
Disturbance Decoupling Control for LIGO

1 LIGO Suspension System

Detecting a Gravitational wave requires a very high sensitivity instrument. LIGO de-
tector is an interferometer that is built for this purpose and spans a hugh geographical
coverage. High sensitivity requirement also causes disturbances to easily enter the im-
portant measurement channels of the interferometer. LIGO interferometer is designed
to have suspended mirrors which must be isolated from the ground disturbances for de-
termining the detection of wave with a high degree of confidence. A typical suspended
mirror in the LIGO interferometer consists of a quadruple pendulum system as shown in
Figure 1. There are four stages, which include two metal masses, one penultimate mass
and one test mass. The control actuators are in first stage which can be used to control
the motion of all four masses.

Figure 1: Quadruple Pendulum Based Vibration Isolation. Diagram taken from https:

//www.ligo.caltech.edu/page/vibration-isolation

2 State space model

We assume that measurements from all the masses are available. In the linear regime
the overall state space representation is written in the form of following equations which
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are in standard form from where several existing results pertaining to the disturbance
decoupling and rejection theory such as H∞ or H2 norm minimization based control could
be utilized.

ẋ = Ax+Bu+ Ed, governing ODE

y = Hx, variable of interest

z = Cx, measured variable

A ∈ Rn×n, B ∈ Rn×p

C ∈ Rn×m, H ∈ Rn×r

E ∈ Rn×l

3 Disturbance Decoupling Problem

With respect to equations discussed above we list the following problems that are of
interest to us –

1. Can the matrix A be modified using u and x to decouple y from d?

2. Can we estimate state variables from measured variables z?

The problems mentioned have been tackled in the following papers. Decoupling using
linear geometric control is considered in [1] and [2]. Required computational algorithms
appear in [3] and are also discussed in textbook by [4]. Further, H2 and H∞ norm optimal
control synthesis are developed in [5].

We provide a brief review of disturbance decoupling problem. Furthermore, in Section
4, we note that for the data used in [6] it is possible to decouple the displacement of mass
4 from the disturbances.

3.1 Decoupling Condition

For system given by
ẋ = Ax+ Ed,

y = Hx,

we have

x(t) = eAtx0 +

∫ t

0

eA(t−τ)Ed(τ)dτ,

y(t) = HeAtx0 +

∫ t

0

HeA(t−τ)Ed(τ)dτ,

Lemma 1. Decoupling is possible if and only if H,A,E satisfy

HeAtE = 0 for all t ≥ 0.

(i.e., transfer function from d to y is zero).

Lemma 2. HeAtE = 0 for all t ≥ 0 holds if and only if HAiE = 0 for i = 1, 2.., n− 1.
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Using the condition in lemma 2, define V = Im [E,AE,A2E, ..., An−1E] and note
AV ⊂ V , i.e., V is an A-invariant subspace of Rn. This gives us

Lemma 3. Decoupling is possible if and only if there exists an A-invariant subspace
V ⊂ Rn such that

ImE ⊂ V ⊂ kerH.

3.2 Disturbance Decoupling State-Feedback

Now consider,
ẋ = Ax+Bu+ Ed,

y = Hx,

Our goal here is to solve the following problem.

Problem 1. Design u = Fx such that

ẋ = (A+BF )x+ Ed, y = Hx

is disturbance decoupled.

In other words, compute the matrix F such that there exists an (A + BF )-invariant
set V such that

ImE ⊂ V ⊂ kerH.

For computing F , we first need to compute a controlled invariant subspace which is
defined next.

Definition 4. V is a controlled invariant subspace of ẋ = Ax + Bu if for all x0 ∈ V, it
is possible to find u(t) such x(t) ∈ V for all t ≥ 0.

Theorem 5. [1] The following statements are equivalent

1. V is controlled invariant.

2. AV ⊂ V + ImB.

3. There exists F such that (A+BF )V ⊂ V.

Given V , one can compute F by solving for condition (2) of Theorem 5. All F ’s that
satisfy condition (3) of Theorem 5 are called as “Friends” of V . The space V that lies
inside kerH and contains ImE is sought for decoupling. We next give a procedure to
compute V .

3.3 Finding largest V in kerH [1]

The following iterative procedure terminates in finitely many steps and gives largest
controlled invariant subspace contained in kerH

1. Choose V0 = kerH .

2. Iterate with Vi+1 = A−1(Vi + ImB) ∩ kerH .
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3. Stop if Vi+1 = Vi .

4. Return V∗ = Vi+1.

5. V∗ is the largest controlled invariant set in kerH .

Then we immediately have following theorem.

Theorem 6. [1] Disturbance decoupling possible if and only if ImE ⊂ V∗.

3.4 Computing F

To compute a Friend of V∗ which is a state feedback matrix F we follow the steps listed
next 1.

1. Given V∗ = ImV .

2. Solve for Q,M such that AV = V Q+BM .

3. Solve for F such that M = FV .

However, the F computed as above does not ensure stable (A + BF ). For guaranteeing
stability, a notion of controllability subspace plays key role.

Definition 7. A subspace is called controllability subspace if it satisfies –

1. there exists control input to reach the origin from any initial condition in it, and

2. while doing so the trajectory remains inside the subspace.

Now let 〈A,B〉 := Im[B,AB,A2B, ..., An−1B]. Next theorem gives a procedure to
compute the largest controllability subspace in kerH.

