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SUMMARY
The canal water losses constitute of seepage and evaporation losses. Whereas seepage loss depends on the channel geometry, evaporation loss is
proportional to the area of free surface. On account of complexities of analysis, the design of minimum water loss section has not been attempted as
yet. In this investigation explicit equations for the design variables of minimum water loss sections for triangular, rectangular, and trapezoidal canals
have been obtained using non-linear optimization technique. The proposed equations along with tabulated section shape parameters facilitate easy design
of the minimum water loss section and computation of water loss from the section without going through the conventional and cumbersome trial and
error method. A design example has been included to demonstrate the simplicity of the method.

RÉSUMÉ
Les pertes d’eau en canal sont dues aux infiltrations et aux pertes par évaporation. Alors que les pertes par infiltration dépendent de la géométrie du
canal, l’évaporation est proportionnelle à l’aire de la surface libre. Compte tenu des complexités de l’analyse, l’étude d’une section minimisant la perte
d’eau, n’avait jusqu’à présent pas été tentée. Dans la présente investigation, des équations explicites ont été obtenues pour les variables de calcul des
sections de perte d’eau minimale, dans les cas de canaux de section triangulaire, rectangulaire et trapézoïdal, en utilisant une technique d’optimisation
non linéaire. Les équations proposées, ainsi qu’une tabulation des paramètres relatifs aux formes des sections, facilite la recherche de la section de perte
d’eau minimale et le calcul de cette perte, sans avoir recours à la méthode conventionnelle et fastidieuse d’essai erreur. Un exemple est présenté pour
démontrer la simplicité de la méthode.
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1. Introduction

The loss of water due to seepage and evaporation from irrigation
canals constitutes a substantial part of the usable water. By the
time the water reaches the field, more than half of the water sup-
plied at the head of the canal is lost in seepage and evaporation
[11]. Seepage loss is the major and the most important part of the
total water loss [14]. The other part i.e. evaporation loss is impor-
tant particularly in water scarce areas. Considerable part of flow
may be lost from a network of canals by the way of evaporation
in high evaporating conditions. This needs special consideration
for a long channel carrying small discharge in arid regions. Thus,
care must be taken in the design of such canals to account for
evaporative losses along with seepage loss.
A review of literature reveals that though considerable work has
been reported on the design of minimum area cross section, prac-
tically no work has been done on the minimum water loss canal
sections. Swamee [13] has reviewed the existing literature on
minimum area canal sections. In the present study using explicit
equations for seepage loss [14], the evaporation equation for
flowing channels [5], and the general resistance equation for open
channel flow [12], minimum water loss sections have been ob-
tained by applying non-linear optimization technique for triangu-
lar, rectangular, and trapezoidal canal sections.

2. Water Losses

Water losses are on account of seepage and evaporation.

2.1 Seepage Loss

Providing perfect lining can prevent seepage loss from canals but
cracks in lining develop due to several reasons and performance
of canal lining deteriorates with time. An examination of canals
by Wachyan and Rushton [15] indicated that even with the great-
est care the lining does not remain perfect. A well maintained
canal with 99% perfect lining reduces seepage about 30-40% only
[15]. Thus significant seepage losses occur from a canal even if
it is lined. The seepage loss from canals is governed by hydraulic
conductivity of the subsoil, canal geometry, and potential differ-
ence between the canal and the aquifer underneath which in turn
depends on the initial and boundary conditions. Seepage losses
are also influenced by clogging of the canal surfaces depending
on the suspended sediment content of the water and on the grain
size distribution of the suspended sediment particles. The clog-
ging process can decrease the seepage discharge both through
bottom and slopes. Thus the seepage loss can change within time
and under certain conditions it can diminish. Therefore, the seep-
age loss can be higher at the beginning of the canal operation and
can be lower after a few years of operation.
The seepage loss from a canal in an unconfined flow condition is
finite and maximum when the potential difference is very large
e.g. when the water table lies at very large depth. The steady
seepage loss from an unlined or a cracked lined canal in a homo-
geneous and isotropic porous media, when water table is at very
large depth, can be expressed as
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where qs = seepage discharge per unit length of canal (m2/s); k =
coefficient of permeability (m); yn = normal depth of flow in the
canal (m); and Fs = seepage function (dimensionless), which is a
function of channel geometry.
The seepage function can be estimated for different sets of spe-
cific conditions for a known canal dimensions [6,8,10]. The ana-
lytical form of these solutions, which contain improper integrals
and unknown implicit state variables, are not convenient in esti-
mating seepage from the existing canals and in designing canals
considering seepage loss. These methods have been simplified
using numerical methods for easy computation of seepage func-
tion by Swamee et al [14].

