Agricultural Productivity, Comparative Advantage, and Economic Growth*

KIMINORI MATSUYAMA

Department of Economics, Northwestern University
Evanston, Illinois 60208

Received November 7, 1990; revised May 15, 1991

The role of agricultural productivity in economic development is addressed in a two-sector model of endogenous growth in which (a) preferences are non-homothetic and the income elasticity of demand for the agricultural good is less than unitary, and (b) the engine of growth is learning-by-doing in the manufacturing sector. For the closed economy case, the model predicts a positive link between agricultural productivity and economic growth, while, for the small open economy case, it predicts a negative link. This suggests that the openness of an economy should be an important factor when planning development strategy and predicting growth performance. Journal of Economic Literature Classification Numbers: F43, O11, 041. © 1992 Academic Press, Inc.

1. INTRODUCTION

For many years, economists have discussed the role of agricultural productivity in economic development. Generations of development economists have stressed improving agricultural productivity as an essential part of successful development strategy. For example, Nurkse [21, p. 52] argued that “[c]veryone knows that the spectacular industrial revolution would not have been possible without the agricultural revolution that preceded it,” and Rostow [26, p. 8] stated that “revolutionary changes in agricultural productivity are an essential condition for successful take-off.” A casual reading of recent development textbooks suggests that

* An earlier version of this paper has been circulated as NBER Working Paper #3606. Michele Boldrin, Charlie Calomiris, Yujiro Hayami, Steve Matthews, Joel Mokyr, Cormax O’Grada, Kevin O’Rourke, Rob Porter, Nancy Stokey, Dan Vincent, two anonymous referees, as well as seminar participants at the Bank of Japan, Japan Development Bank, NBER, Northwestern U., Osaka U., and U. of Tokyo have provided useful comments and feedback. Any remaining shortcomings are my own.
this view seems to have achieved almost the status of an axiom in develop-
ment economics.1

According to this conventional view, which is based in part on the
experiences of the Industrial Revolution in Britain, there are positive links
between agricultural productivity and industrialization. First, rising
productivity in food production makes it possible to feed the growing
population in the industrial sector. With more food being produced with
less labor, it releases labor for manufacturing employment. Second, high
incomes generated in agriculture provide domestic demand for industrial
products. Third, it increases the supply of domestic savings required to
finance industrialization.

However, a comparative look at some regional experiences of
industrialization tells a different story. For example, why were Belgium and
Switzerland the first to become leading industrial countries in continental
Europe, while the Netherlands lagged behind and did not take off until the
last decades of the nineteenth century? Or why did industrialization of the
United States during the antebellum period, mainly in the cotton textile
industry, occur in New England, not in the South? Economic historians
who studied these experiences found their answer in the Law of Com-
parative Advantage, which implies a negative link between agricultural
productivity and industrialization; see Mokyr's [193 comparative study of
industrialization in Belgium and the Netherlands, and Field [8] and
Wright [34] for industrialization in New England and the South.

According to this view, the manufacturing sector has to compete with the
agriculture sector for labor. Low productivity in agriculture implies the
abundant supply of "cheap labor" which the manufacturing sector can rely
on.

The key to understanding these two conflicting views can be found in the
difference in their assumptions concerning the openness of economies. Note
that the logic behind the conventional wisdom crucially rests on the
implicit assumption that the economy is an effectively closed system. This
assumption, which may be appropriate for Britain during the half-century
of the Seven Year War, the War of American Independence, the French
Revolution, and the Napoleonic Wars, should not be taken for granted for
many developing countries.2 In an open trading system, where prices are
mainly determined by the conditions in the world markets, a rich endow-
mint of arable land (and natural resources) could be a mixed blessing.

1 My samples include Gillis et al., [9], Hayami and Ruttan [12], Herrick and Kindleberger
[13], Timmer [30], and Todaro [31]. Timmer claims that this view "has not been challenged
(p. 277)."

2 The effect of continuous wars on the British Industrial Revolution remains in dispute. In
particular, the extent to which trade in food was disrupted has been questioned, given the
closer integration of the Irish and British economies during the period; see Thomas [29].
High productivity and output in the agricultural sector may, without offsetting changes in relative prices, squeeze out the manufacturing sector. Economies which lack arable land and thus have the initial comparative (but not necessarily absolute) advantage in manufacturing, on the other hand, may successfully industrialize by relying heavily on foreign trade through importing agricultural products and raw materials and exporting manufacturing products, as recent experiences in the newly industrialized economies in East Asia suggest.\(^3\)

In an attempt to highlight the point made above, this paper presents a two-sector model of endogenous growth. The model is essentially of the Ricardo–Viner–Jones variety, with one mobile factor (called labor) combined with diminishing returns technologies. There are two additional features. First, preferences are non-homothetic and the income elasticity of demand for the agricultural good is less than unitary. Second, manufacturing productivity rises over time because of learning-by-doing. For the closed economy case, an exogenous increase in agricultural productivity shifts labor to manufacturing and thereby accelerates economic growth. The model therefore provides a formalization of the conventional wisdom, which asserts that agricultural revolution is a precondition for industrial revolution. For the open economy case, however, there exists a negative link between agricultural productivity and economic growth. An economy with less productive agriculture allocates more labor to manufacturing and will grow faster. For a sufficiently small discount rate, it will achieve a higher welfare level than the rest of the world. The productive agricultural sector, on the other hand, squeezes out the manufacturing sector and the economy will de-industrialize over time, and, in some cases, achieve a lower welfare level. The model is also used to illustrate the Dutch disease phenomena.

