
Minimum Spanning Trees 

 

    MST Generic Algorithm 

    Kruskal’s algorithm 

    Prim’s algorithm 



Definition 

 Given a connected graph G = (V, E), with weight 
function  

          w : E   -->   R 

 Min-weight connected subgraph 

 Spanning tree T: 

 A tree that includes all nodes from V 

 T = (V, E’), where E’   E 

 Weight of T:   W( T ) =  w(e) 

 Minimum spanning tree (MST): 

 A tree with minimum weight among all spanning trees 



Example 



MST 

 MST for given G may not be unique 

 

 Since MST is a spanning tree: 

 # edges : |V| - 1 

 

 If the graph is unweighted: 

 All spanning trees have same weight 
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Cycle Property 

Cycle Property: 

 Let T be a minimum 
spanning tree of a weighted 
graph G 

 Let e be an edge of G that is 
not in T and let C be the 
cycle formed by e with T 

 For every edge f of C, 
weight(f)  weight(e)  

Proof: 

 By contradiction 

 If weight(f) > weight(e) we 
can get a spanning tree of 
smaller weight by replacing 
e with f 
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Replacing f with e yields 

a better spanning tree  
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U V 

Cut  Property 

Cut  Property: 

 Consider a partition of the vertices of G 
into subsets U and V 

 Let e be an edge of minimum weight 
across the partition 

 There is a minimum spanning tree of G 
containing edge e 

Proof: 

 Let T be an MST of G 

 If T does not contain e, consider the 
cycle C formed by e with T and let  f be 
an edge of C across the partition 

 By the cycle property, 
  weight(f)  weight(e)  

 Thus, weight(f) = weight(e) 

 We obtain another MST by replacing f  
with e 
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another MST 
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Generic Algorithm 

 Framework for G = (V, E) :  

 Goal: build a set of edges A  E  

 Start with A empty 

 Add edge into A one by one 

 At any moment, A is a subset of some MST for G 

An edge is safe if adding it to A still maintains that 

A is a subset of a MST  



Finding Safe Edges 

 When A is empty, example of safe edges?  

 The edge with smallest weight 

 Intuition: 

 Suppose S  V,  --- a cut (S, V-S) 

 S and V-S should be connected 

 By the crossing edge with the smallest weight !  

 That edge also called a light edge crossing the cut (S, V-S) 

 A cut (S, V-S) respects edge set A 

  If no edges from A crosses the cut (S, V-S) 

 



Safe-Edge Theorem 

 Theorem: 

 Let A be a subset of some MST, (S, V-S) be a cut that 

respects A, and (u, v) be a light edge crossing (S, V-S) . 

Then (u, v) is safe for A.  

 Proof: let T be an MST, A ⊆ T, A ≠ T. Assume T does not contain 

the light edge (u, v). If it does, we are done. If not, we construct 

another MST T’ that contains both A and (u, v). 

      T {(u, v)} must contain a cycle, with edges on a simple path p 

 from u to v in T. u and v are on opposite sides of the cut  

     (S, V –S), and at least one edge in T lies on p and crosses the cut. 



 Proof: ( Contd)  

 Let (x, y) be any such edge – it cannot be in A, because the cut respects A. Since (x, y) is 

on the unique simple path from u to v in T, removing (x, y) breaks T into two 

components. Adding (u, v) reconnects them to form a new 

  spanning tree T’ = (T – {(x, y)}) {(u, v)}. But T’ is also an MST: since (u, v) is a light 

edge crossing (S, V – S) and (x, y) also crosses the cut, w(u, v) ≤ w(x, y) and w(T’) = 

w(T) – w(x, y) + w(u,v) ≤ w(T). The minimality of T implies w(T) ≤ w(T’), so T’ must be 

minimal, also.  

 

 Is (u, v) safe? Since A ⊆ T and (x, y) ∉ A, we have A ⊆ T’.  Thus A  {(u, v)} ⊆ T’. 

Since T’ is an MST, (u, v) is safe for A. 

 



Safe-Edge Theorem 

 Corollary: 

 Let (u, v) be a light edge crossing (V’, V-V’), where 

graph G’ = (V’, E’) is a connected component of the 

graph (forest) G’’ = (V, A), then (u, v) is safe for A.  

Greedy Approach: 

Based on the generic algorithm and the corollary,  

to compute MST we only need a way to find 

a safe edge at each moment.  



Corollary: Let G = (V, E) be a connected undirected graph 

with a real-valued weight function w defined on E. Let A 

be a subset of E that is included in some minimum 

spanning tree for G, let C = (V_C, E_C) be a connected 

component (tree) in the forest G_A = (V, A). If (u, v) is a 

light edge connecting C to some other component in G_A, 

then (u, v) is safe for A. 

 Proof: the cut (V_C, V – V_C) respects A, and (u, v) is a 

light edge for this cut. Therefore (u, v) is safe for A. 



Kruskal’s Algorithm 

 Start with A empty, and each vertex being its own 

connected component 

 Repeatedly merge two components by connecting 

them with a light edge crossing them 

 Two issues: 

 Maintain sets of components 

 

 Choose light edges Disjoint set data structure 

Scan edges from low to high weight 



Pseudo-code 



Example 



Analysis 

 Time complexity: 

 #make-set, find-set and union operations: O(|V| + |E|)  

 O( (|V| + |E|)  (|V| + |E|)) 

 Sorting: 

 O(|E| log |E|) = O(|E| log |V|) 

 Total:  

 O(|E| log |V|) 



Prim’s Algorithm 

 Start with an arbitrary node from V 

 Instead of maintaining a forest, grow a MST 

 At any time, maintain a MST for V’  V 

 At any moment, find a light edge connecting V’ 
with (V-V’) i.e., the edge with smallest weight 
connecting some vertex in V’ with some vertex in 
V-V’ !  

 



Prim’s Algorithm cont. 

 Again two issues: 

 Maintain the tree already build at any moment 

 Easy: simply a tree rooted at r : the starting node 

 

 Find the next light edge efficiently 

 For v   V - V’, define key(v) = the min distance between v and 

some node from V’ 

 At any moment, find the node with min key.  

 

Use a priority queue !  



Pseudo-code 

 



Example 



Analysis 

 Time complexity 

 # insert:  

 O(|V|) 

 # Decrease-Key:  

 O( |E|) 

 # Extract-Min 

 O( |V| ) 

 Using heap for priority queue: 

 Each operation is O ( log |V| )   

 Total time complexity: O (|E| log |V|) 

Using Fibonacci heap: 

Decrease-Key:  

O(1) amortized time 

=> 

total time complexity 

O(|E| + |V| log |V|) 



Applications 

 Clustering 

 

 

 Euclidean traveling salesman problem 