2.2 Evaporation Loss

Evaporation loss depends on (1) the supply of energy to provide
the latent heat of vaporization and (2) the ability to transport the
vapor away from the evaporating surface, which in turn depends
on the wind velocity over the surface and the specific humidity
gradient in the air above the water surface. A large number of
equations for estimating evaporative rate are available in the liter-
ature. A review indicated that these equations fall into the follow-
ing categories; (a) energy balance equations; (b) mass transfer
equations; and (c) combinations of the two. Warnaka and Pochop
[16] and Ikebuchi et al. [7] compared the merits of various equa-
tions. The energy balance equations require a variety of climato-
logical data. The need of sophisticated equipment for direct mea-
surement of radiation, frequent temperature surveys for heat stor-
age etc. make the method unattractive. On the other hand, the
mass transfer equations are most convenient and useful for deter-
mining evaporation from flowing canals [5].
The mass transport type equations are expressed as

where E = evaporation discharge per unit free surface area (m/s);
es = saturation vapor pressure of the air at the temperature of the
water surface (Pa); ed = saturation vapor pressure of the air at the
dew point (Pa); and fw = wind function (m/s/Pa). The difference
between the saturation vapor pressure of the air at the temperature
of water surface and at the dew point (es - ed) in Pa was given by
[4]

where θw = water surface temperature in °C; θa = mean air tem-
perature in °C; and Rh = relative humidity expressed as fraction.
The wind function for a flowing channel in m/s per Pa was given
by Fulford and Sturm [5] as:

where u2 = wind velocity in m/s at 2 m above the free surface.
Combining (2-4), E in m/s is obtained as

Eq. (5) shows that in the simplest form of mass transfer approach
E is a function of the wind velocity over the evaporating surface,
the water surface temperature, the air temperature and relative
humidity of the air above the water surface, though it may be af-
fected by many other factors.
Once E is known the evaporation loss from a canal can be ex-
pressed as

where qe = evaporation discharge per unit length of canal (m2/s);
and T = width of free surface (m).

2.3 Total Water Loss

Adding (1) and (6) the total water loss qw (m2/s) was expressed
as:

Using Swamee et al [14] equations for Fs, Eq. (7) for triangular
channel section was reduced to

where m = side slope. See Fig. 1(a). Similarly for rectangular sec-
tion (7) was changed to

where b = bed width of the section. See Fig. 1(b). On the hand,
for trapezoidal section [See Fig. 1(c)], (7) was reduced to
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(a) (b) (c)

Fig. 1. Canal Sections: (a) Triangular Section, (b) Rectangular Section, (c) Trapezoidal Section
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3. Resistance Equation

Uniform open channel flow is governed by the resistance equa-
tion. The most commonly used resistance formula is Manning’s
equation [2], which is applicable for rough turbulent flow, and in
a limited bandwidth of relative roughness [3]. Relaxing these re-
strictions, Swamee [12] gave the following resistance equation:

where Q = canal discharge (m3/s); A = flow area (m2); g = gravi-
tational acceleration (m/s2); R = hydraulic radius (m) defined as
the ratio of the flow area to the flow perimeter P (m); ε = average
roughness height of the canal lining (m); and ν = kinematic vis-
cosity of water (m2/s). Similar to the case of resistance equation
for pipe flow, (11) involves physically conceivable parameters ε
and ν.

4. Non-dimensionalization

Defining the length scale λ as

the following non dimensional variables were obtained:

E* depends on the type of soil and the climatic conditions of the
canal site. Using these non-dimensional parameters (7) reduced
in non-dimensional water loss form as

while (11) became the non-dimensional flow resistance equation

as

5. Optimization Algorithm

The problem of determination of optimal canal section shape was
reduced to

Minimize

subject to

whereφ= equality constraint function. The constrained optimiza-
tion problem (16)-(17) was solved by minimizing the augmented
function ψ given by

where ρ = a penalty parameter. Adopting small ρ initially, (18)
was minimized using grid search algorithm. Increasing ρ five-
fold, the minimization was carried through various cycles until
the optimization results stabilized.

