{dist}(\mathbf{x}_i, \mathbf{x}_j) \), where \(\mathbf{x}_i \) and \(\mathbf{x}_j \) are data points (vectors)

• They are special cases of Minkowski distance. \(h \) is positive integer.

\[
\text{dist}(\mathbf{x}_i, \mathbf{x}_j) = \left((x_{i1} - x_{j1})^h + (x_{i2} - x_{j2})^h + \ldots + (x_{ir} - x_{jr})^h \right)^{\frac{1}{h}}
\]
Euclidean distance and Manhattan distance

- If $h = 2$, it is the **Euclidean distance**

$$
dist(x_i, x_j) = \sqrt{(x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2 + \ldots + (x_{ir} - x_{jr})^2}
$$

- If $h = 1$, it is the **Manhattan distance**

$$
dist(x_i, x_j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \ldots + |x_{ir} - x_{jr}|
$$

- **Weighted Euclidean distance**

$$
dist(x_i, x_j) = \sqrt{w_1(x_{i1} - x_{j1})^2 + w_2(x_{i2} - x_{j2})^2 + \ldots + w_r(x_{ir} - x_{jr})^2}
$$
Squared distance and Chebychev distance

- **Squared Euclidean distance:** to place progressively greater weight on data points that are further apart.

\[
dist(x_i, x_j) = (x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2 + ... + (x_{ir} - x_{jr})^2
\]

- **Chebychev distance:** one wants to define two data points as "different" if they are different on any one of the attributes.

\[
dist(x_i, x_j) = \max(\left| x_{i1} - x_{j1} \right|, \left| x_{i2} - x_{j2} \right|, \ldots, \left| x_{ir} - x_{jr} \right|)
\]
Distance functions for binary and nominal attributes

• **Binary attribute**: has two values or states but no ordering relationships, e.g.,
 – Gender: male and female.

• We use a confusion matrix to introduce the distance functions/measures.

• Let the ith and jth data points be x_i and x_j (vectors)
Confusion matrix

<table>
<thead>
<tr>
<th></th>
<th>Data point j</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Data point i

$a + c$ | $b + d$ | $a + b + c + d$

a: the number of attributes with the value of 1 for both data points.

b: the number of attributes for which $x_{if} = 1$ and $x_{jf} = 0$, where x_{if} (x_{jf}) is the value of the fth attribute of the data point x_i (x_j).

c: the number of attributes for which $x_{if} = 0$ and $x_{jf} = 1$.

d: the number of attributes with the value of 0 for both data points.
Symmetric binary attributes

• A binary attribute is *symmetric* if both of its states (0 and 1) have equal importance, and carry the same weights, e.g., male and female of the attribute Gender

• Distance function: **Simple Matching Coefficient**, proportion of mismatches of their values

\[
\text{dist}(x_i, x_j) = \frac{b + c}{a + b + c + d}
\]
Symmetric binary attributes: example

\[\text{dist}(x_i, x_j) = \frac{2 + 1}{2 + 2 + 1 + 2} = \frac{3}{7} = 0.429 \]
Asymmetric binary attributes

• **Asymmetric**: if one of the states is more important or more valuable than the other.
 – By convention, state 1 represents the more important state, which is typically the rare or infrequent state.
 – **Jaccard coefficient** is a popular measure
 \[
 dist(x_i, x_j) = \frac{b + c}{a + b + c}
 \]
 – We can have some variations, adding weights
Nominal attributes

- **Nominal attributes**: with more than two states or values.
 - the commonly used distance measure is also based on the simple matching method.
 - Given two data points x_i and x_j, let the number of attributes be r, and the number of values that match in x_i and x_j be q.

\[
dist(x_i, x_j) = \frac{r - q}{r}
\]
Distance function for text documents

• A text document consists of a sequence of sentences and each sentence consists of a sequence of words.

• To simplify: a document is usually considered a “bag” of words in document clustering.
 – Sequence and position of words are ignored.

• A document is represented with a vector just like a normal data point.

