Department of Mathematics MTL 390 (Sampling Distribution) **Tutorial Sheet No. 4** (Answers to Selected Problems)

- 1. $E(\bar{X}) = \theta$ $CRLB = \frac{\sigma^2}{n}$ $Var(\bar{X}) = \frac{\sigma^2}{n} = CRLB$
- 2. $E(S^2) = \sigma^2$ $Var(S^2) = \frac{\sigma^2}{n-1} \longrightarrow 0 \text{ as } n \longrightarrow \infty$
- 3. $Y = \left(\prod_{i=1}^{n} X_{i}\right)^{1/n}$ $E(Y) = \frac{\theta}{(1+\frac{1}{n})^{n}} \longrightarrow \frac{\theta}{e} \text{ as } n \longrightarrow \infty$ $E(Y^{2}) = \frac{\theta^{2}}{(1+\frac{2}{n})^{n}} \longrightarrow \frac{\theta^{2}}{e^{2}} \text{ as } n \longrightarrow \infty$ $Var(Y) \longrightarrow 0 \text{ as } n \longrightarrow \infty$
- 5. $E(\alpha \bar{X} + (1 \alpha)S^2) = \lambda$ Hence $\alpha \bar{X} + (1 \alpha)S^2$ is an unbiased estimator of λ . Define a function of X_1 as

imator of
$$\lambda$$
.

$$h(X_1) = \begin{cases} 1 & X_1 = 0 \\ 0 & X_1 \neq 0 \end{cases}$$

 $E[h(X_1)] = e^{-\lambda}$ $h(X_1)$ is an unbiased estimator of $e^{-\lambda}$.

- 7. Unbiased estimator of mean is \bar{X} and variance is S^2 . $\bar{X} = 1.5$ Var(X) = 16.6
- 8. (a) $\hat{\mu} = 85.75$ $\hat{\sigma^2} = 34$

(b)
$$\hat{\mu} = 85.75$$

 $\hat{\sigma^2} = 34$

9.
$$\hat{\theta} = \begin{cases} X_{(\frac{n+1}{2})} & \text{n is odd} \\ \frac{X_{(\frac{n}{2})} + X_{(\frac{n}{2}+1)}}{2} & \text{n is even} \end{cases}$$

- 10. (a) $\hat{\mu} = \bar{X}$ $\hat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X})^2$ (b) Let the sample size be m. $\hat{p} = 1 - \frac{\sum_{i=1}^{m} X_i^2}{m\bar{X}}$ $\hat{n} = \frac{\sum_{i=1}^{m} X_i}{\hat{p}}.$
- 11. $\hat{\lambda} = \frac{r}{X}$
- 12. $\hat{\lambda}_2$ is more efficient then $\hat{\lambda}_1$.

14.
$$\hat{r} = \bar{X}$$

 $E(\bar{X}) = r$
 $Var(\bar{X}) = \frac{r}{n} \longrightarrow 0 \text{ as } n \longrightarrow \infty$

15. (a) $\sum_{i=1}^{n} X_i^2$ is a sufficient statistics. (b) $\hat{\theta} = \frac{\sqrt{1 + \frac{4\sum_{i=1}^{n} X_i^2}{n}} - 1}{2}$ (c) $CRLB = \frac{2\theta^2}{n(2\theta+1)}$

17. $c = \frac{1}{n} \sqrt{\frac{\pi}{2}}$ Y is not an efficient estimator as

$$Var(Y) = \frac{(\pi - 2)\theta}{2n} \neq CRLB = \frac{2\theta^2}{n}$$

- 18. $CRLB = \frac{1}{n}$ UMVUE for θ^2 is $\bar{X}^2 1$. $E(\bar{X}^2 1) = \theta$ $Var(\bar{X}^2 1) = \frac{4\theta^2}{n} + \frac{2}{n^2} \longrightarrow 0$ as $n \longrightarrow \infty$
- 19. $\bar{X}^2 \frac{1}{n}\bar{X}$ is UMVUE for λ^2 .
- 20. (a) $\hat{\theta} = \frac{\bar{X}}{1+\bar{X}}$ (b) $\frac{\sum_{i=1}^{n} X_i}{\sum_{i=1}^{n} X_i + n 1}$
- 24. Critical region is

 $\sum_{k=1}^{50} X_i > 2664.4$

.8869.

 $\mu_1 = 55$ $\mu_1 \ge 58$

power of the test for true mean μ_1 is

28.