6. Optimal Section Shapes

The optimization algorithm was applied on triangular, rectangu-
lar, and trapezoidal canal sections for a number of input variables
varying in the ranges

Analysis of these large numbers of optimal sections so obtained
for all the three type of canal sections [1], indicated that the linear
dimensions are proportional to the length scale L (m) given by

Further the analysis [1] resulted in the following generalized
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Fig. 2. Properties of Minimum Water Loss Sections:
(a) Normal Depth and Bed Width
(b) Side Slope and Water Loss

equations for the optimal dimensions and the corresponding water
loss for all the three canal sections:

where * indicates optimality; kfs = coefficients; and rf and sf = ex-
ponents. The first subscript m, b, y, and q denote side slope, bed
width, normal depth, and water loss respectively and the second
subscript s, and e denote seepage, and evaporation loss respec-
tively. Table 1a lists the section shape coefficients. The optimal
section properties with Manning’s equation are tabulated in Table
1b, in which case

where n = Manning’s roughness coefficient.

Table 1a. Properties of Optimal Canal Sections (General
Equation)

Entity
(1)

Coeffi-
cients or

Exponents
(2)

Section Shape

Triangu-
lar
(3)

Rectan-
gular
(4)

Trape-
zoidal

(5)

Side
Slope

kms 1.2466 0.5984

kme 0.4850 0.3106
rm 0.9020 1.0937
sm 1.1732 5.0000

Bed
Width

kbs 0.7986 0.5446

kbe 1.0717 0.1561
rb 0.9849 2.2409
sb 0.3798 0.1616

Nor-
mal

Depth

kys 0.4518 0.3178 0.3309

kye 0.3895 0.5198 0.4987
ry 0.9286 0.8994 0.9998
sy 0.7114 0.6630 0.5828

Water
Loss

kqs 2.0015 2.0399 1.9227

kqe 0.9084 0.5707 0.6249
rq 1.0126 0.9433 0.8849
sq 0.6241 0.6376 0.6846

Fig. 2 plots the behaviour of the design equations (21). In Fig. 2
variations of side slope and the dimensionless bed width, normal
depth, and water loss with E/k were plotted for triangular, rectan-
gular, and trapezoidal canals. Fig. 2 shows that side slope and bed
width of the optimal section decrease and normal depth of the
optimal section increases with increase in E/k. A perusal of Fig.
2(b) for water loss reveals that the optimal triangular section per-
mits less water loss than the optimal rectangular section in the
range 0 E* 0.14, otherwise the rectangular section is more effi-
cient than the triangular section. The optimal trapezoidal section
loses the least water amongst the three optimal sections for the
full range of E. For E 2 k, the losses from the optimal rectangu-
lar section and from the trapezoidal section are nearly the same.
For E < 0.1 k, the water loss and the canal dimensions are less
sensitive to E/k and more sensitive otherwise. At E = 0, (21) gives
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V Q A= / (23)

the optimal dimensions and water loss for a minimum seepage
loss canal section [14].
For a given set of data, the use of (20) and (21a-c), along with
Table 1 results in the optimal canal section. Section shapes coeffi-
cients for water loss along with (21d) gives the minimum water
loss from the optimal section. Alternatively the losses from the
optimal section can be obtained using (8-10), once the section
dimensions are fixed. For the designed section the average flow
velocity V (m/s) can be obtained by the continuity equation

Table 1b. Properties of Optimal Canal Sections (Manning’ Equa-
tion)

Entity
(1)

Coeffi-
cients or
Expo-
nents
(2)

Section Shape

Triangular
(3)

Rectan-
gular
(4)

Trapezoidal
(5)

Side
Slope

kms 1.2407 0.5981

kme 0.4577 0.2983
rm 0.8865 1.0875
sm 1.2066 5.0000

Bed
Width

kbs 2.0545 1.3959

kbe 1.0747 0.1422
rb 0.9841 2.2628
sb 0.3718 0.1567

Normal
Depth

kys 1.1676 0.8211 0.8543

kye 0.3643 0.4961 0.4776
ry 0.9184 0.8943 0.9974
sy 0.7371 0.6760 0.5910

Water
Loss

kqs 5.1614 5.2599 4.9510

kqe 0.8882 0.5612 0.6162
rq 1.0104 0.9432 0.8851
sq 0.6346 0.6464 0.6935

This average velocity should be greater than the non-silting veloc-
ity but less than the limiting velocity VL. The limiting velocity
depends on the lining material as given in Table 2 [11]. If V is
greater than VL, a superior lining material should be selected.

