Department of Mathematics
 Tutorial Sheet No. 7
 MAL 509 (Probability Theory)

1. Let $\left\{X_{n}\right\}$ be a sequence of random variables defined on the probability space $\left([0, \infty), \beta_{1}, P\right), P(\{0\})=0$.
(a) Define $X_{n}(s)=\frac{1}{s}\left(1-\frac{1}{n}\right), s \in[0, \infty)$. Then show that $X_{n} \xrightarrow{\text { a.s }} X$, where $X(s)=\frac{1}{s}, s \in[0, \infty)$.
(b) Define $X_{n}(s)=\frac{1}{n s}, s \in[0, \infty)$. Then show that $X_{n} \xrightarrow{\text { a.s }} 0$.
(c) Let $P(I)=\int_{I} e^{-x} d x$. Define

$$
X_{n}(s)= \begin{cases}0, & \text { if } s \text { is rational } \\ (-1)^{n}, & \text { if } s \text { is irrational }\end{cases}
$$

Then show that $\left\{X_{n}\right\}$ diverges almost surely.
2. Let $S=[0,1]$ and P be uniform distribution.
(a) Define

$$
X_{n}(s)=e^{-n^{2}(n s-1)}, 0 \leq s \leq 1 ; n=1,2, \ldots
$$

Show that $X_{n} \xrightarrow{\text { a.s }} 0$, but $X_{n}{ }^{m . s} \nrightarrow 0$.
(b) Define

$$
X_{n}(s)= \begin{cases}3^{n}, & \text { if } 0 \leq s \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

Show that $X_{n} \xrightarrow{p} 0$, but $X_{n} \xrightarrow[\rightarrow]{m . s} 0$.
3. Consider a sequence of random variables $\left\{X_{n}\right\}$ with $P\left(X_{n}=0\right)=1-\frac{1}{n^{\alpha}}, P\left(X_{n}= \pm n\right)=\frac{1}{2 n^{\alpha}}$. Determine the value of α for which the sequence obeys WLLN.
4. Consider a sequence of random variables $\left\{X_{n}\right\}$ with $E\left(X_{n}\right)=m$ and

$$
\operatorname{Cov}\left(X_{i}, X_{j}\right)= \begin{cases}\sigma^{2}, & i=j \\ a \sigma^{2}, & i=j \pm 1, \text { where }|a|<1, \sigma^{2}>0 \text { are given contants } \\ 0, \text { otherwise }\end{cases}
$$

Show that WLLN holds for $\left\{X_{n}\right\}$.
5. Use CLT to show that $\lim _{n \rightarrow \infty} e^{-n} \sum_{i=0}^{n} \frac{n^{i}}{i!}=0.5$
6. Consider a sequence of independent random variables $\left\{X_{n}\right\}$ such that

$$
P\left(X_{n}=0\right)=1-\frac{2}{n^{3}}, P\left(X_{n}= \pm n\right)=\frac{1}{n^{3}}, n>1
$$

Does the sequence $\left\{X_{n}\right\}$ obey CLT ?
7. If $X_{n} \xrightarrow{p} 0$, then find the median of $X_{n} \rightarrow 0$ as $n \rightarrow \infty$.
8. Consider a sequence $\left\{X_{n}\right\}$ of identically distributed random variables with the property that $n P\left(\left|X_{i}\right|>n \rightarrow 0\right.$ as $n \rightarrow \infty$. Show that $\frac{1}{n} \max _{1 \leq i \leq n} X_{i} \xrightarrow{p} 0$
9. Suppose $\left|X_{n}-X\right| \leq Y_{n}$, almost surely for some random variable X, then show that of $E\left(Y_{n}\right) \rightarrow 0$, then $E\left(X_{n}\right) \rightarrow E(X)$ and $X_{n} \xrightarrow{p} X$.
10. Show that $X_{n} \xrightarrow{2} X \Rightarrow E\left(X_{n}\right) \rightarrow E(X), E\left(X_{n}^{2}\right) \rightarrow E\left(X^{2}\right)$ as $n \rightarrow \infty$.
11. Let $\left\{X_{i}\right\}$ be a sequence of independent random variables, such that each X_{i} has mean 0 and variance 1 . Show that

$$
\sqrt{n} \frac{X_{1}+X_{2}+\ldots+X_{n}}{X_{1}^{2}+X_{2}^{2}+\ldots+X_{n}^{2}} \xrightarrow{l} Z \sim N(0,1)
$$

12. Does WLLN hold for the following sequences
(a) $P\left(X_{k}= \pm 2^{k}\right)=\frac{1}{2}$
(b) $P\left(X_{k}= \pm \frac{1}{k}\right)=\frac{1}{2}$
13. For what values of α, does the strong law of large numbers hold for the sequence $\left\{X_{n}\right\}$, where $P\left(X_{k}=\right.$ $\left.\pm k^{\alpha}\right)=\frac{1}{2}, k=1,2, \ldots$.
14. Let $\left\{X_{n}\right\}$ be a sequence of independent random variables with the following probability distribution. In each case, does the Lindeberg Condition for CLT hold?
(a) $P\left(X_{k}= \pm \frac{1}{2^{n}}\right)=\frac{1}{2}$
(b) $P\left(X_{k}= \pm \frac{1}{2^{n+1}}\right)=\frac{1}{2^{n+3}}, P\left(X_{n}=0\right)=1-\frac{1}{2^{n+2}}$
15. From an urn containing 10 identical balls numbered 0 through 9 , n balls are drawn with replacement,
(a) What does the law of large number tell you about the appearance of 0 's in n drawings.
(b) How many drawings must be made in order that with probability atleast 0.95 , the relative frequency of occurence of 0 's will be between 0.09 and 0.11 ?
(c) Use CLT to find the probability that among n numbers thus chosen, the number 5 will appear between $\frac{n-35 n}{10}$ and $\frac{n+35 n}{10}$ times, if (i) $n=25$ (ii) $n=100$.
