
Minimum Spanning Trees

 MST Generic Algorithm

 Kruskal’s algorithm

 Prim’s algorithm

Definition

 Given a connected graph G = (V, E), with weight
function

 w : E --> R

 Min-weight connected subgraph

 Spanning tree T:

 A tree that includes all nodes from V

 T = (V, E’), where E’ E

 Weight of T: W(T) = w(e)

 Minimum spanning tree (MST):

 A tree with minimum weight among all spanning trees

Example

MST

 MST for given G may not be unique

 Since MST is a spanning tree:

 # edges : |V| - 1

 If the graph is unweighted:

 All spanning trees have same weight

Minimum Spanning

Trees
5

Cycle Property

Cycle Property:

 Let T be a minimum
spanning tree of a weighted
graph G

 Let e be an edge of G that is
not in T and let C be the
cycle formed by e with T

 For every edge f of C,
weight(f) weight(e)

Proof:

 By contradiction

 If weight(f) > weight(e) we
can get a spanning tree of
smaller weight by replacing
e with f

8

4

2
3

6

7

7

9

8

e

C

f

8

4

2
3

6

7

7

9

8

C

e

f

Replacing f with e yields

a better spanning tree

Minimum Spanning

Trees
6

U V

Cut Property

Cut Property:

 Consider a partition of the vertices of G
into subsets U and V

 Let e be an edge of minimum weight
across the partition

 There is a minimum spanning tree of G
containing edge e

Proof:

 Let T be an MST of G

 If T does not contain e, consider the
cycle C formed by e with T and let f be
an edge of C across the partition

 By the cycle property,
 weight(f) weight(e)

 Thus, weight(f) = weight(e)

 We obtain another MST by replacing f
with e

7

4

2
8

5

7

3

9

8 e

f

7

4

2
8

5

7

3

9

8 e

f

Replacing f with e yields

another MST

U V

Generic Algorithm

 Framework for G = (V, E) :

 Goal: build a set of edges A E

 Start with A empty

 Add edge into A one by one

 At any moment, A is a subset of some MST for G

An edge is safe if adding it to A still maintains that

A is a subset of a MST

Finding Safe Edges

 When A is empty, example of safe edges?

 The edge with smallest weight

 Intuition:

 Suppose S V, --- a cut (S, V-S)

 S and V-S should be connected

 By the crossing edge with the smallest weight !

 That edge also called a light edge crossing the cut (S, V-S)

 A cut (S, V-S) respects edge set A

 If no edges from A crosses the cut (S, V-S)

Safe-Edge Theorem

 Theorem:

 Let A be a subset of some MST, (S, V-S) be a cut that

respects A, and (u, v) be a light edge crossing (S, V-S) .

Then (u, v) is safe for A.

 Proof: let T be an MST, A ⊆ T, A ≠ T. Assume T does not contain

the light edge (u, v). If it does, we are done. If not, we construct

another MST T’ that contains both A and (u, v).

 T {(u, v)} must contain a cycle, with edges on a simple path p

 from u to v in T. u and v are on opposite sides of the cut

 (S, V –S), and at least one edge in T lies on p and crosses the cut.

 Proof: (Contd)

 Let (x, y) be any such edge – it cannot be in A, because the cut respects A. Since (x, y) is

on the unique simple path from u to v in T, removing (x, y) breaks T into two

components. Adding (u, v) reconnects them to form a new

 spanning tree T’ = (T – {(x, y)}) {(u, v)}. But T’ is also an MST: since (u, v) is a light

edge crossing (S, V – S) and (x, y) also crosses the cut, w(u, v) ≤ w(x, y) and w(T’) =

w(T) – w(x, y) + w(u,v) ≤ w(T). The minimality of T implies w(T) ≤ w(T’), so T’ must be

minimal, also.

 Is (u, v) safe? Since A ⊆ T and (x, y) ∉ A, we have A ⊆ T’. Thus A {(u, v)} ⊆ T’.

Since T’ is an MST, (u, v) is safe for A.

Safe-Edge Theorem

 Corollary:

 Let (u, v) be a light edge crossing (V’, V-V’), where

graph G’ = (V’, E’) is a connected component of the

graph (forest) G’’ = (V, A), then (u, v) is safe for A.

Greedy Approach:

Based on the generic algorithm and the corollary,

to compute MST we only need a way to find

a safe edge at each moment.

Corollary: Let G = (V, E) be a connected undirected graph

with a real-valued weight function w defined on E. Let A

be a subset of E that is included in some minimum

spanning tree for G, let C = (V_C, E_C) be a connected

component (tree) in the forest G_A = (V, A). If (u, v) is a

light edge connecting C to some other component in G_A,

then (u, v) is safe for A.

 Proof: the cut (V_C, V – V_C) respects A, and (u, v) is a

light edge for this cut. Therefore (u, v) is safe for A.

Kruskal’s Algorithm

 Start with A empty, and each vertex being its own

connected component

 Repeatedly merge two components by connecting

them with a light edge crossing them

 Two issues:

 Maintain sets of components

 Choose light edges Disjoint set data structure

Scan edges from low to high weight

Pseudo-code

Example

Analysis

 Time complexity:

 #make-set, find-set and union operations: O(|V| + |E|)

 O((|V| + |E|) (|V| + |E|))

 Sorting:

 O(|E| log |E|) = O(|E| log |V|)

 Total:

 O(|E| log |V|)

Prim’s Algorithm

 Start with an arbitrary node from V

 Instead of maintaining a forest, grow a MST

 At any time, maintain a MST for V’ V

 At any moment, find a light edge connecting V’
with (V-V’) i.e., the edge with smallest weight
connecting some vertex in V’ with some vertex in
V-V’ !

Prim’s Algorithm cont.

 Again two issues:

 Maintain the tree already build at any moment

 Easy: simply a tree rooted at r : the starting node

 Find the next light edge efficiently

 For v V - V’, define key(v) = the min distance between v and

some node from V’

 At any moment, find the node with min key.

Use a priority queue !

Pseudo-code

Example

Analysis

 Time complexity

 # insert:

 O(|V|)

 # Decrease-Key:

 O(|E|)

 # Extract-Min

 O(|V|)

 Using heap for priority queue:

 Each operation is O (log |V|)

 Total time complexity: O (|E| log |V|)

Using Fibonacci heap:

Decrease-Key:

O(1) amortized time

=>

total time complexity

O(|E| + |V| log |V|)

Applications

 Clustering

 Euclidean traveling salesman problem

