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ABSTRACT: The minimum area section is a thoroughly investigated problem in the hydraulics literature. How-
ever, because of the complexities of the analysis, the design of a minimum seepage loss section has not been
attempted as yet. In this investigation, using previously derived results, simplified algebraic equations for com-
putation of seepage loss from triangular, rectangular, and trapezoidal canals have been presented, which replace
accurately the cumbersome evaluation of complex integrals. Using these seepage loss equations and the general
uniform flow equation, explicit equations for the design variables of minimum seepage loss canal sections have
been obtained for each of the three canal shapes by applying nonlinear optimization technique. The optimal
trapezoidal section has the least seepage loss and cross-sectional area among the three optimal sections. A step-
by-step design procedure for rectangular and trapezoidal canal sections has been presented. The analysis also
includes the sensitivity of the seepage loss to design variables around the optimum value.
INTRODUCTION

Canals continue to be major conveyance systems for deliv-
ering water for irrigation in the alluvial plains of India. But
the seepage loss from irrigation canals constitutes a substantial
percentage of the usable water. By the time the water reaches
the field, it has been estimated that the seepage losses are of
the order of 45% of the water supplied at the head of the canal
(Sharma and Chawla 1975). According to the Indian Standard
(‘‘Measurement’’ 1980), the loss of water by seepage from
unlined canals in India generally varies from 0.3 to 7.0 m3/s
per 106 m2 of wetted surface. The transit losses are more ac-
centuated in alluvial canals. It has been estimated (Sharma and
Chawla 1975) that if the seepage loss is prevented, about
6,000,000 ha of additional area could be irrigated. The seepage
loss results not only in depleted freshwater resources but also
causes water logging, salinization, and ground-water contam-
ination. Canals in alluvium are lined in general and reduce the
seepage in particular. Seepage from a lined canal occurs at a
reduced rate. The perfect lining would prevent all the seepage
loss, but a canal lining deteriorates with time. An examination
of canals by Wachyan and Rushton (1987) indicated that even
with the greatest care the lining does not remain perfect. A
well-maintained canal with a 99% perfect lining reduces seep-
age about 30–40% (Wachyan and Rushton 1987); seepage
from a canal cannot be controlled completely. Significant seep-
age losses do occur from a canal even if it is lined. Therefore,
a canal cross section should be designed in such a shape and
with dimensions that minimize the seepage loss. This paper
addresses the design of a minimum seepage section.

The seepage loss from canals is governed by hydraulic con-
ductivity of the subsoils, canal geometry, hydraulic gradient
between the canal and the aquifer underneath, and initial and
boundary conditions. The seepage loss from a canal in an un-
confined flow condition is finite and maximum when the water
table lies at a very large depth. Canal seepage has been esti-
mated for different sets of specific conditions (Harr 1962; Po-
lubarinova-Kochina 1962; Morel-Seytoux 1964; Garg and
Chawla 1970; Subramanya et al. 1973; Sharma and Chawla
1979; Wolde-Kirkos and Chawla 1994). However, the methods
adopted by various investigators are applicable to known canal
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dimensions. An exact mathematical solution to unconfined
steady-state seepage from a trapezoidal canal in a homoge-
neous isotropic porous medium of large depth has been given
by Vedernikov (Harr 1962). The solution has been obtained
using inversion of the hodograph and conformal mapping tech-
nique. The triangular canal is a particular case of the trape-
zoidal canal. A family of curves for flat canal banks has been
presented. However, seepage from a rectangular canal cannot
be computed from the analytical solution given for a trape-
zoidal canal. The case of a rectangular canal has been dealt
with by Morel-Seytoux (1964), and the solution has been ob-
tained by conformal mapping and the use of Green functions.
The analytical form of these solutions, which contain improper
integrals and unknown implicit state variables, is not conven-
ient in estimating seepage from the existing canals and in de-
signing canals. These methods have been simplified by nu-
merical methods for easy computation of seepage in this study.

Though considerable work has been reported on the design
of minimum area cross section, practically no work has been
done on the minimum seepage loss canal sections. Swamee
(1995) reviewed the existing literature on minimum area canal
sections.

Presented herein are the three explicit equations for the
seepage loss from triangular, rectangular, and trapezoidal canal
sections. Using these equations and the resistance equation for
open channel flow (Swamee 1994), minimum seepage loss
sections have been obtained for these three canal shapes.

SEEPAGE LOSS

The seepage loss from a canal in a homogeneous and iso-
tropic porous medium, when the water table is at a very large
depth, can be expressed as

q = kyF (1)s

where qs = seepage discharge per unit length of canal (m2/s);
k = hydraulic conductivity of the porous medium (m/s); y =
depth of water in the canal (m); F = function of channel ge-
ometry (dimensionless); and yF = width of seepage flow at
the infinity. Hereafter, F will be referred to as the seepage
function.