Once stated, the contrast between the results in the closed and open economies is quite intuitive, but has often escaped the attention that it deserves. It suggests that the openness of economies should be an important factor to be kept in mind when planning development strategies and predicting growth performances. At the turn of the century, those schooled in the conventional wisdom might have predicted that Argentina, with her fertile and vast pampas land, would grow faster than Japan, with her mountainous land and limited natural resources. To them, what happened to these two economies during the last 90 years may be puzzling. Or, to many, it provides prima-facie evidence that cultural or political factors are

\(^3\) Although my main concern here is output growth, I found the empirical findings reported in Rauch [23] highly suggestive. He found that per capita consumption growth will be slower in countries with relatively large endowments of land per capita.
important determinants of economic development. The result for the open economy case arguably offers an economic explanation for this "puzzle." The results here can be considered also as a caution to the readers of the recent empirical work e.g., Romer [24], which, in order to test implications of closed economy models of endogenous growth, uses cross-country data and treats all economies in the sample as if they were isolated from each other.

The rest of the paper is organized as follows. Section 2 presents the closed economy case, which also serves as a benchmark for the open economy case. Section 3 turns to the open economy. Section 4 discusses related work in the literature. The limitations of the model and suggestions for future research are given in Section 5, followed by two appendices.

2. The Closed Economy

The economy consists of two sectors: manufacturing and agriculture. Both sectors employ labor. Abstracting from the issue of population growth, the size of the population is constant and equal to \(L \). The total labor supply is also constant and normalized to one. (As discussed below and demonstrated in Appendix A, the absolute size of the economy itself has no effect in this model.) Technologies in the two sectors are given by

\[
X_r^M = M_r F(n_r), \quad F(0) = 0, \quad F' > 0, \quad F'' < 0, \quad (1)
\]

\[
X_r^A = AG(1 - n_r), \quad G(0) = 0, \quad G' > 0, \quad G'' < 0, \quad (2)
\]

where \(n_r \) is the fraction of labor employed in manufacturing as of time \(t \) (time is continuous). Both sectors operate under diminishing returns. Agricultural productivity, \(A \), which may reflect the level of technology, land endowment, and climate, among other things, is constant over time and treated as an exogenous parameter. On the other hand, productivity in the manufacturing sector, \(M_r \), which represents knowledge capital as of time \(t \), is predetermined, but endogenous. Knowledge accumulates as a by-product of manufacturing experience, as follows:

\[
\dot{M}_r = \delta X_r^M, \quad \delta > 0. \quad (3)
\]

4 For example, one political scientist argues that liberal theory, by which he means economics as commonly taught in North American universities, "tends to neglect the political framework..., yet the process of economic development cannot be divorced from political factors." He then asks "How else can one explain the remarkable economic achievements of resource-poor Japan and the troubles of resource-rich Argentina? (Gilpin [10, p. 269])"

5 For simplicity, it is assumed that knowledge capital never depreciates. Introducing a depreciation generates possibility of a growth trap in this model.
These learning-by-doing effects are purely external to the individual firms that generate them. With complete spillovers, each manufacturing firm treats \(M_t \) as given when making production and employment decisions. Thus, competition between the two sectors for labor leads to the equilibrium condition in the labor market,

\[
AG'(1 - n_t) = p_t M_t F'(n_t),
\]

where \(p_t \) is the relative price of the manufacturing good.

All consumers in this economy share identical preferences given by

\[
W = \int_0^\infty \left[\beta \log(c_t^A - \gamma) + \log(c_t^M) \right] e^{-\rho t} dt, \quad \beta, \gamma, \rho > 0,
\]

where \(c_t^A \) and \(c_t^M \) denote consumption of the agriculture good (food for simplicity) and the manufacturing good, as of time \(t \). The parameter \(\gamma \) represents the subsistence level of food consumption and satisfies

\[
AG(1) > \gamma L > 0.
\]

The first inequality states that the economy's agricultural sector is productive enough to provide the subsistence level of food to all consumers. With a positive \(\gamma \), preferences are non-homothetic and the income elasticity of demand for food is less than unitary. The low income elasticity is introduced partly because of its central role in the logic behind the conventional view and partly because of the empirically indisputable Engel's law; see Crafts [6]. It is also assumed that all consumers have enough income to purchase more than \(\gamma \) units of food. Then, from (5), demand for the two goods by a consumer satisfies \(c_t^A = \gamma + \beta p_t c_t^M \). Aggregation over all consumers yields

\[
C^A = \gamma L + \beta p_t C^M,
\]

where the upper case letters denote aggregate consumption.

