
1

CPU Scheduling
• Basic Concepts
• Scheduling Criteria
• Scheduling Algorithms

• FCFS
• SJF
• RR
• Priority
• Multilevel Queue
• Multilevel Queue with

Feedback

• Unix Scheduler

2

Scheduling

• Processes can be in one of several
states: 5 state model :

– ‘short-term’ scheduling
• organising transitions between states

– on page-fault, waiting for or getting
semaphores, I/O transfer completions etc.

• deciding order in which ready processes
should be run

– priorities etc. and queue handling

3

Scheduling

• Processes can be in one of several
states : 5 state model :

– ‘short-term’ scheduling
• organising transitions between states

– on page-fault, waiting for or getting
semaphores, I/O transfer completions etc.

• deciding order in which ready processes
should be run

– priorities etc. and queue handling

4

Basic Concepts
• Maximum CPU utilization

obtained with
multiprogramming

• CPU–I/O Burst Cycle –
Process execution consists
of a cycle of CPU execution
and I/O wait

• CPU burst distribution

5

Alternating Sequence of
CPU And I/O Bursts

6

CPU Scheduler
• Selects from among the processes in memory

that are ready to execute, and allocates the
CPU to one of them

• CPU scheduling decisions may take place
when a process:
1. Switches from running to waiting

state
2. Switches from running to ready

state
3. Switches from waiting to ready
4. Terminates

• Scheduling under 1 and 4 is nonpreemptive
• All other scheduling is preemptive

7

Dispatcher

• Dispatcher module gives
control of the CPU to the
process selected by the
short-term scheduler; this
involves:
– switching context
– switching to user mode
– jumping to the proper

location in the user program
to restart that program

• Dispatch latency – time it
takes for the dispatcher to
stop one process and start
another running

8

Scheduling Criteria
• CPU utilization – keep the

CPU as busy as possible

• Throughput – # of processes
that complete their execution per
time unit

• Turnaround time – amount of
time to execute a particular process

• Waiting time – amount of time a
process has been waiting in the
ready queue

• Response time – amount of
time it takes from when a request
was submitted until the first
response is produced, not output
(for time-sharing environment)

9

Optimization Criteria

• Maximize CPU utilization
• Maximize throughput
• Minimize turnaround time
• Minimize waiting time
• Minimize response time

10

First-Come, First-Served
(FCFS) Scheduling

Process BurstTime
P1 24
P2 3
P3 3

• Suppose that the processes arrive in
the order: P1 , P2 , P3

• The Gantt Chart for the schedule is:

• Waiting time for P1 = 0; P2 = 24; P3 =
27

• Average waiting time: (0 + 24 + 27)/3
= 17

P1 P2 P3

24 27 300

11

FCFS Scheduling
(Cont.)

Suppose that the processes
arrive in the order

P2 , P3 , P1

• The Gantt chart for the
schedule is:

• Waiting time for P1 = 6; P2 = 0; P3 = 3
• Average waiting time: (6 + 0 + 3)/3 = 3

• Much better than previous case
• Convoy effect short process behind long

process

P1P3P2

63 300

12

Shortest-Job-First
(SJR) Scheduling

• Associate with each process the length of
its next CPU burst. Use these lengths to
schedule the process with the shortest
time

• Two schemes:
– nonpreemptive – once CPU given to

the process it cannot be preempted
until completes its CPU burst

– preemptive – if a new process arrives
with CPU burst length less than
remaining time of current executing
process, preempt. This scheme is
know as the
Shortest-Remaining-Time-First
(SRTF)

• SJF is optimal – gives minimum average
waiting time for a given set of processes

13

Process Arrival Time Burst Time

P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

• SJF (non-preemptive)

• Average waiting time = (0 + 6 +
3 + 7)/4 = 4

Example of Non-
Preemptive SJF

P1 P3 P2

73 160

P4

8 12

14

Example of Preemptive
SJF

Process Arrival Time Burst Time

P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

• SJF (preemptive)

• Average waiting time = (9 + 1 +
0 +2)/4 = 3

P1 P3P2

42 110

P4

5 7

P2 P1

16

15

Priority Scheduling

• A priority number (integer) is associated
with each process

• The CPU is allocated to the process with
the highest priority (smallest integer ≡
highest priority)
– Preemptive
– nonpreemptive

• SJF is a priority scheduling where priority
is the predicted next CPU burst time

• Problem ≡ Starvation – low priority
processes may never execute

• Solution ≡ Aging – as time progresses
increase the priority of the process

16

Round Robin (RR)

• Each process gets a small unit of
CPU time (time quantum), usually
10-100 milliseconds. After this
time has elapsed, the process is
preempted and added to the end of
the ready queue.

• If there are n processes in the
ready queue and the time quantum
is q, then each process gets 1/n of
the CPU time in chunks of at most
q time units at once. No process
waits more than (n-1)q time units.