Triangular Section

For a triangular channel, Vedernikov (Harr 1962) gave the
following equation for the seepage function:

1

2 2(0.51s) 2(122s)pm (1 2 t ) t dtE
0

F = (2)1

21 2 2(0.51s) 2(122s)cos t(1 2 t ) t dtE
0
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FIG. 1. Canal Sections: (a) Triangular Section; (b) Rectangular
Section; (c) Trapezoidal Section

where m = side slope (dimensionless) [see Fig. 1(a)]; s = 1/p
cot21m; and t = dummy variable (dimensionless). Using (2),
for a given m, F was obtained numerically by Gauss-
Chebyshev integration. Repeating the process, F was obtained
for a large number of m lying in the range 0 # m # 1,000.
Using these computations the following equation for F was
fitted:

1.3 1.3 0.77F = {[p(4 2 p)] 1 (2m) } (3)

Eq. (3) is exact for m = 0, and m = `. Combining (1) and (3),
the seepage discharge can be obtained for a triangular section.

Rectangular Section

For a rectangular canal, Morel-Seytoux (1964) gave the fol-
lowing equation for the seepage function:

2p
F = ` 22 1 2 a dt2 2 2 2ln t 1 1 (1 1 t )(t 2 a )ÏE H F GJ2 21 1 a 2 1 1 ta

(4)

where a = state variable given by
a 2 22t 1 1 2 a dt212 cosE S D2 21 1 a 1 1 t0b

= ` 2y 2 1 2 a dt2 2 2 2ln t 1 1 (1 1 t )(t 2 a )ÏE H F GJ2 21 1 a 2 1 1 ta

(5)

where b = bed width (m) [see Fig. 1(b)]. Using (5) for a given
b/y, the state variable a was obtained by a trial-and-error pro-
cedure. Furthermore, substituting a in (4) the seepage function
was obtained. Repeating this process, F was obtained for a
large number of b/y lying in the range 0 # b/y # 1,000. Using
b/y and F so obtained, the following equation, which is exact
at b/y = 0 and b/y = `, was fitted:

0.77 1.3
b0.77F = [p(4 2 p)] 1 (6)H S D Jy
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Trapezoidal Section

For a trapezoidal canal [see Fig. 1(c)], Vedernikov (Harr
1962) gave the following equation for the seepage function:

1

2 2(0.51s) 2 2 2(12s)pm (1 2 t ) (t 2 b ) t dtE
b

F = (7)1

21 2 2(0.51s) 2 2 2(12s)cos t(1 2 t ) (t 2 b ) t dtE
b

where b = state variable given by

b

2 21 2 2(0.51s) 2 2 2(12s)2 1 1 m sin t(1 2 t ) (b 2 t ) t dtÏ E
0b

= (8)1y
21 2 2(0.51s) 2 2 2(12s)cos t(1 2 t ) (t 2 b ) t dtE

b

Using a process similar to that described for a rectangular ca-
nal, F was obtained for a large number of m and b/y lying in
the ranges of 0 # m # 1,000 and 0 # b/y # 1,000. Using m,
b/y, and F so obtained, the following equation (which is exact
at m = 0, b/y = 0; m = 0, b/y = `; m = `, b/y = 0; and m =
`, b/y = `) was fitted:

1.3 1.3 (0.7710.462m)/(1.310.6m)F = {[p(4 2 p)] 1 (2m) }S
(110.6m)/(1.310.6m) (1.310.6m)/(110.6m)

b
1 S D Dy (9)

Eq. (9) supplements Vedernikov’s graphs for computation
of seepage for trapezoidal canals frequently used with steeper
side slopes (i.e., m < 1).

Fig. 2 depicts the errors involved in (9). A perusal of Fig.
2 shows the maximum error as 1.8% for the triangular section
(b = 0). For the rectangular section (m = 0), the maximum
error is within 1%. The involved error in the practical range
is <0.9% for the triangular section (0.5 # m # 2.5), 0.5% for
the rectangular section (0.5 # b/y # 10), and 1.4% for the
trapezoidal section (0.5 # m # 5 and 0.5 # b/y # 10).

RESISTANCE EQUATION

A rigid boundary irrigation canal is designed by using the
uniform flow resistance equation. The most commonly used
uniform flow resistance formula is the Manning equation
(Chow 1973), which is applicable for rough turbulent flow and
in a limited band-width of relative roughness (Christensen
1984). Relaxing these restrictions, Swamee (1994) gave the
following resistance equation:

ε 0.221n
Q = 22.457A gRS ln 1 (10)Ï 0 S D12R R gRSÏ 0

where Q = canal discharge (m3/s); A = flow area (m2); g =
gravitational acceleration (varying between 9.780 m/s2 at the
equator to 9.832 m/s2 at the poles); R = A/P, where P (m) is
wetted perimeter; S0 = longitudinal canal bed slope (dimen-
sionless); ε = average roughness height of the canal lining (m);
and n = kinematic viscosity of water (m2/s). Similar to the
case of the resistance equation for pipe flow, (10) involves
physically conceivable parameters ε and n.