To proceed further, let us assume that the economy is a closed system. This requires that \(C^M_t = X^M_t = M_t F(n_t) \) and \(C^A_t = X^A_t = AG(1 - n_t) \). Combining them with Eqs. (4) and (7) yields

\[
\phi(n_t) = \gamma L / A,
\]

where \(\phi(n) = G(1 - n) - \beta G'(1 - n) F(n)/F'(n) \), which satisfies \(\phi(0) = G(1) \), \(\phi(1) < 0 \), and \(\phi' < 0 \). From (6), (8) has a unique solution in \((0, 1)\). Since the right-hand side is decreasing in \(A \), this solution can be written as

\[
n_t = v(A), \quad \text{with} \quad v'(A) > 0.
\]
Thus, the employment share of manufacturing is constant over time and positively related to A. From (3), output in manufacturing grows at a constant rate, $\delta F(v(A))$, also positively related to A. Aggregate food consumption and production stay constant at the level given by

$$C^A = X^A = AG(1 - v(A)) = \gamma L + A\beta G'(1 - v(A)) F(v(A))/F'(v(A)),$$

which is also increasing in A. Under the closed economy assumption, the model predicts that an increase in agricultural productivity releases labor to manufacturing and immediately increases its output and accelerates its growth. It also causes a permanent increase in the level of food production. Therefore, the utility of the representative consumer, who consumes C^A/L and C^M/L, unambiguously increases with agricultural productivity. These results can thus be considered as a formalization of the conventional wisdom, which asserts that agricultural revolution is a precondition for industrial revolution and supports the development strategy that emphasizes the Green Revolution. Although the underlying mechanism is very simple, this is, to my best knowledge, the first attempt to model a positive link between agricultural productivity and the growth rate of the economy.\(^6\)

Before turning to the open economy case, several points about the model above deserve special emphasis. First, Engel's law plays a crucial role here. If γ is zero, the solution to (8) is independent of A, and thus agricultural productivity has no effect on growth. If γ is negative, and so food is a luxury good, then a rise in agricultural productivity slows down the economy.\(^7\) This result does not depend on the particular functional form chosen. To see this, consider a more general instantaneous utility function,

$$u(c^A, c^M) = \left\{ \begin{array}{ll} f(c^A)^{(1 - \sigma)/(1 - \sigma)}, & \text{for } \sigma > 0, \sigma \neq 1; \\ \log f(c^A) + \log(c^M), & \text{for } \sigma = 1, \end{array} \right.$$

where f is a positive, increasing function and needs to satisfy the additional restriction necessary to make $u(c^A, c^M)$ strictly concave. Also, assume that all consumers are identical. Then, it is straightforward to show that the employment share of manufacturing, and thus its growth rate, are constant.

\(^6\) By the growth rate of the economy, I mean the rate of expansion in the production possibility frontier in general and the output in manufacturing in particular. The growth rate of GNP, of course, depends on the choice of the accounting unit. If food is chosen, then GNP is constant, because the relative price of food grows at $\delta F(v(A))$, which offsets an output increase in the manufacturing sector. If the manufacturing good is chosen, GNP grows at the rate equal to $\delta F(v(A))$. If the utility index, $[(c^A - \gamma)^\theta c^M]^{(1 + \theta)/(1 + \beta)}$, is chosen, then GNP grows at the rate equal to $\delta F(v(A))/(1 + \beta)$.

\(^7\) This result is suggestive of how the presence of a service sector might affect the growth rate of the economy.
over time. Furthermore, they are positively related to agricultural productivity if and only if \(f'(c^A) c^A/f(c^A) \) is decreasing in \(c^A \), which is exactly the condition for the income elasticity of demand for food to be less than one. All qualitative results thus carry over for this general specification. Nevertheless, the special case is assumed in (5) because \(f(c^A) = (c^A - \gamma)^\beta \) allows for a simple aggregation, and because \(\sigma = 1 \) makes the instantaneous utility function additively separable in \(c^A \) and \(c^M \), which substantially simplifies the welfare analysis of the open economy in the presence of international capital markets, as will be seen in the next section.

Second, in the present model, the labor market is competitive and the wage rate is equalized across the two sectors, as seen in Eq. (4). The standard assumption in the development literature, on the other hand, is that there are wage differentials between the “modern” manufacturing and the “traditional” agricultural sectors. It is commonly argued that labor migration from agriculture to manufacturing contributes to total productivity gains to the extent that labor has higher productivity in manufacturing. Much effort has been devoted to estimate wage gaps, as well as the Harberger triangle, representing the allocative losses associated with this labor market failure; see Williamson [33] for a survey. The presence of wage gaps, if exogenous, would not affect the result. Although wage gaps and factor market distortions may be substantial in reality, they are assumed away to simplify the exposition. Incidentally, the analysis here has shown that labor reallocation to manufacturing increases total productivity growth even in the absence of wage gaps, once productivity growth is endogenized.