7. Design Example

Design a minimum water loss concrete lined rectangular canal
section for carrying a discharge of 10 m3/s on a longitudinal slope
of 0.001. The canal lining has ε = 1 mm. Assume canal lining as
cracked; and having k = 10-6 m/s. The maximum evaporation loss
E was estimated as 2.5x10-6 m/s. The water temperature is 20 °C
at which ν = 1.1x10-6 m2/s.

Solution

Adopting g = 9.79 m/s2 and using (12) λ = 6.336 m. Using (13)
ε* = 1.578×10-4; ν* = 6.970× 10-7; and E* = 2.5. Using (20) L =
4.471 m. For a rectangular section Table 1a gives the bed width
parameters as: kbs = 0.7986; kbe = 1.0717; rb = 0.985; and sb =
0.3798. Using these parameters and (21b), b* = 2.186 m. Simi-
larly the normal depth parameters are kys = 0.3178; kye = 0.5198;
ry = 0.8994; and sy = 0.6630. Using these parameters and (21c),
yn

* = 2.386 m. Adopting b = 2.19 m and yn = 2.39 m, A = 5.234
m2; and using (23) V = 1.91 m/s, which is within permissible limit
(Table 2). Using (9) the seepage loss qs = 1.032×10-5 m2/s; and
the evaporation loss qe = 5.475×10-6 m2/s. Summing up these
losses, loss qw = 1.580×10-5 m2/s; while the direct use of (21d)
gives qw = 1.575×10-5 m2/s.

Table 2. Limiting Velocities

Lining Material
(1)

Limiting Velocity (m/s)
(2)

Boulder 1.0-1.5
Brunt Clay Tile 1.5-2.0
Concrete Tile 2.0-2.5
Concrete 2.5-3.0

Similarly, using the same data for design of a triangular canal
yields: m = 0.52; and yn

* = 3.203 m. Thus, A = 5.335 m2; and V
= 1.874 m/s. Using (8) qs = 1.052×10-5 m2/s; qe = 8.328×10-6

m2/s; and qw = 1.885×10-5 m2/s, but qw = 1.884×10-5 m2/s from
(21d). Thus in comparison to rectangular section the triangular
section is less efficient.

8. Conclusions

Explicit design equations and optimal section shape coefficients
for triangular, rectangular and trapezoidal sections have been ob-
tained to facilitate design of minimum water loss canal sections.

Notation

A flow area [m2];
b bed width of canal [m];
E evaporation discharge per unit free surface area [m/s];
ed saturation vapour pressure at dew point temperature [Pa];
es saturation vapour pressure at water surface temperature [Pa];
Fs seepage function [dimensionless];
fw wind function [m/s/Pa];
g gravitational acceleration [m/s2];
L length scale [m];
k coefficient of permeability [m/s];
kfs section shape coefficients [dimensionless];
m side slope [dimensionless];
n Manning’s roughness coefficient [dimensionless];
Q discharge [m3/s];
qe evaporation loss per unit length of canal [m2/s];
qs seepage loss per unit length of canal [m2/s];
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qw total water loss per unit length of canal [m2/s];
R hydraulic radius [m];
Rh relative humidity [dimensionless];
rf exponents [dimensionless];
S0 bed slope [dimensionless];
sf exponents [dimensionless];
T width of free surface [m];
u2 wind velocity at 2 m above water surface [m/s];
V average velocity [m/s];
VL limiting velocity [m/s];
yn normal depth [m];
ε roughness height [m];
λ length scale [m];
ν kinematic viscosity [m2/s];
φ equality constraint [dimensionless];
ρ penalty parameter [dimensionless];
ψ augmented function [dimensionless];
θa mean air temperature [°C]; and
θw water surface temperature [°C].

Subscript

b bed width;

e evaporation;

m side slope;

q water loss;

s seepage loss;

y normal depth; and

* non-dimensional.

Superscript

* optimal.
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