MA6L001 (Probability and Statistics)

Tutorial Sheet No. 2 Answer for selected Problems

Sample No.	Sample value	X
1	$4,5,5$	$\frac{14}{3}$
2	$4,5,7$	$\frac{16}{3}$
3	$4,5,7$	$\frac{16}{3}$
4	$5,5,7$	$\frac{17}{3}$

Table 1: Sample mean X for each sample

X	frequency (f)	$\mathrm{f}(\mathrm{X})$	$\mathrm{Xf}(\mathrm{X})$	$X^{2} \mathrm{f}(\mathrm{X})$
$\frac{14}{3}$	1	$\frac{1}{4}$	$\frac{14}{2}$	$\frac{196}{36}$
$\frac{16}{3}$	2	$\frac{2}{4}$	$\frac{12}{12}$	$\frac{31}{36}$
$\frac{17}{3}$	1	$\frac{1}{4}$	$\frac{17}{12}$	$\frac{28}{36}$
Total	4	1	$\frac{63}{12}$	$\frac{997}{36}$

Table 2: Sampling distribution of X

1. mean of Sampling distribution , $\mu_{X}=\sum X f(X)=5.25$

Variance of sampling distribution, $\sigma_{X}{ }^{2}=0.3632$
Population mean,$\mu=5.25$
Population variance, $\sigma^{2}=1.0897$
$\sigma_{X}{ }^{2}<\sigma^{2}$
2. $P(Z<-1.7678)$ where Z follows standard normal distribution.
3. \bar{X}_{1} follows $N\left(\mu_{1}, \frac{\sigma_{1}^{2}}{n_{1}}\right)$
\bar{X}_{2} follws $N\left(\mu_{2}, \frac{\sigma_{2}^{2}}{n_{2}}\right)$
$\bar{X}_{1}-\bar{X}_{2}$ follows $N\left(\mu_{1}-\mu_{2}, \frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}\right)$
6. $\bar{X}-S^{2}$
7. $1.5,16.6$
8. Median.
9. (a) Unbiased estimator of $\mu=m_{1}$ and unbiased estimator of $\sigma=m_{2}-m_{1}^{2}$
(b) Unbiased estimator of $p=1+m_{1}-\frac{m_{2}}{m_{1}}$ and unbiased estimator of $n=m_{1} /$ unbiasedestimatorofp where $m_{k}=\frac{\sum_{i=1}^{n} X_{i}^{k}}{n}$.
10. Median.
11. $H_{0}: \mu<180$

Reject H_{0} if $\bar{X}>\mu_{0}+\frac{\sigma}{\sqrt{n}} z_{\alpha}$
where $\mu_{0}=180, n=10, \sigma=5$ and z_{α} is taken from standard normal table at 1) $\alpha=0.05$ and 2) $\alpha=0.1$.
12. $H_{0}: \mu \geq 40$

Reject \bar{H}_{0} if $\bar{X} \leq \mu_{0}+\frac{s}{\sqrt{n}} t_{n-1,1-\alpha}$
where $\mu_{0}=40, n=15, s^{2}$ is sample variance and $t_{n-1,1-\alpha}$ is taken from t-distribution table at $\alpha=0.05$
13. $H_{0}: \sigma>\sigma_{0}$

Reject H_{0} if $s^{2}<\frac{\sigma_{0}^{2}}{n-1} \chi_{n-1,1-\alpha}^{2}$
where $\sigma_{0}=1.2, n=12, s=1.3$ and $\chi_{n-1,1-\alpha}^{2}$ is taken from χ^{2} distribution table at $\alpha=0.1$
14. $H_{0}: \mu_{1}-\mu_{2}=0$

Reject H_{0} if $|\bar{X}-\bar{Y}| \geq t_{n_{1}+n_{2}-2, \alpha / 2} s_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}$
where $s_{p}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}$
15. $H_{0}: \sigma_{1}^{2}<\sigma_{2}^{2}$

Reject H_{0} if $\frac{s_{1}^{2}}{s_{2}^{2}}>F_{n-1, n-1, \alpha}$
where $\mathrm{n}=10$ and $F_{n-1, n-1, \alpha}$ is taken from F - distribution table at $\alpha=0.05$
16. Let $\mathrm{X}=$ no. of accidents in a week.
$H_{0}: X$ follows $P(\lambda)$
where $\lambda=\bar{X}, O_{i}$ be observed values of x_{i} and
E_{i} be expected values of $x_{i}=n p_{i}$ where $p_{i}=\frac{e^{-\lambda} \lambda^{x_{i}}}{x_{i}!}$
$D_{0}=\sum \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$
Reject H_{0} if $D_{0}>\chi_{3,0.05}^{2}$
17. H_{0} : Earthquake is equally likely to occur on any of 7 days.
O_{i} be observed values of x_{i} and
E_{i} be expected values of $x_{i}=n p_{i}$ where $p_{i}=\frac{1}{7}$
$D_{0}=\sum \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$
Reject H_{0} if $D_{0}>\chi_{6,0.05}^{2}$
18. H_{0} : having cellular phone and being involved in accident are independent.
$O_{i j}$ be observed values of $x_{i j}$ and
$E_{i j}$ be expected values of $x_{i j}$
$D_{0}=\sum_{i} \sum_{j} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}$
Reject H_{0} if $D_{0}>\chi_{1,0.05}^{2}$
19. H_{0} : smoking and lung cancer are independent.
$O_{i j}$ be observed values of $x_{i j}$ and
$E_{i j}$ be expected values of $x_{i j}$
$D_{0}=\sum_{i} \sum_{j} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}$
Reject H_{0} if $D_{0}>\chi_{1,0.01}^{2}$
20. X follows $\mathrm{B}(1, \mathrm{p})$ bernoulli
$H_{0}: p \geq p_{0}$
Reject H_{0} if $z_{0}=-0.4082 \leq-z_{\alpha}$ where $p_{0}=\frac{3}{5}$
21. $H_{0}: \mu_{1}=\mu_{2}=\mu_{3}$

Grand mean $\bar{y}=82.44$
Between sum of squares, $\mathrm{BSS}=\sum_{i=1}^{3} 15\left(\bar{y}_{i}-\bar{y}\right)^{2}$
Within sum of squares, WSS $=(14)\left(s_{1}^{2}+s_{2}^{2}+s_{3}^{2}\right)$
Reject H_{0} if $\frac{B S S / 2}{W S S / 42} \geq F_{2,42,0.05}$

