CPU Scheduling

Basic Concepts
Scheduling Criteria

Scheduling Algorithms
e FCFS
e SJF
* RR
 Priority
e Multilevel Queue

o Multilevel Queue with
Feedback

Unix Scheduler

Scheduling

e Processes can be in one of several

states: 5 state rﬂsgtglel :

Release

Event Event
Oceurs Wait

@

— ‘short-term’ scheduling

e organising transitions between states

— on page-fault, waiting for or getting

semaphores, 1/O transfer completions etc.
» deciding order in which ready processes
should be run

— priorities etc. and queue handling

Scheduling

e Processes can be in one of several
states : 5 state model :

Dispatch
‘H’ﬂa
@

— ‘short-term’ scheduling

e organising transitions between states
— on page-fault, waiting for or getting
semaphores, 1/O transfer completions etc.

» deciding order in which ready processes
should be run

— priorities etc. and queue handling

Release

Event Event
Oceurs Wait

Basic Concepts

 Maximum CPU utilization
obtained with
multiprogramming

« CPU-I/O Burst Cycle —
Process execution consists
of a cycle of CPU execution
and /0O walit

e CPU burst distribution

Alternating Sequence of
CPU And I/O Bursts

load store
add store > CPU burst
read from file
<
wait for I/O - 1/O burst
. <
store Increment
index j CPU burst
write to file Z
wait for I/O > 1/O burst
load store
add store > CPU burst
read from file
.<
wait for I/O > |/O burst

CPU Scheduler

« Selects from among the processes in memory
that are ready to execute, and allocates the
CPU to one of them

 CPU scheduling decisions may take place
when a process:

1. Switches from running to waiting
state

2. Switches from running to ready
state

3. Switches from waiting to ready

4. Terminates
« Scheduling under 1 and 4 is nonpreemptive
 All other scheduling is preemptive

Dispatcher

e Dispatcher module gives
control of the CPU to the
process selected by the
short-term scheduler; this
Involves:

— switching context

— switching to user mode

— jJumping to the proper
location in the user program
to restart that program

* Dispatch latency — time it
takes for the dispatcher to
stop one process and start
another running

Scheduling Criteria

CPU utilization — keep the
CPU as busy as possible

Throughput — # of processes

that complete their execution per
time unit

Turnaround time — amount of
time to execute a particular process

Waiting time — amount of time a
process has been waiting in the
ready queue

Response time — amount of
time it takes from when a request
was submitted until the first
response is produced, not output
(for time-sharing environment)

Optimization Criteria

 Maximize CPU utilization
 Maximize throughput

e Minimize turnaround time
e Minimize waiting time

e Minimize response time

First-Come, First-Served

(FCFS) Scheduling

Process BurstTime

P, 24
:32 3
33 3

Suppose that the processes arrive in
the order: P, , P, , P,

The Gantt Chart for the schedule is:

P, P, | P,

0 24 27 30

Waiting time for P, =0; P, =24; P;=
27

Average waiting time: (0 + 24 + 27)/3
=17

10

FCFS Scheduling
(Cont.)

Suppose that the processes
arrive in the order

PZ’PB’Pl

e The Gantt chart for the
schedule Is:

P, P Py

* Waiting time for P, =6;P,=0.P;=3
e Average waiting time: (6+0+ 3)/3=3
 Much better than previous case

« Convoy effect short process behind Iong11
process

Shortest-Job-First
(SJR) Scheduling

e Associate with each process the length of
its next CPU burst. Use these lengths to
schedule the process with the shortest
time

 Two schemes:

— nonpreemptive — once CPU given to
the process it cannot be preempted
until completes its CPU burst

— preemptive — if a new process arrives
with CPU burst length less than
remaining time of current executing
process, preempt. This scheme is
know as the
Shortest-Remaining-Time-First
(SRTF)

e SJF is optimal — gives minimum average
waiting time for a given set of processes

12

Example of Non-
Preemptive SJF

Process Arrival Time Burst Time
P, 0.0 7
P, 2.0 4
P, 4.0 1
P, 5.0 4

e SJF (non-preemptive)

P, P,| P, P,

 Average waitingtime = (0 + 6 +
3+7)[4 =4

13

Example of Preemptive

SJF
Process Arrival Time Burst Time
P, 0.0 7
P, 2.0 4
P, 4.0 1
P, 5.0 4

o SJF (preemptive)

P,| P,|Ps| P, P, P,

11 16

0 2 45 7
 Average waitingtime =9+ 1 +
0+2)/4=3

14

Priority Scheduling

A priority number (integer) is associated
with each process

The CPU is allocated to the process with
the highest priority (smallest integer =
highest priority)

— Preemptive

— nonpreemptive

SJF is a priority scheduling where priority
IS the predicted next CPU burst time

Problem = Starvation — low priority
processes may never execute

Solution = Aging — as time progresses
Increase the priority of the process

15

Round Robin (RR)

« Each process gets a small unit of
CPU time (time quantum), usually
10-100 milliseconds. After this
time has elapsed, the process is
preempted and added to the end of
the ready queue.

» If there are n processes in the
ready queue and the time quantum
IS g, then each process gets 1/n of
the CPU time in chunks of at most
g time units at once. No process
waits more than (n-1)q time units.