• It is common to use similarity to compare two documents rather than distance.
 – The most commonly used similarity function is the cosine similarity. We will study this later.
Road map

- Basic concepts
- K-means algorithm
- Representation of clusters
- Hierarchical clustering
- Distance functions
- Data standardization
- Handling mixed attributes
- Which clustering algorithm to use?
- Cluster evaluation
- Discovering holes and data regions
- Summary
Data standardization

• In the Euclidean space, standardization of attributes is recommended so that all attributes can have equal impact on the computation of distances.

• Consider the following pair of data points
 – \(x_i: (0.1, 20) \) and \(x_j: (0.9, 720) \).

\[
dist(x_i, x_j) = \sqrt{(0.9 - 0.1)^2 + (720 - 20)^2} = 700.000457
\]

• The distance is almost completely dominated by \((720-20) \) = 700.

• **Standardize attributes**: to force the attributes to have a common value range
Interval-scaled attributes

• Their values are real numbers following a linear scale.
 – The difference in Age between 10 and 20 is the same as that between 40 and 50.
 – The key idea is that intervals keep the same importance throughout the scale.

• Two main approaches to standardize interval scaled attributes, range and z-score. \(f \) is an attribute.

\[
\text{range}(x_{if}) = \frac{x_{if} - \min(f)}{\max(f) - \min(f)},
\]
Interval-scaled attributes (cont ...)

• **Z-score**: transforms the attribute values so that they have a mean of zero and a **mean absolute deviation** of 1. The mean absolute deviation of attribute f, denoted by s_f, is computed as follows

$$s_f = \frac{1}{n} \left(\left| x_{1f} - m_f \right| + \left| x_{2f} - m_f \right| + \ldots + \left| x_{nf} - m_f \right| \right),$$

$$m_f = \frac{1}{n} \left(x_{1f} + x_{2f} + \ldots + x_{nf} \right),$$

Z-score: $$z(x_{if}) = \frac{x_{if} - m_f}{s_f}.$$
Ratio-scaled attributes

• Numeric attributes, but unlike interval-scaled attributes, their scales are exponential,

• For example, the total amount of microorganisms that evolve in a time t is approximately given by

 Ae^{Bt},

 – where A and B are some positive constants.

• Do log transform: $\log(x_{if})$

 – Then treat it as an interval-scaled attribute.
Nominal attributes

• Sometime, we need to transform nominal attributes to numeric attributes.

• Transform nominal attributes to binary attributes.
 – The number of values of a nominal attribute is \(v \).
 – Create \(v \) binary attributes to represent them.
 – If a data instance for the nominal attribute takes a particular value, the value of its binary attribute is set to 1, otherwise it is set to 0.

• The resulting binary attributes can be used as numeric attributes, with two values, 0 and 1.
Nominal attributes: an example

• Nominal attribute *fruit*: has three values,
 – Apple, Orange, and Pear

• We create three binary attributes called, Apple, Orange, and Pear in the new data.

• If a particular data instance in the original data has Apple as the value for *fruit*,
 – then in the transformed data, we set the value of the attribute Apple to 1, and
 – the values of attributes Orange and Pear to 0
Ordinal attributes

• Ordinal attribute: an ordinal attribute is like a nominal attribute, but its values have a numerical ordering. E.g.,
 – Age attribute with values: Young, MiddleAge and Old. They are ordered.
 – Common approach to standardization: treat is as an interval-scaled attribute.
Road map

• Basic concepts
• K-means algorithm
• Representation of clusters
• Hierarchical clustering
• Distance functions
• Data standardization
• **Handling mixed attributes**
• Which clustering algorithm to use?
• Cluster evaluation
• Discovering holes and data regions
• Summary
Mixed attributes

• Our distance functions given are for data with all numeric attributes, or all nominal attributes, etc.

• Practical data has different types:
 – Any subset of the 6 types of attributes,
 • interval-scaled,
 • symmetric binary,
 • asymmetric binary,
 • ratio-scaled,
 • ordinal and
 • nominal
Convert to a single type

• One common way of dealing with mixed attributes is to
 – Decide the dominant attribute type, and
 – Convert the other types to this type.