Third, one might infer from the model that, ceteris paribus, a larger country (in terms of labor force) has a bigger manufacturing sector, and thus, the model predicts that China or India would experience a faster growth than South Korea or Taiwan, at least under autarky. Such an inference is unwarranted for two reasons. First, a large country does not necessarily mean a large economy. It may simply consist of a large number of regional economies. Second, it crucially depends on the nature of external effects of learning-by-doing. If spillover occurs through some local informational exchange or by observing the experiences of neighbors, it would be more reasonable to suppose that the density of manufacturing activity, instead of its absolute size, determines the speed of knowledge accumulation. Then, all variables in the model should be considered as representing per capita terms. Appendix A shows more formally how this can be done.

Finally, one counterfactual implication of the results obtained above is the constant share of employment and value of output in each sector. As documented by Clark [4], Kuznets [16], and Chenery and Syrquin [3], the share of agriculture in the labor force and total output declines as
income per capita increases, not only in cross section, but also in time series as well. There are at least two ways of extending the model to make it consistent with this empirical regularity. First, one could introduce a continuous, exogenous improvement in agricultural productivity, A_t. Instead of (4) and (8), we now have

$$A_t G'(1-n_t) = p_t M_t F'(n_t),$$ \hspace{1cm} (4')

$$\phi(n_t) = \gamma L/A_t.$$ \hspace{1cm} (8')

Equation (8') implies that, as agricultural productivity rises over time, n_t increases monotonically over time, and, if A_t grows unbounded, then $n_t \rightarrow \bar{n} \in (0, 1)$ as $t \rightarrow \infty$, where $\phi(\bar{n}) = 0$. From (4'), $p_t M_t F(n_t)/A_t G(1-n_t) = [G'(1-n_t)/G(1-n_t)] [F(n_t)/F'(n_t)]$, which is increasing in n_t, so that the share of manufacturing in value of output also rises over time. Second, Appendix B shows that, by using a different class of utility function, one can explain these stylized facts as well as the positive link between agricultural productivity and the growth rate, even without an exogenous growth in agricultural productivity. However, I have chosen not to use these alternative models, because the model above is much simpler and the constant employment share proves to be a useful benchmark when discussing regional divergence results in the open economy case.

3. THE SMALL OPEN ECONOMY

The positive link between agricultural productivity and the growth rate demonstrated above crucially depends on the closed economy assumption. To see this, imagine a small open economy, called the Home, which is exactly the same as the closed economy considered above. The rest of the world differs from the Home economy only in that their agricultural productivity and the initial knowledge capital in manufacturing are given by A^* and M^*_0, instead of A and M_0. Labor is immobile across the economies, and it is also assumed that learning-by-doing effects do not spill over across economies.

The world economy evolves just as the equilibrium path of the closed economy described in Section 2, with the relevant variables starred. In

8 Another implication of (4') and (8') is that, if an exogenous growth rate of agricultural productivity exceeds the maximal rate of growth in manufacturing, $\delta F(\bar{n})$, then $\delta \rho_t / \rho_t$ is eventually positive and bounded away from zero, so the model becomes consistent with the so-called Prebisch–Singer hypothesis; that is, the terms of trade for the agricultural good deteriorate continuously.
particular, the world manufacturing sector grows at the constant rate,
\[\delta F(v(A^*)) \], and the relative price of the manufacturing good, \(p_r \), satisfies
\[A^* G'(1 - n^*) = p_r M_r^* F'(n^*) \]
where \(n^* = v(A^*) \). In the absence of any barriers to trade, and under incomplete specialization, the Home manufacturing employment is determined jointly by (4) and (9). Taking the ratios of each side of these two equations, \(n^* \) satisfies
\[\frac{F'(n^*)}{G'(1 - n^*)} = \frac{A^* M_r^*}{A^* M_r} \cdot \frac{F'(n^*)}{G'(1 - n^*)} \]
\[F'(n^*) A_r M_r^* = F'(n^*) A_r M_r \]
(10)