• Performance
– q large ⇒ FIFO
– q small ⇒ q must be large with

respect to context switch,
otherwise overhead is too high

17

Example of RR with
Time Quantum = 20

Process Burst Time
P1 53
P2 17
P3 68
P4 24

• The Gantt chart is:

• Typically, higher average
turnaround than SJF, but
better response

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121134 154162

18

Time Quantum and
Context Switch Time

19

Turnaround Time Varies
With The Time Quantum

20

Multilevel Queue
• Ready queue is partitioned into separate

queues:
foreground (interactive)
background (batch)

• Each queue has its own scheduling
algorithm
– foreground – RR
– background – FCFS

• Scheduling must be done between the
queues
– Fixed priority scheduling; (i.e., serve

all from foreground then from
background). Possibility of starvation.

– Time slice – each queue gets a certain
amount of CPU time which it can
schedule amongst its processes; i.e.,
80% to foreground in RR

– 20% to background in FCFS

21

Multilevel Queue
Scheduling

22

Multilevel Feedback
Queue

• A process can move between the
various queues; aging can be
implemented this way

• Multilevel-feedback-queue scheduler
defined by the following parameters:
– number of queues
– scheduling algorithms for each

queue
– method used to determine when

to upgrade a process
– method used to determine when

to demote a process
– method used to determine which

queue a process will enter when
that process needs service

23

Example of Multilevel
Feedback Queue

• Three queues:
– Q0 – RR with time quantum 8

milliseconds
– Q1 – RR time quantum 16 milliseconds
– Q2 – FCFS

• Scheduling
– A new job enters queue Q0 which is

served FCFS. When it gains CPU, job
receives 8 milliseconds. If it does not
finish in 8 milliseconds, job is moved
to queue Q1.

– At Q1 job is again served FCFS and
receives 16 additional milliseconds. If
it still does not complete, it is
preempted and moved to queue Q2.

24

Multilevel Feedback
Queues

25

Real-Time Scheduling

• Hard real-time systems – required to
complete a critical task within a
guaranteed amount of time

• Soft real-time computing – requires that
critical processes receive priority over
less fortunate ones

26

UNIX Scheduling

• Round Robin with Multilevel
feedback queues

• 128 priorities possible (0-127)
• 1 Round Robin queue per priority
• Every scheduling event the

scheduler picks the lowest priority
non-empty queue and runs jobs in
round-robin

• Scheduling events:
– Clock interrupt
– Process does a system call
– Process gives up CPU,e.g. to do I/O

27

• All processes assigned a baseline
priority based on the type and
current execution status:
– swapper 0
– waiting for disk 20
– waiting for lock 35
– user-mode execution 50

• At scheduling events, all process’s
priorities are adjusted based on the
amount of CPU used, the current
load, and how long the process has
been waiting.

• Most processes are not running, so
lots of computing shortcuts are
used when computing new
priorities.

28

Range of Process
Priorities

Swapper

Waiting for Disk I/O

Waiting for Buffer

Waiting for Inode
--

Waiting for TTY Input

Waiting for TTY output

Waiting for child exit

User level 0

User level 1

|
|
|

User level n

Kernel Mode
Priority

Not
Interruptible

Interruptible

Threshold Priority

User Mode Priorities

29

Priority calculation

• Every 4 clock ticks a process’s
priority is updated:

• The utilization is incremented
every clock tick by 1.

• The niceFactor allows some
control of job priority. It can be
set from –20 to 20.

• Jobs using a lot of CPU
increase the priority value.
Interactive jobs not using much
CPU will return to the baseline.

NiceFactornutilizatioBASELINEP 2
4

+⎥⎦
⎤

⎢⎣
⎡+=

30

Unix Priority calculation

•Very long running CPU
bound jobs will get “stuck” at
the highest priority.
•Decay function used to
weight utilization to recent
CPU usage.
•A process’s utilization at
time t is decayed every
second:

)2/)1((−= tt uu

	CPU Scheduling
	Scheduling
	Scheduling
	Basic Concepts
	Alternating Sequence of CPU And I/O Bursts
	CPU Scheduler
	Dispatcher
	Scheduling Criteria
	Optimization Criteria
	First-Come, First-Served (FCFS) Scheduling
	FCFS Scheduling (Cont.)
	Shortest-Job-First (SJR) Scheduling
	Example of Non-Preemptive SJF
	Example of Preemptive SJF
	Priority Scheduling
	Round Robin (RR)
	Example of RR with Time Quantum = 20
	Time Quantum and Context Switch Time
	Turnaround Time Varies With The Time Quantum
	Multilevel Queue
	Multilevel Queue Scheduling
	Multilevel Feedback Queue
	Example of Multilevel Feedback Queue
	Multilevel Feedback Queues
	Real-Time Scheduling
	UNIX Scheduling
	Slide Number 27
	Range of Process Priorities
	Priority calculation
	Unix Priority calculation

