STUDY OF EFFECT OF EXPANSION JOINT ON STRESS LEVELS IN SUPERSTRUCTURE ON A BARGE STRUCTURE

- THE PROBLEM DEFINITION
- **FE MODEL FOR NUMERICAL ANALYSIS**
- LOADS & BOUNDARY CONDITIONS
- RESULTS & DISCUSSION

PROBLEM DEFINITION

THE PRESENT STUDY WAS CONDUCTED ON AN EQUIVALENT BARGE OF THE FOLLOWING DIMENSION RATIOS

	Dimension of barge (m)	Ratio	Barge	P-28
L	10	L/B	8.33	7.69
В	1.2	L/D	14.28	11.76
D	0.7	B/D	1.71	1.5
Ls	6	Ls/L	0.6	0.57

BARGE STRUCTURE

- THREE ISLAND SUPERSTRUCTURES SEPARATED BY EXPANSION JOINTS
- DEPTH OF THE SUPERSTRUCTURE 0.3 M
- RATIO OF SUPERSTRUCTURE LENGTH TO BARGE LENGTH 0.6
 - THE LOADING PROFILE ON THE BARGE WAS TO SIMULATE A HOGGING WAVE PROFILE
- TWO CONFIGURATIONS OF THE EXPANSION JOINTS HAVE BEEN STUDIED

FINITE ELEMENT MODEL

THE FINITE ELEMENT MODEL OF THE BARGE WAS CREATED IN A GENERAL PURPOSE FE PACKAGE ANSYS USING SHELL63 (ELASTIC SHELL ELEMENT) AVAILABLE IN THE ANSYS MULTIPHYSICS SOLVER.

THE THREE CONFIGURATIONS ANALYZED WERE :-

- CASE 1 WITHOUT EXPANSION JOINT
- CASE 2 WITH STRAIGHT CUT EXPANSION JOINT (FIG. A)
- CASE 3 WITH CURVED EXPANSION JOINT (FIG. B)

LOADS & BOUNDARY CONDITIONS

THE LOADING PROFILE ON THE BARGE WAS TO SIMULATE A HOGGING WAVE PROFILE

CASE - 1: BARGE STRUCTURE WITH OUT EXPANSION JOINT

MATERIAL MODEL :-

YOUNGS MODULUS POISSONS RATIO DENSITY - 780

- 210 GPA - 0.3 7800 KG/M³

STRESS PLOT OF SUPERSTRUCTURE AND ONE DECK BELOW

DEFLECTION PLOT WITHOUT EXPANSION JOINTS

CASE – 2 : BARGE STRUCTURE WITH STRAIGHT CUT EXPANSION JOINT

EXPANSION JOINTS OF WIDTH EQUAL TO ONE ELEMENT WIDTH WAS PROVIDED AT BOTH THE LOCATIONS

DEFLECTION PLOT WITH STRAIGHT CUT EXPANSION JOINTS

CASE – 3 : BARGE STRUCTURE WITH CURVED EXPANSION JOINT

DEFLECTION PLOT WITH CURVED EXPANSION JOINTS

SUMMARY

Case	Global average stress (MPa)	% reduction in Global avg stress	Stress at expansion joint tip (MPa)	Stress at junction b/w SS & Dk below (MPa)	% reduction in corner stress (MPa)	Maximum deflection (mm)
No expansion joint	35.5		-	84.0		5.64
Straight cut expansion joint	10.2	71.26 %	300	67.7	19.40%	6.67
Curved expansion joint	3.77	89.38 %	157	69.0	17.85%	6.97

RESULTS & DISCUSSION contd..

COMPARISON OF STRESS VALUES IN TOP DECK AT THE JUNCTION OF SUPERSTRUCTURE WITH THE DECK, DUE TO THE INFLUENCE OF THE BULKHEAD AT THE ENDING OF THE SUPERSTRUCTURE

Case	Stress in deck	Stress in super structure bulkhead
<u>With</u> bulk head at the end of super structure	57 MPa	57 MPa
<u>Without</u> bulk head at the super structure end	58 MPa	75 MPa
Without bulk head at the super structure end, but with a "T" beam at the same location	56 MPa	68 MPa

IT CAN BE CONCLUDED THAT THE STRESS LEVELS IN THE SUPERSTRUCTURE BULKHEAD ARE LOW IF THE SUPERSTRUCTURE ENDS ON A BULKHEAD

RESULTS & DISCUSSION contd..

FROM THE TABULATED RESULTS :

- A GLOBAL REDUCTION IN STRESS IS SEEN WHEN A CURVED CONFIGURATION OF THE EXPANSION JOINT IS USED.
- THE REDUCED STRESS LEVELS HAS A DIRECT IMPLICATION OF LIGHTER TOPSIDE AND A LOW WEIGHT OF SCANTLING IN THE SUPERSTRUCTURE HENCE IMPROVED STABILITY.
- INTRODUCTION OF EXPANSION JOINTS HAVE REDUCED THE STRESS LEVELS AT THE JUNCTION OF THE SUPERSTRUCTURE AND THE DECK BELOW BY 19.4%.

IT IS RECOMMENDED THAT CURVED EXPANSION JOINT TO BE USED IN PLACE OF STRAIGHT CUT JOINT AS JUSTIFIED BY THE ABOVE STUDY AND DISCUSSION