First, by setting \(t = 0 \) in (10) and noting that \(F'(n)/G'(1 - n) \) is decreasing in \(n \), one can conclude that
\[n_0 \geq n^* \quad \text{if and only if} \quad \frac{A^*/M_r^*}{A/M_r} \leq \frac{A^*/M_r}{A/M_r} \]
(11)
or, manufacturing accounts for a larger (smaller) share of the Home employment, compared to the rest of the world, if the Home economy has a comparative advantage in manufacturing (agriculture). Next, differentiating (10) with respect to time yields
\[\frac{G''(1 - n_t) + F''(n_t)}{G'(1 - n_t) + F'(n_t)} \hat{n}_t = \delta \{ F(n^*) - F(n_t) \}, \]
(12)
as long as \(n_t \in (0, 1) \), where use has been made of the no spillover assumption, \(M_r/M_r = \delta F(n_t) \), and \(M_r^*/M_r^* = \delta F(n^*) \). Since the expression in the square bracket is negative, the manufacturing employment in the Home will rise over time if \(n_t > n^* \), and decline if \(n_t < n^* \). Thus, Eqs. (11) and (12) jointly state that, when the Home initially has a comparative advantage in manufacturing (agriculture), its manufacturing productivity will grow faster (slower) than the rest of the world and accelerate (slow down) over time.\(^9\)

The learning-by-doing effects will perpetuate and, in fact, intensify the initial pattern of comparative advantage. Equation (12) also implies that
\[\lim_{t \to \infty} n_t = 0 \quad \text{if} \quad n_0 < n^* \quad \text{and} \quad \lim_{t \to \infty} n_t = 1 \quad \text{if} \quad n_0 > n^* \].
Whether the economy will completely specialize in finite time depends on the properties of \(F \) and \(G \) at the origin. For example, suppose that \(F(n) = n^a \) and \(G(1 - n) = (1 - n)^a \) for \(0 < a < 1 \), then (12) becomes
\[\hat{n}_t = \left[\frac{\delta}{1 - a} \right] n_t (1 - n_t) \{ (n_t)^a - (n^*)^a \}; \]
\[9 \text{ The growth rate in output, } \dot{X}_t = X_t - \delta F(n_t) + \{ F'(n_t)/F(n_t) \} \dot{n}_t, \text{ may not be monotone.} \]
thus \(n_t \in (0, 1) \) for all \(t \). On the other hand, if \(F(n) = n/(1 + n) \) and \(G(1 - n) = (1 - n)/(2 - n) \), then

\[
\dot{n}_t = \left[\delta/6(1 + n^*) \right](2 - n_t)(n_t - n^*),
\]

so the economy will specialize in finite time unless \(n_0 = n^* \).

The negative link between agriculture and growth. Having characterized the equilibrium path, the effect of agricultural productivity may now be analyzed. Equations (10)–(12) suggest that the time path of the manufacturing employment, \(n_t \), and therefore, that of its productivity growth rate, \(\delta F(n_t) \), shifts down if \(A \) increases. Thus, under the open economy assumption, the model predicts a negative link between agricultural productivity and economic growth. In an economy with less productive agriculture, the manufacturing sector attracts more labor and, therefore, grows faster. On the other hand, the productive agriculture sector squeezes out the manufacturing sector, and the economy will de-industrialize over time.

Welfare evaluations. The model also suggests a perverse welfare implication of agricultural productivity. To simplify the argument, suppose that the initial level of knowledge capital in manufacturing is identical in all economies (\(M_0 = M_0^* \)). The Home economy, if its agriculture is less productive (\(A < A^* \)), is better off than the rest of the world. This does not depend on the availability of international lending and borrowing. To see this, let \(Y_t = Y_t = AG(1 - n_t) + p_t M_t F(n_t) \) be national income and \(E_t = C_t^M + p_t \) be national expenditure, with food being the accounting unit. From (5) and (7), it can be shown that the indirect utility of the representative agent, who consumes \(C_t^L \) and \(C_t^M \), is equal to

\[
(1 + \beta) \int_0^\infty \log(E_t/L - \gamma) e^{-\rho t} dt,
\]

plus a constant term, which depends on the time path of the relative price. How this welfare measure relates to \(Y_t \) depends on whether international lending and borrowing are possible. If no international capital markets exist, \(Y_t = E_t \) for all \(t \). Thus,

\[
W_t = (1 + \beta) \int_0^\infty \log(Y_t/L - \gamma) e^{-\rho t} dt.
\]

On the other hand, if perfect capital markets exist, the Home economy can lend and borrow at the constant world interest rate, equal to the (common) discount rate, \(\rho \). This allows complete consumption smoothing.

10 The equilibrium interest rate on the bond indexed to food is equal to \(\rho \), because food consumption is constant, and the instantaneous utility function in (5) is additively separable. The equilibrium interest rate on the bond indexed to the manufacturing good is equal to \(\rho + \delta F(n^*) \), because the marginal utility of the manufacturing good declines at the rate \(\delta F(n^*) \).
and the Home economy spends the constant amount, $\rho \int_0^\infty Y_t e^{-\rho t} dt$, at every moment, so that

$$W_2 = (1 + \beta) \rho^{-1} \log \left(\rho \int_0^\infty Y_t e^{-\rho t} dt / L - \gamma \right).$$

(14)