OPTIMIZATION ALGORITHM

The canal design pertains to the condition of uniform flow
throughout its length. Thus, it is sufficient to consider the unit
length of the canal, in which the depth of flow is the normal
depth yn. In such a case, the seepage loss is determined by
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FIG. 2. Error Diagram
replacing y by yn in (1). Thus, the problem of determination
of the shape of the minimum seepage loss canal section was
reduced to

minimize

q = ky F (11)s n

subject to

ε 0.221n
f = 2.457A gRS ln 1 1 Q = 0 (12)Ï 0 S D12R R gRSÏ 0

where f = equality constraint function. The constrained opti-
mization problem [(11) and (12)] was solved by minimizing
the augmented function c given by

2c = q 1 pf (13)s

where p = penalty parameter. Adopting small p, (13) was min-
imized using the grid search algorithm. Increasing p fivefold,
the minimization was carried through various cycles until the
optimum stabilized.

OPTIMAL SECTION SHAPES

Considering the length scale l as
2 0.2l = [Q /(gS )] (14)0

the following nondimensional variables were defined:

y = y /l; ε = ε/l; n = nl/Q (15a–c)n* n * *

q = q /(kl); f = f/Q (15d,e)s* s *

For a triangular section, (11) and (12), in nondimensional
form, were reduced to

minimize
1.3 1.3 0.77q = y {[p(4 2 p)] 1 (2m) } (16)s* n*

subject to
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1.5 2.5 2 0.5 2 0.75m y ε (1 1 m ) (1 1 m )n* *f = 1.737 ln 1 0.625nS D2 0.25 1.5* *(1 1 m ) 6my (my )n* n*

1 1 = 0 (17)

Using the optimization algorithm on a nondimensional aug-
mented function for a number of values of and varyingε , n ,* *
in the following ranges:

26 23 27 2510 # ε # 10 ; 10 # n # 10 (18a,b)* *

a large number of optimal sections were obtained. Making use
of these optimal sections and adopting Swamee’s procedure
(Swamee 1995), the following empirical equations were de-
rived:

m* = 1.244; y* = 0.452L; q* = 2.001kL (19a–c)n s

where the superscript asterisk (*) indicates optimality, and
0.04L = l(ε 1 8n ) (20)* *

Following the above procedure for rectangular and trape-
zoidal sections, the generalized optimal dimensions for all
three canal sections were expressed as

2b* = k L; y* = k L; A* = k L (21a–c)b n y A

22V* = k QL ; q* = k kL (21d,e)v s q

where V = average flow velocity in the canal (m/s); and kb, ky,
kA, kv, and kq = section shape coefficients for bed width, normal
depth, cross-sectional area, average velocity, and seepage loss,
respectively. Table 1 lists the optimal section shape coeffi-
cients. A perusal of Table 1 reveals that as compared to the
optimal triangular and rectangular sections, the seepage loss
as well as the cross-sectional area is minimum for the optimal
trapezoidal section. Optimal cross-sectional areas for triangular
and rectangular canals are found to be equal; however, the
rectangular section has a slightly higher seepage loss than the
triangular section.

For a given set of data, the use of (20) and (21), along with
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TABLE 1. Properties of Optimal Canal Sections

Section shape
(1)

Side
slope m

(2)

Section-Shape Coefficients

kb

(3)
ky

(4)
kA

(5)
kv

(6)
kq

(7)

Triangular 1.244 0.000 0.452 0.254 3.937 2.001
Rectangular 0.000 0.799 0.318 0.254 3.937 2.040
Trapezoidal 0.598 0.545 0.331 0.246 4.070 1.923

TABLE 2. Limiting Velocities

Lining material
(1)

Limiting velocity
(m/s)
(2)

Boulder 1.0–1.5
Brunt clay tile 1.5–2.0
Concrete tile 2.0–2.5
Concrete 2.5–3.0

Table 1, results in the optimal canal section. For this section,
(21e) and (21d ) can be used to obtain the quantity of the
seepage loss and the average flow velocity, respectively. The
average flow velocity should be greater than the nonsilting
velocity but less than the limiting velocity VL. The limiting
velocity depends on the lining material as given in Table 2
(Sharma and Chawla 1975). If V is greater than VL, a superior
lining material should be selected.
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DESIGN EXAMPLES

Example 1

Design a minimum seepage loss concrete-lined rectangular
canal section for carrying a discharge of 50 m3/s on a longi-
tudinal slope of 0.0004.