• E.g., if most attributes in a data set are interval-scaled,
 – we convert ordinal attributes and ratio-scaled attributes to interval-scaled attributes.
 – It is also appropriate to treat symmetric binary attributes as interval-scaled attributes.
Convert to a single type (cont ...)

• It does not make much sense to convert a nominal attribute or an asymmetric binary attribute to an interval-scaled attribute, but it is still frequently done in practice by assigning some numbers to them according to some hidden ordering, e.g., prices of the fruits.

• Alternatively, a nominal attribute can be converted to a set of (symmetric) binary attributes, which are then treated as numeric attributes.
Combining individual distances

- This approach computes individual attribute distances and then combine them.

\[
dist(x_i, x_j) = \frac{\sum_{f=1}^{r} \delta_{ij}^f d_{ij}^f}{\sum_{f=1}^{r} \delta_{ij}^f}
\]

This distance value is between 0 and 1. \(r \) is the number of attributes in the data set. The indicator \(\delta_{ij}^f \) is 1 when both values \(x_{if} \) and \(x_{jf} \) for attribute \(f \) are non-missing, and it is set to 0 otherwise. It is also set to 0 if attribute \(f \) is asymmetric and the match is 0-0. Equation (25) cannot be computed if all \(\delta_{ij}^f \)'s are 0. In such a case, some default value may be used or one of the data points is removed.

\(d_{ij}^f \) is the distance contributed by attribute \(f \), and it is in the 0-1 range.
Road map

• Basic concepts
• K-means algorithm
• Representation of clusters
• Hierarchical clustering
• Distance functions
• Data standardization
• Handling mixed attributes
• Which clustering algorithm to use?
• Cluster evaluation
• Discovering holes and data regions
• Summary
How to choose a clustering algorithm

• Clustering research has a long history. A vast collection of algorithms are available.
 – We only introduced several main algorithms.

• Choosing the “best” algorithm is a challenge.
 – Every algorithm has limitations and works well with certain data distributions.
 – It is very hard, if not impossible, to know what distribution the application data follow. The data may not fully follow any “ideal” structure or distribution required by the algorithms.
 – One also needs to decide how to standardize the data, to choose a suitable distance function and to select other parameter values.
Choose a clustering algorithm (cont ...)

• Due to these complexities, the common practice is to
 – run several algorithms using different distance functions and parameter settings, and
 – then carefully analyze and compare the results.

• The interpretation of the results must be based on insight into the meaning of the original data together with knowledge of the algorithms used.

• Clustering is highly application dependent and to certain extent subjective (personal preferences).
Road map

- Basic concepts
- K-means algorithm
- Representation of clusters
- Hierarchical clustering
- Distance functions
- Data standardization
- Handling mixed attributes
- Which clustering algorithm to use?
- Cluster evaluation
- Discovering holes and data regions
- Summary
Cluster Evaluation: hard problem

• The quality of a clustering is very hard to evaluate because
 – We do not know the correct clusters

• Some methods are used:
 – User inspection
 • Study centroids, and spreads
 • Rules from a decision tree.
 • For text documents, one can read some documents in clusters.
Cluster evaluation: ground truth

- We use some labeled data (for classification)
- **Assumption**: Each class is a cluster.
- After clustering, a confusion matrix is constructed. From the matrix, we compute various measurements, entropy, purity, precision, recall and F-score.
 - Let the classes in the data D be $C = (c_1, c_2, ..., c_k)$. The clustering method produces k clusters, which divides D into k disjoint subsets, $D_1, D_2, ..., D_k$.
Entropy: For each cluster, we can measure its entropy as follows:

\[
entropy(D_i) = - \sum_{j=1}^{k} \Pr_i(c_j) \log_2 \Pr_i(c_j),
\]

where \(\Pr_i(c_j) \) is the proportion of class \(c_j \) data points in cluster \(i \) or \(D_i \). The total entropy of the whole clustering (which considers all clusters) is

\[
entropy_{\text{total}}(D) = \sum_{i=1}^{k} \frac{|D_i|}{|D|} \times entropy(D_i)
\]
Evaluation measures: purity