If $A = A^*$ so that the Home is identical to the rest of the world, one can show from (9) that Y_t is equal to $Y^* = A^* \left[G(1 - n^*) + G'(1 - n^*) F(n^*) / F'(n^*) \right]$. Thus,

$$W_1 = W_2 = (1 + \beta) \rho^{-1} \log \left(Y^* / L - \gamma \right).$$

On the other hand, if $A < A^*$, then Y_t is not constant, so that $W_1 < W_2$. Therefore, it suffices to show the possibility of

$$\int_0^\infty \log \left(Y_t / L - \gamma \right) e^{-\rho t} dt > (1 + \beta) \rho^{-1} \log (Y^* / L - \gamma)$$

or

$$\int_0^\infty \log \left[\left(Y_t - \gamma L \right) / \left(Y^* - \gamma L \right) \right] e^{-\rho t} dt > 0,$$

(15)

for $A < A^*$. But, $Y_t = AG(1 - n_t) + p_t M_t F(n_t)$ grows unbounded. Thus, condition (15) is satisfied for a sufficiently small ρ.

Let me quickly add that these results should be interpreted with caution. Certainly, it should not be taken as a suggestion to destroy a country's agriculture for the sake of faster growth. First of all, whether it actually accelerates growth depends on the openness of the economy. Here, only the extreme case of a small open economy is considered. Second, even if it does, the long run gain from faster growth outweighs the short run loss only when the agents are sufficiently patient. Third, the welfare effect of agricultural productivity is asymmetric. That is, the Home economy, with more productive agriculture ($A > A^*$), is not necessarily worse off than the rest of the world, even for a sufficiently small discount rate. To see this, it suffices to note that, if A is large enough, then $Y_t > AG(1 - n_t)$ for all t, thus the Home welfare is clearly higher. An economy with a rich endowment of arable land (and natural resources), such as Australia (and Kuwait), may grow slower, but does not necessarily have a lower standard of living. Of course, if $AG(1) < Y^*$, then the Home economy is worse off than the rest of the world for a sufficiently small ρ, because $\lim_{t \to \infty} Y_t = \lim_{t \to \infty} \{AG(1 - n_t) + p_t M_t F(n_t)\} = AG(1) < Y^*$ from $\lim_{t \to \infty} n_t = \lim_{t \to \infty} p_t M_t = 0$. This result also does not depend on the presence or absence of international capital markets.
Dutch disease. The model may be also used to illustrate the so-called Dutch disease phenomena. The term Dutch disease refers to the permanent adverse effect on the manufacturing sector of a temporary boom in the natural resource sector. Oten mentioned examples include the gold discoveries in Australia in the 1850's, the natural gas discoveries in the Netherlands in the 1960's, and the effects of the North Sea Oil on British and Norwegian manufacturing; see Corden [5]. Suppose that the Home economy initially has productivity identical to the rest of the world \((A = A^*, M_0 = M_0^*)\) and experiences an increase in \(A\) from \(t = 0\) to \(t = T\). In the absence of such a change in \(A\), employment in manufacturing would stay constant and its output would grow at the constant rate, \(\delta F(n^*)\). The temporary increase in \(A\) induces migration of labor from the manufacturing sector, thereby reducing the rate of knowledge accumulation through learning-by-doing. When \(A\) eventually returns to the original level, \(A^*\), at \(t = T\), the economy still has a comparative advantage in agriculture \((A/M_0 = A^*/M_0^* > A^*/M^*_T)\), since manufacturing in the rest of world has grown faster \((M_T < M_T^*)\). Thus, from (10), \(n_T < n^*\), and from (12), the economy will continue to de-industrialize.

4. **Related Work in the Literature**

The literature on the role of agriculture in economic development is as old as economics: see Hayami and Ruttan [12, Chap. 2] for a survey. Ranis and Fei [22] and Jorgenson [14] are particularly noteworthy as examples of earlier attempts to model the role of agricultural productivity growth in industrialization. In their models, the dynamics are driven by an exogenous shift in agricultural technology; a high level of agricultural productivity alone would not lead to a self-sustained growth in the manufacturing sector. In our model, a self-sustained growth is possible for a constant agricultural productivity, and a higher agricultural productivity accelerates economic growth.

More recently, Murphy, Shleifer, and Vishny [20] demonstrated a positive link between agricultural productivity and the extent of industrialization, captured by the number (the measure, to be precise) of manufacturing sectors employing the increasing returns technique. (There are a continuum of manufacturing goods sectors in their model.) They also showed that a boom in the export sector has similar effects. Non-homotheticity of preferences and the nontradable nature of manufacturing goods play the key roles in their analysis. Their model is static, and thus has no implication on the relation between agricultural productivity and economic growth.

Elsewhere (Matsuyama [18]), I constructed an open economy model of
sectoral adjustment, in which increasing returns in manufacturing generate multiple steady states with different levels of manufacturing employment. This model was used to address the question of when a successful transition from an agricultural economy to an industrialized economy is possible. It was shown that reducing agricultural productivity causes a global bifurcation in the differential equation system, thereby creating a take-off path; that is, an equilibrium path along which the economy traverses from the state of pre-industrialization to the steady state with high employment in manufacturing. The significance of the open economy assumption in the negative link between agricultural productivity and the possibility of take-off was discussed, but not formally demonstrated.

