### Minimum Spanning Trees

- MST Generic Algorithm
- Kruskal's algorithm
- Prim's algorithm

### Definition

• Given a connected graph G = (V, E), with weight function

 $w: E \rightarrow R$ 

- Min-weight connected subgraph
- Spanning tree T:
  - A tree that includes all nodes from V
  - T = (V, E'), where  $E' \subseteq E$
  - Weight of T:  $W(T) = \sum w(e)$
- Minimum spanning tree (MST):
  - A tree with minimum weight among all spanning trees







- MST for given G may not be unique
- Since MST is a spanning tree:
  - # edges : |V| 1
- If the graph is unweighted:
  - All spanning trees have same weight

## Cycle Property

Cycle Property:

- Let **T** be a minimum spanning tree of a weighted graph *G*
- Let *e* be an edge of *G* that is not in **T** and let C be the cycle formed by *e* with *T*
- For every edge *f* of *C*,  $weight(f) \le weight(e)$

Proof:

- By contradiction
- If *weight*(*f*) > *weight*(*e*) we can get a spanning tree of smaller weight by replacing e with f



Replacing f with e yields a better spanning tree



THOOD

## Cut Property

Cut Property:

- Consider a partition of the vertices of *G* into subsets *U* and *V*
- Let *e* be an edge of minimum weight across the partition
- There is a minimum spanning tree of *G* containing edge *e*

Proof:

- Let *T* be an MST of *G*
- If *T* does not contain *e*, consider the cycle *C* formed by *e* with *T* and let *f* be an edge of *C* across the partition
- By the cycle property,
   weight(f) ≤ weight(e)
- Thus, weight(f) = weight(e)
- We obtain another MST by replacing *f* with *e*

### **Minimum Spanning**

# 

Replacing *f* with *e* yields another MST



#### Troog

### Generic Algorithm

Framework for G = (V, E):

- Goal: build a set of edges  $A \subseteq E$
- Start with *A* empty
- Add edge into *A* one by one
- At any moment, A is a subset of some MST for G

```
GENERIC-MST(G, w)

A \leftarrow \emptyset

while A is not a spanning tree

do find an edge (u, v) that is safe for A

A \leftarrow A \cup \{(u, v)\}

return A
```

An edge is safe if adding it to *A* still maintains that *A* is a subset of a MST

## Finding Safe Edges

- When *A* is empty, example of safe edges?
  - The edge with smallest weight
- Intuition:
  - Suppose  $S \subseteq V$ , --- a *cut* (S, V-S)
  - *S* and *V*-*S* should be connected
    - By the *crossing* edge with the smallest weight !
    - That edge also called a *light edge* crossing the cut (*S*, *V*-*S*)
  - A cut (S, V-S) respects edge set A
  - If no edges from *A* crosses the cut (*S*, *V*-*S*)

### Safe-Edge Theorem

• Theorem:

- Let A be a subset of some MST, (S, V-S) be a cut that respects A, and (u, v) be a light edge crossing (S, V-S). Then (u, v) is safe for A.
- Proof: let *T* be an MST, A ⊆ T, A ≠ T. Assume *T* does not contain the light edge (u, v). If it does, we are done. If not, we construct another MST *T*' that contains both A and (u, v).
   T∪{(u, v)} must contain a cycle, with edges on a simple path p from u to v in *T*. u and v are on opposite sides of the cut (S, V-S), and at least one edge in *T* lies on p and crosses the cut.

#### Proof: ( Contd)

Let (x, y) be any such edge – it cannot be in A, because the cut respects A. Since (x, y) is on the unique simple path from u to v in T, removing (x, y) breaks T into two components. Adding (u, v) reconnects them to form a new spanning tree  $T' = (T - \{(x, y)\}) \{(u, v)\}$ . But T' is also an MST: since (u, v) is a light edge crossing (S, V - S) and (x, y) also crosses the cut,  $w(u, v) \le w(x, y)$  and w(T') = $w(T) - w(x, y) + w(u, v) \le w(T)$ . The minimality of T implies  $w(T) \le w(T')$ , so T' must be minimal, also.