Theorem 8. [1] Let F be a friend of V∗. The largest controllability subspace in kerH is

R∗ = 〈A+BF, ImB ∩ V∗〉.

Lemma 9. Disturbance decoupling possible with stability guarantee if and only if ImE ⊂
R∗.

If the decoupling condition in above lemma is met then following steps (from [1]) allow
us to do pole placement.

1. Split Rn = R∗ ⊕W .

2. Split ImB = (ImB ∩R∗)⊕ (ImB ∩W)

3. Do similarity transform q = T−1x with T = [R∗,W ]

1Functions to do the related subspace computations are available at https://bitbucket.org/

deepakp1988/ddp/src/master/ddp.py
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4. We get [
q̇1
q̇2

]
=

[
A11 A12

A21 A22

] [
q1
q2

]
+

[
B1 0
0 B2

] [
u1
u2

]

5. Set

[
u1
u2

]
=

[
F 11 F 12

F 21 F 22

] [
q1
q2

]
to get

[
q̇1
q̇2

]
=

[
A11 +B1F 11 A12 +B2F 12

A21 +B2F 21 A22 +B2F 22

] [
q1
q2

]

6. Set

[
u1
u2

]
=

[
F 11 F 12

F 21 F 22

] [
q1
q2

]
to get

[
q̇1
q̇2

]
=

[
A11 +B1F 11 A12 +B2F 12

A21 +B2F 21 A22 +B2F 22

] [
q1
q2

]
7. Choose F 21 s.t. A21 +B2F 21 = 0.

8. And choose F11 and F22 such that eigenvalues of A11 +B1F 11 and A22 +B2F 22 are
in C−

4 Example

We take data from the paper [6] and consider the following system.

ẋ = Ax+Bu+ Ed, y = Hx.

where

A =

[
04×4 I4×4
A22 04×4

]
, A22 =


−297.30 163.50 0.00 0.00
162.90 −267.20 104.20 0.00
0.00 57.80 −74.20 16.40
0.00 0.00 16.40 −16.40

 , B =

[
04×4
B2

]

B2 =


0.05 0.00 0.00 0.00
0.00 0.04 0.00 0.00
0.00 0.00 0.03 0.00
0.00 0.00 0.00 0.25

 ,
E> =

[
0.00 0.00 0.00 0.00 131.40 0.00 0.00 0.00

]
,

H =
[
0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

]
The codes for the computation done are available at https://bitbucket.org/deepakp1988/
ddp/src/master/. For placing the closed loop poles at[

−1.00 −1.50 −2.00 −2.50 −3.00 −3.50 −4.00 −4.50
]
,

we set u = Fx with

F =


6413.42 −3536.27 5.07 0.00 −74.02 8.01 2.44 −0.00
−3650.35 5777.25 −2322.21 −0.00 −13.52 −124.45 −2.77 0.00

8.39 −2317.81 2788.25 0.00 4.45 −2.13 −179.79 −0.00
−0.00 −0.00 −65.60 −6.40 −0.00 0.00 −0.00 −34.00
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Figure 2: Transfer function from disturbance to displacement at stage 4

Then the transfer function from disturbance to displacement at Stage 4 is shown in
Figure 2. The transfer function shows that displacement at Stage 4 is decoupled from
the disturbance signal. The maximum amplitude in the Bode plot in Figure 2 is -290 dB.

Further, for simulating the displacement at Stage 4 versus time, we choose a dis-
turbance signal which is a sine wave of 10 Hz and amplitude 0.01 units. The plot of
displacement at Stage 4 versus time is seen to be decoupled from the disturbance in Fig-
ure 3. Note that displacement at stage 4 is decoupled from the disturbance signal. We
also note from Figure 4 that displacements at Stages 1,2, and 3 remain bounded.

Now, though the decoupling is achieved here, it needs to be checked if the gain values
in the feedback matrix are of practically appropriate magnitude. Thus, in the future we
also would like to put constraints on the gain values while solving the problem.

5 Conclusions

Following are the outcomes:

1. It is seen that for the experiment data from the paper [6], the decoupling condition
in Lemma 9 is met and we are able to do a state feedback based decoupling with
pole placement. The method is such that all the disturbance effects are absorbed
in a subspace which is orthogonal to output matrix.

2. However, the control law obtained from the algorithm for disturbance decoupling in
continuous time is usually implemented through a digital state feedback controller,
which will cause performance degradation. In future, we propose to develop a self-
triggered control strategy for the digital controller so that the norm of the output of
the system under the disturbance input remains bounded within a certain tolerance
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Figure 3: Displacement at stage 4 v/s time

Figure 4: Displacement at stages 1,2,3 v/s time
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for all time. We already have partial results for this problem in the form of a
heuristic procedure.

3. We have developed a disturbance decoupling library in Python for doing the cal-
culations required in this report. The library is available at the link https:

//bitbucket.org/deepakp1988/ddp/src/master/ddp.py.

A few more related questions that we propose to work on in the future are listed below:

1. Pole placement with actuator and performance constraints.

2. Disturbance Decoupling in Non-linear settings.

3. Robustness against parameter variations and uncertainty.

4. Estimating state variable from a measured variable with unknown disturbance sig-
nal.

5. Adaptive decoupling.

6. Numerical issues.
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