Minimum Spanning Trees

™

= MST Generic Algorithm
s Kruskal’s algorithm

s Prim’s algorithm

ﬁ Definition

= Given a connected graph G = (V, E), with weight
function
w:E --> R
= Min-weight connected subgraph

= Spanning tree T:
= A tree that includes all nodes from V
s I'=(V,E’), where £ Cc E
s Weightof I° W(T) =2 w(e)
= Minimum spanning tree (MST):
= A tree with minimum weight among all spanning trees

MST

= MST for given G may not be unique

= Since MST 1s a spanning tree:
= #edges:|V|-1

n If the graph 1s unweighted:

= All spanning trees have same weight

Cycle Property

Cycle Property:
= Let T be a minimum
spanning tree of a weighted
graph G
= Lete be an edge of G that is
not in T and let C be the

cycle formed by e with T
= For every edge f of C, Replacing f wi I
: : placing T with e yields
weight(f) < weight(e) @ a better spanning tree
Proof:

= By contradiction

= Ifweight(f) > weight(e) we
can get a spanning tree of
smaller weight by replacing
e with f

Minimum Spanning 5

I A 7 VaVWVaVYel

Cut Property

ut Property:

Consider a partition of the vertices of G
into subsets U and V

Let e be an edge of minimum weight
across the partition

There is a minimum spanning tree of G
containing edge e

Proof:

Let T be an MST of G

If T does not contain €, consider the
cycle C formed by e with T and let fbe
an edge of C across the partition

By the cycle property,

weight(f) < weight(e)
Thus, weight(f) = weight(e)
We obtain another MST by replacing f
with e

Replacing f with e yields
@another MST

U

Minimum Spanning 6

I A 7 VaVWVaVYel

Generic Algorithm

s Framework for G = (V, E) :
= Goal: build a set of edges 4 c FE
= Start with 4 empty
= Add edge into 4 one by one

= At any moment, 4 is a subset of some MST for G

GENERIC-MST (G, w)
A<«
while A is not a spanning tree
do find an edge (u«, v) that 1$ safe|{for A
A <«<— AU {(u, v)}
return A

An edge is safe if adding it to A4 still maintains that
A 1s a subset of a MST

Finding Safe Edges

= When 4 1s empty, example of safe edges?
= The edge with smallest weight

= Intuition:
= Suppose S cV, ---acut (S, V-S)

= S and V-5 should be connected

= By the crossing edge with the smallest weight !
» That edge also called a light edge crossing the cut (S, V-S)

= A cut (S, VV-S) respects edge set 4
= Ifno edges from A4 crosses the cut (S, V-S)

Safe-Edge Theorem

s Theorem:

= Let A be a subset of some MST, (S, V-S) be a cut that
respects A, and (u, v) be a light edge crossing (S, V-S) .
Then (u, v) is safe for A.

m Proof: let The an MST A ST, A+T. Assume T does not contain

the light edge (v, v). If it does, we are done. If not, we construct
another MST T’ that contains both A and (u, v).

T {(u, v)} must contain a cycle, with edges on a simple path p
from u to vin T. u and v are on opposite sides of the cut

(S, V =S), and at least one edge in T lies on p and crosses the cut.

Proof: (Contd)

Let (x, v) be any such edge — it cannot be in A, because the cut respects 4. Since (x, y) is
on the unique simple path from u to v in T, removing (x, y) breaks T into two
components. Adding (u, v) reconnects them to form a new

spanning tree 7° = (T — {(x, v)}) {(u, v)}. But T" is also an MST: since (u, v) is a light
edge crossing (S, V—S) and (x, y) also crosses the cut, w(u, v) <w(x, y) and w(T’) =
w(T) —w(x, y) + wu,v) <w(T). The minimality of T implies w(T) <w(T’), so T’ must be
minimal, also.

Is (u, v) safe? Since A €T and (x, y) €A, we have A € T°. Thus A U{(u, v)} €T
Since T’ is an MST, (u, v) is safe for A.

ﬁ Safe-Edge Theorem

s Corollary:

= Let (i, v) be a light edge crossing (V"', V-V’), where
graph G’ = (V", E’) 1s a connected component of the
graph (forest) G’ = (V, A), then (u, v) 1s safe for A.

Greedy Approach:
Based on the generic algorithm and the corollary,
to compute MST we only need a way to find
a safe edge at each moment.

Corollary: Let G = (V, E) be a connected undirected graph
with a real-valued weight function w defined on E. Let A
be a subset of E that is included in some minimum
spanning tree for G, let C = (V _C, E C) be a connected
component (tree) in the forest G A = (V, A). If (u, v) is a
light edge connecting C to some other component in G A4,
then (u, v) is safe for A.

s Proof: the cut (V_C, V-V _C) respects A, and (u, v) is a
light edge for this cut. Therefore (u, v) is safe for A.

ﬁ Kruskal’s Algorithm
Start with 4 empty, and each vertex being its own

connected component

s Repeatedly merge two components by connecting
them with a light edge crossing them

m Two 1ssues:

= Maintain sets of components

Disjoint set data structure

= Choose light edges

Scan edges from low to high weight

ﬁ Pseudo-code

KRUSKAL(V, E, w)

A<«
for each vertex v € V
do MAKE-SET (v)
sort £ into nondecreasing order by weight w
for each (u. v) taken from the sorted list
do i¢ FIND-SET(#) # FIND-SET (v)
then A <— AU {(u, v)j}
UNION (u, v)

return A

ﬁ Analysis

= Time complexity:

= #make-set, find-set and union operations: O(|V| + |E|)
= OC(V + |ED e (V] + |E])

= Sorting:
= O(|E| log |E|) = O(|E]| log |V])

= Total:
= O(E| log |V])

ﬁ Prim’s Algorithm

m Start with an arbitrary node from

» Instead of maintaining a forest, grow a MST
= At any time, maintain a MST for V'V
= At any moment, find a light edge connecting J”’
with (V-17) i.e., the edge with smallest weight

connecting some vertex 1n)’ with some vertex in
V-1’

Prim’s Algorithm cont.

= Again two 1ssues:

= Maintain the tree already build at any moment

=« Easy: simply a tree rooted at r : the starting node

= Find the next light edge efficiently

« Forv € V-1, define key(v) = the min distance between v and
some node from J”’

= At any moment, find the node with min key.

Use a priority queue !

Pseudo-code

PRIM(V, E, w,r)
Q <V
foreachu e V
do key[u] < oo
m[u] < NIL
INSERT(Q, u)
DECREASE-KEY(Q,r,0) = key[r] <0
while O # ¢
do u < EXTRACT-MIN(Q)
for each v € Adj|u]
doif v € O and w(u, v) < key[v]
then 7|v] <« u
DECREASE-KEY (Q, v, w(u, v))

ﬁ Analysis

= Time complexity
= # mnsert: Using Fibonacci heap:
= OV Decrease-Key:
= # Decrease-Key: O(1) amortized time
= O(|E]) =>
= # Extract-Min total time complexity
= O(I1) O(E| + [V log [V])
= Using heap for priority queue;

= Each operationis O (log |V]|)
= Total time complexity: O (|E| log |V])

ﬁ Applications

» Clustering

» Euclidean traveling salesman problem