Recent years have witnessed renewed interest in learning-by-doing in the context of trade and growth; see Van Wijnbergen [32], Krugman [15], Boldrin and Scheinkman [2], Lucas [17, Section 5], Stokey [27], and Young [35]. Van Wijnbergen and Krugman discussed, in the terminology of Corden [5], the spending effect of the Dutch disease, while the present analysis focused on the resource movement effect of the Dutch disease. As Corden noted, the spending effect of the Dutch disease is analytically equivalent to the transfer problem. Krugman, Boldrin and Scheinkman, Lucas, and Young discussed regional divergence. They demonstrated that learning-by-doing would intensify the initial pattern of comparative advantage, but they did not discuss the source of the initial pattern. They also did not allow lending and borrowing to occur across economies. Stokey and Young considered learning-by-doing as an engine of growth and discussed endogenous, unbounded growth. Although many recent studies on endogenous growth have considered alternative engines of growth, such as investment in human capital (Lucas [17, Section 4] and Stokey [28] and research and development activity (Aghion and Howitt [1], Romer [25], and Grossman and Helpman [11]), what is crucial for the present analysis is a positive link between the relative size of the resource base available to the manufacturing sector and its growth rate. Such a scale effect on the growth rate seems pervasive in most endogenous growth models, and so, the results are by no means peculiar to learning-by-doing.

5. CONCLUDING REMARKS

This paper has constructed a model of endogenous growth to demonstrate that the relation between agricultural productivity and growth performance can be extremely sensitive to the assumption concerning the openness of an economy. Two assumptions play crucial roles: low demand elasticity for the agricultural good and the lack of complete spillover of
learning-by-doing across the economies. Needless to say, the model is extremely special and should be interpreted with caution.

First, only the two polar cases of the closed economy and small open economy were discussed. It is thus highly desirable to check the robustness of the results. For example, one may want to develop a two-country model with differing country sizes. When the sizes of the two economies are sufficiently lopsided, the link between agriculture and growth in the larger (smaller) country should be similar to the closed (small open) economy case, if the results are robust. Alternatively, one may introduce a non-tradeable goods sector, such as a service sector or a housing sector, while maintaining the small economy assumption. The share of the nontradeable sector in the economy can be considered as an index of the openness. The presence of such a sector, particularly when demand for its output has a higher income elasticity, may also affect the patterns of structural change in a nontrivial way.

Second, when analyzing the small open economy case, it is assumed that there is no spillover of learning-by-doing across the economies. It is my conjecture that, as long as spillover is incomplete and the level of knowledge capital is regional-specific, there is a negative link between agricultural productivity and growth. I suspect, however, that other features of the model, which I did not focus on, may be sensitive to the no-spillover assumption. For example, it can be easily shown that, if the Home economy has initial comparative advantage in agriculture, trade restriction could always improve its growth rate. But, when there is some spillover across the economies, trade restriction could slow down the growth rate to the extent that it reduces positive spillover effects from the rest of the world.

Throughout the paper it is assumed that agricultural productivity is determined purely exogenously. While useful for the purpose of the present analysis, this assumption makes the model inadequate as a description of structural changes associated with an industrialization process. To some extent, learning experiences in manufacturing should be useful in agriculture. There must also be some learning-by-doing in agriculture itself. More importantly, the technological advances in manufacturing would certainly improve agricultural productivity by supplying better and cheaper intermediate goods, such as fertilizer, pesticide, drainage pipes, and harvesting equipment. Modifying the model to capture such a feedback effect of industrialization on agriculture is essential for a better understanding of the role of agriculture in economic development.

Probably the most serious omission is capital accumulation. First of all, an explicit consideration of capital accumulation introduces real inter-temporal maximization. Second, it may help to relax the assumption that all knowledge in manufacturing is disembodied. It would be more
reasonable to make certain types of knowledge embodied in capital goods and to allow for accumulation of such goods. Then, one could also link the extent of knowledge spillover across economies to that of international trade in capital goods, for the reason suggested by Ethier [7] in a different context. Third, in the presence of certain financial market imperfections, domestic savings and export revenues generated by agricultural booms may be important in financing investment in capital goods. It is highly desirable to incorporate such market imperfections, as well as a variety of trade impediments, both natural and artificial, in such a way that the openness of economies can be parameterized, and then to examine how these factors would affect the role of agricultural productivity in economic development.