Is (u, v) safe? Since  $A \subseteq T$  and  $(x, y) \notin A$ , we have  $A \subseteq T'$ . Thus  $A \cup \{(u, v)\} \subseteq T'$ . Since T' is an MST, (u, v) is safe for A.

### Safe-Edge Theorem

- Corollary:
  - Let (u, v) be a light edge crossing (V', V-V'), where graph G' = (V', E') is a connected component of the graph (forest) G'' = (V, A), then (u, v) is safe for A.

Greedy Approach: Based on the generic algorithm and the corollary, to compute MST we only need a way to find a safe edge at each moment.

### Corollary: Let G = (V, E) be a connected undirected graph

with a real-valued weight function w defined on E. Let A be a subset of E that is included in some minimum spanning tree for G, let  $C = (V_C, E_C)$  be a connected component (tree) in the forest  $G_A = (V, A)$ . If (u, v) is a light edge connecting C to some other component in  $G_A$ , then (u, v) is safe for A.

Proof: the cut (V\_C, V – V\_C) respects A, and (u, v) is a light edge for this cut. Therefore (u, v) is safe for A.

## Kruskal's Algorithm

- Start with *A* empty, and each vertex being its own connected component
  - Repeatedly merge two components by connecting them with a light edge crossing them
  - Two issues:
    - Maintain sets of components
    - Choose light edges

Disjoint set data structure

Scan edges from low to high weight



KRUSKAL(V, E, w) $A \leftarrow \emptyset$ for each vertex  $v \in V$ **do** MAKE-SET(v)sort E into nondecreasing order by weight wfor each (u, v) taken from the sorted list **do if** FIND-SET $(u) \neq$  FIND-SET(v)then  $A \leftarrow A \cup \{(u, v)\}$ UNION(u, v)

return A





## Analysis

- Time complexity:
  - #make-set, find-set and union operations: O(|V| + |E|)
    - $O((|V| + |E|) \alpha (|V| + |E|))$
  - Sorting:
    - $O(|E| \log |E|) = O(|E| \log |V|)$
  - Total:
    - *O(*|*E*| *log* |*V*|)

### Prim's Algorithm

- Start with an arbitrary node from V
- Instead of maintaining a forest, grow a MST
  - At any time, maintain a MST for  $V' \subseteq V$
- At any moment, find a light edge connecting V' with (V-V') i.e., the edge with smallest weight connecting some vertex in V' with some vertex in V-V' !



### Prim's Algorithm cont.

- Again two issues:
  - Maintain the tree already build at any moment
    - Easy: simply a tree rooted at *r* : the starting node
  - Find the next light edge efficiently
    - For v ∈ V V', define key(v) = the min distance between v and some node from V'
    - At any moment, find the node with min key.

### Use a priority queue !



```
PRIM(V, E, w, r)
Q \leftarrow \emptyset
for each u \in V
     do key[u] \leftarrow \infty
         \pi[u] \leftarrow \text{NIL}
         INSERT(Q, u)
DECREASE-KEY(Q, r, 0) \triangleright key[r] \leftarrow 0
while Q \neq \emptyset
     do u \leftarrow \text{EXTRACT-MIN}(Q)
         for each v \in Adj[u]
              do if v \in Q and w(u, v) < key[v]
                      then \pi[v] \leftarrow u
                            DECREASE-KEY(Q, v, w(u, v))
```







- Time complexity
  - # insert:
    - O(|V|)
  - # Decrease-Key:
    - O( |E|)
  - # Extract-Min
    - *O(* |*V*| *)*
- Using heap for priority queue:
  - Each operation is *O* (log |*V*|)
- Total time complexity:  $O(|E| \log |V|)$

Using Fibonacci heap: Decrease-Key: O(1) amortized time =>total time complexity  $O(|E| + |V| \log |V|)$ 



### Clustering

### Euclidean traveling salesman problem