Design Steps

For the design, g = 9.79 m/s2; n = 1.1 3 1026 m2/s (water
at 207C); and ε = 1 mm are adopted.

Using (14), l = 14.488 m; using (15b), = 6.902 3 1025;ε*
using (15c), = 3.187 3 1027; and using (20), L = 9.890 m.n*

Using Table 1 the section shape coefficients are kb = 0.799;
ky = 0.318; kA = 0.254; kv = 3.937; and kq = 2.040.

Using (21a–d), b* = 0.799 3 9.890 = 7.902 m; = 0.318y*n
3 9.890 = 3.145 m; A* = 0.254 3 9.8902 = 24.844 m2; and
V* = 3.937 3 50/9.8902 = 2.013 m/s, which is within the
permissible limit (Table 2).

Assuming that the lining is cracked and k = 1026 m/s; (21e)
results in the seepage loss qs = 2.040 3 1026 3 9.890 = 2.018
3 1025 m2/s.

Example 2

Design a trapezoidal canal section for Q = 250 m3/s and
S0 = 0.0001.
FIG. 3. Variation of Seepage Loss with Bed Width and Side Slope
TION AND DRAINAGE ENGINEERING / JANUARY/FEBRUARY 2000 / 31



Design Steps

Following the steps similar to a rectangular section, l =
36.393 m; = 2.748 3 1025; = 1.601 3 1027; and L =ε n* *
23.954 m.

The section shape coefficients from Table 1 are m* = 0.598;
kb = 0.545; ky = 0.331; kA = 0.246; kv = 4.070; and kq = 1.923.

Using (21a–d ), b* = 13.055 m; = 7.929 m; A* = 141.153y*n
m2; and V* = 1.773 m/s, which is safe.

Using (21e) with k = 1026 m/s, qs = 4.606 3 1025 m2/s.

Sensitivity of Optimal Design

For b ranging from 0 to 40 m and m ranging from 0 to 5,
the normal depths were obtained using (10). Furthermore,
seepage losses were calculated by (1). Fig. 3 shows the vari-
ation of qs with b and m. It can be seen that the seepage loss
from a trapezoidal section with side slope of 0.598 and bed
width of 13.055 m is the global minimum. Furthermore, the
optimum is less sensitive to the increase in bed width and more
sensitive otherwise. This trend of sensitivity continues for 0 <
m < 1.5. For m $ 1.5 the optimum shifts to b = 0 (triangular
section). However, as seen in Fig. 3 the optimum for a rec-
tangular section (m = 0) is highly sensitive to a decrease in
bed width.

CONCLUSIONS

Simplified functions in terms of canal geometry have been
given for computing seepage losses from triangular, rectan-
gular, and trapezoidal canals. These functions, which replace
accurately the cumbersome evaluation of improper integrals
with unknown implicit state variables, have been obtained us-
ing previously derived equations by Vedernikov and Morel-
Seytoux. The seepage function for a trapezoidal section sup-
plements Vedernikov’s graphs for computation of seepage. The
section shape coefficients for all three canal shapes have been
obtained to facilitate design of the minimum seepage loss ca-
nals. Seepage from a triangular canal is minimum for m =
1.244. A rectangular channel with a ratio of bed width to nor-
mal depth = 2.513 has minimum seepage. Among the optimal
sections, the optimal trapezoidal section (m = 0.598 and bed
width to normal depth ratio = 1.646) loses the least seepage.
The design examples have demonstrated the relative simplicity
of the method. The sensitivity analysis for the trapezoidal ca-
nal section design has revealed that the optimum is less sen-
sitive to the increase in bed width and more sensitive other-
wise.
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APPENDIX II. NOTATION

The following symbols are used in this paper:

A = flow area (m2);
b = bed width (m);
F = seepage function (dimensionless);
g = gravitational acceleration (m/s2);
L = length scale (m);
k = hydraulic conductivity (m/s);

kA = section shape coefficient for area (dimensionless);
kb = section shape coefficient for bed width (dimensionless);
kq = section shape coefficient for seepage loss (dimensionless);
kv = section shape coefficient for velocity (dimensionless);
ky = section shape coefficient for normal depth (dimensionless);
m = side slope (dimensionless);
p = penalty parameter (dimensionless);
Q = discharge (m3/s);
qs = seepage discharge per unit length of canal (m2/s);
R = hydraulic radius (m);
S0 = bed slope (dimensionless);

t = dummy variable (dimensionless);
V = average velocity (m/s);

VL = limiting velocity (m/s);
y = water depth in channel (m);

yn = normal depth (m);
a = state variable (dimensionless);
b = state variable (dimensionless);
ε = roughness height (m);
l = length scale (m);
n = kinematic viscosity (m2/s);
f = equality constraint (m3/s); and
c = augmented function.

Subscript

* = nondimensional.

Superscript

* = optimal.
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