MA6L001 (Probability and Statistics) Tutorial Sheet No. 2

Answer for selected Problems

Sample No.	Sample value	X
1	4,5,5	$\frac{14}{3}$
2	4,5,7	$\frac{16}{3}$
3	4,5,7	$\frac{16}{3}$
4	5,5,7	$\frac{17}{3}$

Table 1: Sample mean X for each sample

X	frequency(f)	f(X)	Xf(X)	X^2 f(X)
$\frac{14}{3}$	1	$\frac{1}{4}$	$\frac{14}{12}$	$\frac{196}{36}$
$\frac{16}{3}$	2	$\frac{2}{4}$	$\frac{32}{12}$	$\frac{512}{36}$
$\frac{17}{3}$	1	$\frac{1}{4}$	$\frac{17}{12}$	$\frac{289}{36}$
Total	4	1	$\frac{63}{12}$	$\frac{997}{36}$

Table 2: Sampling distribution of X

1. mean of Sampling distribution , $\mu_X=\sum X f(X)=5.25$ Variance of sampling distribution, ${\sigma_X}^2=0.3632$ Population mean $\mu = 5.25$

Population variance, $\sigma^2 = 1.0897$

 $\sigma_X^2 < \sigma^2$

- 2. P(Z < -1.7678) where Z follows standard normal distribution.
- 3. \bar{X}_1 follows $N(\mu_1, \frac{\sigma_1^2}{n_1})$ \bar{X}_2 follws $N(\mu_2, \frac{\sigma_2^2}{n_2})$

$$\bar{X}_1 - \bar{X}_2$$
 follows $N(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2})$

- 6. $\bar{X} S^2$
- 7. 1.5, 16.6
- 8. Median.
- 9. (a) Unbiased estimator of $\mu=m_1$ and unbiased estimator of $\sigma=m_2-m_1^2$
 - (b) Unbiased estimator of $p = 1 + m_1 \frac{m_2}{m_1}$ and unbiased estimator of $n = m_1/unbiased estimator of p$ where $m_k = \frac{\sum_{i=1}^n X_i^k}{n}$
- 10. Median.
- 11. $H_0: \mu < 180$

Reject H_0 if $\overline{X} > \mu_0 + \frac{\sigma}{\sqrt{n}} z_\alpha$

where $\mu_0 = 180, n = 10, \sigma = 5$ and z_{α} is taken from standard normal table at 1) $\alpha = 0.05$ and 2) $\alpha = 0.1$.

12. $H_0: \mu \ge 40$

Reject H_0 if $\overline{X} \leq \mu_0 + \frac{s}{\sqrt{n}} t_{n-1,1-\alpha}$ where $\mu_0 = 40, n = 15, s^2$ is sample variance and $t_{n-1,1-\alpha}$ is taken from t-distribution table at $\alpha = 0.05$

13. $H_0: \sigma > \sigma_0$

Reject H_0 if $s^2 < \frac{\sigma_0^2}{n-1} \chi_{n-1,1-\alpha}^2$

where $\sigma_0 = 1.2, n = 12, s = 1.3$ and $\chi^2_{n-1,1-\alpha}$ is taken from χ^2 distribution table at $\alpha = 0.1$

14. $H_0: \mu_1 - \mu_2 = 0$

Reject H_0 if $|\overline{X} - \overline{Y}| \ge t_{n_1 + n_2 - 2, \alpha/2} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$

where $s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$

15. $H_0: \sigma_1^2 < \sigma_2^2$

Reject H_0 if $\frac{s_1^2}{s_2^2} > F_{n-1,n-1,\alpha}$

where n = 10 and $F_{n-1,n-1,\alpha}$ is taken from F- distribution table at $\alpha = 0.05$

16. Let X = no. of accidents in a week.

 $H_0: XfollowsP(\lambda)$

where $\lambda = \overline{X}$, O_i be observed values of x_i and

 E_i be expected values of $x_i = np_i$ where $p_i = \frac{e^{-\lambda} \lambda^{x_i}}{|x_i|}$

 $D_0 = \sum_{i=1}^{\infty} \frac{(O_i - E_i)^2}{E_i}$ Reject H_0 if $D_0 > \chi^2_{3,0.05}$

17. H_0 : Earthquake is equally likely to occur on any of 7 days.

 O_i be observed values of x_i and

 E_i be expected values of $x_i = np_i$ where $p_i = \frac{1}{7}$

 $D_0 = \sum_{i=1}^{\infty} \frac{(O_i - E_i)^2}{E_i}$ Reject H_0 if $D_0 > \chi_{6,0.05}^2$

18. H_0 : having cellular phone and being involved in accident are independent.

 O_{ij} be observed values of x_{ij} and

$$E_{ij}$$
 be expected values of x_{ij}
 $D_0 = \sum_i \sum_j \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$
Reject H_0 if $D_0 > \chi^2_{1,0.05}$

19. H_0 : smoking and lung cancer are independent.

 O_{ij} be observed values of x_{ij} and

 E_{ij} be expected values of x_{ij}

$$D_0 = \sum_{i} \sum_{j} \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$
Reject H_0 if $D_0 > \chi^2_{1,0.01}$

20. X follows B(1,p) bernoulli

 $H_0: p \ge p_0$

Reject H_0 if $z_0 = -0.4082 \le -z_{\alpha}$ where $p_0 = \frac{3}{5}$

21. $H_0: \mu_1 = \mu_2 = \mu_3$

Grand mean $\overline{y} = 82.44$

Between sum of squares, BSS = $\sum_{i=1}^{3} 15(\overline{y}_i - \overline{y})^2$ Within sum of squares, WSS = $(14)(s_1^2 + s_2^2 + s_3^2)$

Reject H_0 if $\frac{BSS/2}{WSS/42} \ge F_{2,42,0.05}$