Purity: This again measures the extent that a cluster contains only one class of data. The purity of each cluster is computed with

\[
purity(D_i) = \max_j \Pr_i(c_j)
\]

(31)

The total purity of the whole clustering (considering all clusters) is

\[
purity_{total}(D) = \sum_{i=1}^{k} \frac{|D_i|}{|D|} \times purity(D_i)
\]

(32)
Example 14: Assume we have a text collection D of 900 documents from three topics (or three classes), Science, Sports, and Politics. Each class has 300 documents. Each document in D is labeled with one of the topics (classes). We use this collection to perform clustering to find three clusters. Note that class/topic labels are not used in clustering. After clustering, we want to measure the effectiveness of the clustering algorithm.

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Science</th>
<th>Sports</th>
<th>Politics</th>
<th>Entropy</th>
<th>Purity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>250</td>
<td>20</td>
<td>10</td>
<td>0.589</td>
<td>0.893</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>180</td>
<td>80</td>
<td>1.198</td>
<td>0.643</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>100</td>
<td>210</td>
<td>1.257</td>
<td>0.617</td>
</tr>
<tr>
<td>Total</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>1.031</td>
<td>0.711</td>
</tr>
</tbody>
</table>
A remark about ground truth evaluation

- Commonly used to compare different clustering algorithms.
- A real-life data set for clustering has no class labels.
 - Thus although an algorithm may perform very well on some labeled data sets, no guarantee that it will perform well on the actual application data at hand.
- The fact that it performs well on some label data sets does give us some confidence of the quality of the algorithm.
- This evaluation method is said to be based on external data or information.
Evaluation based on internal information

• **Intra-cluster cohesion** (compactness):
 – Cohesion measures how near the data points in a cluster are to the cluster centroid.
 – Sum of squared error (SSE) is a commonly used measure.

• **Inter-cluster separation** (isolation):
 – Separation means that different cluster centroids should be far away from one another.

• In most applications, expert judgments are still the key.
Indirect evaluation

• In some applications, clustering is not the primary task, but used to help perform another task.

• We can use the performance on the primary task to compare clustering methods.

• For instance, in an application, the primary task is to provide recommendations on book purchasing to online shoppers.
 – If we can cluster books according to their features, we might be able to provide better recommendations.
 – We can evaluate different clustering algorithms based on how well they help with the recommendation task.
 – Here, we assume that the recommendation can be reliably evaluated.
Road map

- Basic concepts
- K-means algorithm
- Representation of clusters
- Hierarchical clustering
- Distance functions
- Data standardization
- Handling mixed attributes
- Which clustering algorithm to use?
- Cluster evaluation
- Discovering holes and data regions
- Summary
Holes in data space

• All the clustering algorithms only group data.
• Clusters only represent one aspect of the knowledge in the data.
• Another aspect that we have not studied is the holes.
 – A hole is a region in the data space that contains no or few data points. Reasons:
 • insufficient data in certain areas, and/or
 • certain attribute-value combinations are not possible or seldom occur.
Holes are useful too

• Although clusters are important, holes in the space can be quite useful too.

• For example, in a disease database
 – we may find that certain symptoms and/or test values do not occur together, or
 – when a certain medicine is used, some test values never go beyond certain ranges.

• Discovery of such information can be important in medical domains because
 – it could mean the discovery of a cure to a disease or some biological laws.
Data regions and empty regions

• Given a data space, separate
 – data regions (clusters) and
 – empty regions (holes, with few or no data points).

• Use a supervised learning technique, i.e., decision tree induction, to separate the two types of regions.

• Due to the use of a supervised learning method for an unsupervised learning task,
 – an interesting connection is made between the two types of learning paradigms.
Supervised learning for unsupervised learning

• Decision tree algorithm is not directly applicable.
 – it needs at least two classes of data.
 – A clustering data set has no class label for each data point.

• The problem can be dealt with by a simple idea.
 – Regard each point in the data set to have a class label Y.
 – Assume that the data space is uniformly distributed with another type of points, called non-existing points. We give them the class, N.