APPENDICES

Appendix A

This appendix shows that the absolute size of the economy has no implication in the model. Suppose that there are three primary factors, labor, N, entrepreneurial capital, K, and land, T. The endowments of these factors are fixed. Both sectors operate under constant returns of scale. Manufacturing uses only labor and entrepreneurial capital, and agriculture uses labor and land only. Thus,

$$X_i^M = M_i f(N_i/K) K,$$
$$X_i^A = A g([N - N_i]/T) T,$$

where N_i represents labor employed in manufacturing. Knowledge capital in manufacturing accumulates with manufacturing experience per entrepreneur, as

$$\dot{M}_i = \delta X_i^M / K,$$

Then, with complete spillovers, competition in the labor market leads to

$$A g'([N - N_i]/T) = p_i M_i f'(N_i/K).$$

The consumption side of the model is just the same as in the text. From (A.1)–(A.4), (7) and $C_i^M = X_i^M$ and $C_i^A = X_i^A$,

$$\dot{M}_i / M_i = \delta f(N_i/K),$$
$$g([N - N_i]/T) T - \beta g'([N - N_i]/T) f(N_i/K) K / f'(N_i/K) = \gamma L / A.$$

Let $n_i = N_i / N$ be the share of manufacturing in employment and define $F(n; N/K) = f(nN/K)$ and $G(1 - n; N/T) = g([1 - n] N/T).$ Then, F and G
satisfy the properties given in Eqs. (1)–(2), and (A.5)–(A.6) can be rewritten as

\[
\frac{\dot{M}_t}{M_t} = \delta F(n_t; N/K), \tag{A.7}
\]

\[
G(1 - n_t; N/T) - \beta G'(1 - n_t; N/T) F(n_t; N/K) / F'(n_t; N/K) = (\gamma / A)(L/T).	ag{A.8}
\]

If one suppresses \(N/T\) and \(N/K\), then (A.8) is identical to Eq. (8), as long as \(L\) in (8) is interpreted as the population density. Furthermore, (A.7)–(A.8) imply that an equiproportional change in \(K, L, N,\) and \(T\) has no effect on the share of employment in each sector and the growth rate of the economy.\(^{11}\)

Appendix B

This appendix shows that, by changing the specification of instantaneous utility function, the model can be made capable of explaining the declining share of the agriculture sector both in the labor force and in the total output, in addition to the positive link between agricultural productivity and the growth rate. First, from (4), the ratio of the value of output in manufacturing to that in agriculture, \(p_t M_t F(n_t) / A G(1 - n_t)\) is equal to \(\left[G'(1 - n_t) / G(1 - n_t) \right] / \left[F(n_t) / F'(n_t) \right] \). This expression is increasing in \(n_t\), thus it suffices to show that \(\dot{n}_t > 0\) and \(\partial n_t / \partial A > 0\) for all \(t\). Now assume that preferences are given by, instead of (5),

\[
\begin{align*}
\bar{W} &= \int_0^\infty \left[\beta \left(c_t^A - \gamma \right) + (c_t^M)^\theta \right] e^{-\theta t} dt, & 0 < \theta < 1, \tag{B.1}
\end{align*}
\]

where \(1 / (1 - \theta) > 1\) is the elasticity of substitution. Then, aggregate consumption satisfies, instead of (7),

\[
C_t^A = \gamma L + C_t^M (\beta p_t)^{1/(1 - \theta)}, \tag{B.2}
\]

Thus, \(n_t\) is determined by, instead of (8),

\[
M_t^\theta = \frac{\beta A G'(1 - n_t)}{F'(n_t)} \left[\frac{F(n_t)}{AG(1 - n_t) - \gamma L} \right]^{1 - \theta}. \tag{B.3}
\]

Since the right-hand side of (B.3) is an increasing function of \(n_t\), and the left-hand side is growing over time, it immediately follows that \(\dot{n}_t > 0\). Note that (B.3) would be equivalent to (8) if \(\theta = 0\). A larger substitution (\(\theta > 0\))

\(^{11}\)This setup seems to be a natural framework within which to examine the relation between factor proportions and the growth rate, the topic outside the scope of this paper. I hope to investigate this issue in a separate paper.
implies that, as the manufacturing sector becomes efficient, the economy substitutes the manufacturing good for the agriculture good, which implies the declining share of the agricultural sector both in employment and in output.

Finally, differentiating (B.3) with respect to A shows that $\frac{\partial n_i}{\partial A} > 0$ if $\theta AG(1 - n_i) < \gamma L$ and $\frac{\partial M_i}{\partial A} \geq 0$. Since $n_i > 0$ and $M_i/M_t = \delta F(n_t)$, it suffices to have

$$\theta AG(1 - n_o) < \gamma L.$$ (B.4)

This condition is satisfied for a sufficiently small β, since (B.3) for $t = 0$ suggests that $AG(1 - n_o) \to \gamma L < \gamma L/\theta$ as $\beta \to 0$. Note again that $\gamma > 0$ plays a crucial role here.

REFERENCES

20. K. M. Murphy, A. Shleifer, and R. Vishny, Income distribution, market size, and industrialization, Quart. J. Econ. 104 (1989), 537-564.
35. A. Young, Learning by doing and the dynamic effects of international trade, Quart. J. Econ. 106 (1991), 369–405.