 Performance
— q large = FIFO

— g small = g must be large with
respect to context switch,
otherwise overhead is too high

16

Example of RR with
Time Quantum = 20

Process Burst Time
2, 53
2, 17
P4 68
P, 24

e The Gantt chart is:

P,|P,|Ps|P,| P, |Ps| P, | P | Ps|Ps

O 20 37 57 77 97 117 121134154162

o Typically, higher average
turnaround than SJF, but
better response

17

Time Quantum and
Context Switch Time

process fime = 10 quantum context
swiiches
12 0
0 10
6 1
0 ; 10
1 9
0123 45678 910

Turnaround Time Varies
With The Time Quantum

process | fime
125F P ;
120} W
P, 1
£ 115 p| 7
?
110
0
2 105
2
100k
g
> 05t
90 F
| | | | | |
1 2 3 4 5 6 7
time quantum

19

Multilevel Queue

 Ready queue Is partitioned into separate
gueues:
foreground (interactive)
background (batch)

« Each queue has its own scheduling
algorithm

— foreground — RR
— background — FCFS

e Scheduling must be done between the
gueues
— Fixed priority scheduling; (i.e., serve
all from foreground then from

background). Possibility of starvation.

— Time slice — each queue gets a certain

amount of CPU time which it can
schedule amongst its processes; I.e.,
80% to foreground in RR

— 20% to background in FCFS

20

Multilevel Queue

Scheduling

highest priorty

system processes

Interactive processes

interactive edliting processes

batch processes

11111

student Processes

Ll

lowest priority

21

Multilevel Feedback
Queue

* A process can move between the
various gueues; aging can be
Implemented this way

« Multilevel-feedback-gqueue scheduler
defined by the following parameters:

— number of queues

— scheduling algorithms for each
queue

— method used to determine when
to upgrade a process

— method used to determine when
to demote a process

— method used to determine which
gueue a process will enter when
that process needs service

22

Example of Multilevel
Feedback Queue

 Three queues:

— Qu — RR with time quantum 8
milliseconds

— Q; — RR time quantum 16 milliseconds

e Scheduling

— A new job enters queue Q, which Is
served FCFS. When it gains CPU, job
receives 8 milliseconds. If it does not
finish in 8 milliseconds, job is moved
to queue Q;.

— At Q, job is again served FCFS and
receives 16 additional milliseconds. If
it still does not complete, it is
preempted and moved to queue Q..

23

Multilevel Feedback
Queues

»
r quantum =8
>
—>r guantum = 16
-
—>r FCFS

24

Real-Time Scheduling

« Hard real-time systems — required to
complete a critical task within a
guaranteed amount of time

o Soft real-time computing — requires that
critical processes receive priority over
less fortunate ones

25

UNIX Scheduling

Round Robin with Multilevel
feedback queues

128 priorities possible (0-127)

1 Round Robin queue per priority
Every scheduling event the
scheduler picks the lowest priority
non-empty queue and runs jobs In
round-robin

Scheduling events:

— Clock interrupt

— Process does a system call
— Process gives up CPU,e.g. to do I/O

26

» All processes assigned a baseline
priority based on the type and
current execution status:

— swapper 0O
— waiting for disk 20
— waiting for lock 35

— user-mode execution 50

« At scheduling events, all process’s
priorities are adjusted based on the
amount of CPU used, the current
load, and how long the process has
been waiting.

e Most processes are not running, SO
lots of computing shortcuts are
used when computing new
priorities.

27

Range of Process
Priorities

Kernel Mode Swapper -
Priority

Waiting for Disk 1/0

Not
Interruptible

Waiting for Buffer

Waiting for Inode

Interru ptlble Waiting for TTY Input Q‘Q

Waiting for TTY output

Waiting for child exit

v
Threshold Priority

4 User level 0 ‘Q Q

User level 1

User level n __O

User Mode Priorities

Priority calculation

 Every 4 clock ticks a process’s
priority Is updated:

P — BASELINE + | tilizatio ”} 2 NiceFactor

 The utilization Is iIncremented
every clock tick by 1.

* The niceFactor allows some
control of job priority. It can be
set from —20 to 20.

e Jobs using a lot of CPU
Increase the priority value.
Interactive jobs not using much
CPU will return to the baseline.

29

Unix Priority calculation

*VVery long running CPU
bound jobs will get “stuck” at
the highest priority.

*Decay function used to

weight utilization to recent
CPU usage.

*A process’s utilization at
time t Is decayed every
second.:

Ut = (Ut -1)/2)

30

	CPU Scheduling
	Scheduling
	Scheduling
	Basic Concepts
	Alternating Sequence of CPU And I/O Bursts
	CPU Scheduler
	Dispatcher
	Scheduling Criteria
	Optimization Criteria
	First-Come, First-Served (FCFS) Scheduling
	FCFS Scheduling (Cont.)
	Shortest-Job-First (SJR) Scheduling
	Example of Non-Preemptive SJF
	Example of Preemptive SJF
	Priority Scheduling
	Round Robin (RR)
	Example of RR with Time Quantum = 20
	Time Quantum and Context Switch Time
	Turnaround Time Varies With The Time Quantum
	Multilevel Queue
	Multilevel Queue Scheduling
	Multilevel Feedback Queue
	Example of Multilevel Feedback Queue
	Multilevel Feedback Queues
	Real-Time Scheduling
	UNIX Scheduling
	Slide Number 27
	Range of Process Priorities
	Priority calculation
	Unix Priority calculation