• With the N points added, the problem of partitioning the data space into data and empty regions becomes a supervised classification problem.
An example

(A): The original data space

(B): Partitioning with added N points

A decision tree method is used for partitioning in (B).
Can it done without adding N points?

• Yes.

• Physically adding N points increases the size of the data and thus the running time.

• More importantly: it is unlikely that we can have points truly uniformly distributed in a high dimensional space as we would need an exponential number of points.

• Fortunately, no need to physically add any N points.
 – We can compute them when needed
Characteristics of the approach

- It provides representations of the resulting data and empty regions in terms of hyper-rectangles, or rules.
- It detects outliers automatically. Outliers are data points in an empty region.
- It may not use all attributes in the data just as in a normal decision tree for supervised learning.
 - It can automatically determine what attributes are useful.
 Subspace clustering ...
- **Drawback**: data regions of irregular shapes are hard to handle since decision tree learning only generates hyper-rectangles (formed by axis-parallel hyper-planes), which are rules.
Building the Tree

• The main computation in decision tree building is to evaluate entropy (for information gain):

\[
entropy(D) = - \sum_{j=1}^{|C|} \Pr(c_j) \log_2 \Pr(c_j)
\]

• Can it be evaluated without adding \(N \) points? Yes.
• \(\Pr(c_j) \) is the probability of class \(c_j \) in data set \(D \), and \(|C| \) is the number of classes, \(Y \) and \(N \) (2 classes).
 – To compute \(\Pr(c_j) \), we only need the number of \(Y \) (data) points and the number of \(N \) (non-existing) points.
 – We already have \(Y \) (or data) points, and we can compute the number of \(N \) points on the fly. Simple: as we assume that the \(N \) points are uniformly distributed in the space.
An example

• The space has 25 data (Y) points and 25 N points. Assume the system is evaluating a possible cut S.
 – # N points on the left of S is 25 * 4/10 = 10. The number of Y points is 3.
 – Likewise, # N points on the right of S is 15 (= 25 - 10). The number of Y points is 22.

• With these numbers, entropy can be computed.
How many N points to add?

• We add a different number of N points at each different node.
 – The number of N points for the current node E is determined by the following rule (note that at the root node, the number of inherited N points is 0):

1. If the number of N points inherited from the parent node of E is less than the number of Y points in E then
2. the number of N points for E is increased to the number of Y points in E
3. else the number of inherited N points is used for E
Example 17: Fig. 20 gives an example. The (parent) node P has two children nodes L and R. Assume P has 1000 Y points and thus 1000 N points, stored in $P.Y$ and $P.N$ respectively. Assume after splitting, L has 20 Y points and 500 N points, and R has 980 Y points and 500 N points. According to the above rule, for subsequent partitioning, we increase the number of N points at R to 980. The number of N points at L is unchanged.
How many N points to add? (cont...)

- Basically, for a Y node (which has more data points), we increase N points so that
 \[\#Y = \#N \]
- The number of N points is not reduced if the current node is an N node (an N node has more N points than Y points).
 - A reduction may cause outlier Y points to form Y nodes (a Y node has an equal number of Y points as N points or more).
 - Then data regions and empty regions may not be separated well.
Building the decision tree

• Using the above ideas, a decision tree can be built to separate data regions and empty regions.

• The actual method is more sophisticated as a few other tricky issues need to be handled in
 – tree building and
 – tree pruning.
Road map

• Basic concepts
• K-means algorithm
• Representation of clusters
• Hierarchical clustering
• Distance functions
• Data standardization
• Handling mixed attributes
• Which clustering algorithm to use?
• Cluster evaluation
• Discovering holes and data regions
• Summary
Summary

• Clustering is has along history and still active
 – There are a huge number of clustering algorithms
 – More are still coming every year.

• We only introduced several main algorithms. There are many others, e.g.,
 – density based algorithm, sub-space clustering, scale-up methods,
 neural networks based methods, fuzzy clustering, co-clustering,
 etc.

• Clustering is hard to evaluate, but very useful in practice. This partially explains why there are still a large number of clustering algorithms being devised every year.

• Clustering is highly application dependent and to some extent subjective.