MTL 106 (Introduction to Probability Theory and Stochastic Processes) Tutorial Sheet No. 5 (Moments)

1. Let (X, Y) be uniformly distributed on the region $\{(x, y): 0<x<y<1\}$.
(a) Find $V(2 X+3 Y-4), \operatorname{Cov}(X+Y, X-Y), E\left(X^{3}+X Y^{2}-X^{2} Y\right)$.
(b) Find regression of Y on X and of X on Y.
(c) Find MGF of (X, Y) and use this to compute correlation coefficient between X, Y.
2. Let $X_{1}, X_{2} \ldots, X_{m+n}$ be i.i.d. r.v.s each having a finite second order moment. Find the correlation coefficient between S_{n} and $S_{m+n}-S_{n}, n>m$, where $S_{k}=\sum_{i=1}^{k} X_{i}, k=1,2, \ldots, m+n$.
3. Let X, Y be discrete r.v.s with respective PMFs given by

$$
p_{X}\left(x_{1}\right)=p_{1}, p_{X}\left(x_{2}\right)=1-p_{1}, p_{Y}\left(y_{1}\right)=p_{2}, p_{Y}\left(y_{2}\right)=1-p_{2}
$$

Show that X, Y are independent iff X, Y are uncorrelated.
4. Using the concept of conditional expectation, prove that:

$$
\operatorname{Var}(X)=\operatorname{Var}(E(X \mid Y))+E(\operatorname{Var}(X \mid Y))
$$

5. Let $X_{1}, X_{2}, \ldots, X_{n}$ be the sequence of i.i.d. r.v.s and N be discrete r.v. taking positive integer values. Suppose $X^{\prime} s$ and N are independent. Define random sum: $S_{N}=X_{1}+X_{2}+\ldots+X_{N}$.
(a) Show that $E\left(S_{N}\right)=E(N) E\left(X_{1}\right)$ and $\operatorname{Var}\left(S_{N}\right)=\left(E\left(X_{1}\right)\right)^{2} \operatorname{Var}(N)+E(N) \operatorname{Var}\left(X_{1}\right)$.
(b) Find MGF of S_{N} in terms of MGF's of X_{i} and N.
6. Let the joint PMF function of X and Y is

$$
p(x, y)=\left\{\begin{array}{ll}
\binom{7}{y} x^{y}(1-x)^{7-y} & y=0,1,2, \ldots, 7 \\
0 & \text { otherwise }
\end{array} .\right.
$$

Find the conditional expectation of Y given $X=x$?
7. Let the joint PDF function of X and Y is

$$
f(x, y)= \begin{cases}\frac{3}{4} x & 0<y<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

Find the conditional expectation of Y given $X=0.5$?
8. Let the joint PDF function of X and Y is

$$
f(x, y)= \begin{cases}\frac{6}{7} x & 1 \leq x+y \leq 2, x \geq 0, y \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Find the marginal PDF of Y and the conditional variance of X given $Y=\frac{1}{2}$?
9. Let the joint PDF of X and Y is

$$
f(x, y)= \begin{cases}4 x & 0<x<\sqrt{y}<1 \\ 0 & \text { otherwise }\end{cases}
$$

Find the conditional variance of Y for $X=x$?
10. The joint PDF of (X, Y) is given by:

$$
f_{X, Y}(x, y)= \begin{cases}\frac{1}{4}\left(1+x y\left(x^{2}-y^{2}\right)\right), & |x| \leq 1,|y| \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

Compute
(a) $E(Y \mid X), E\left(X Y^{2}+Y \mid X\right), \operatorname{Cov}\left(X^{2}, Y^{2}\right)$
(b) $M G F(X, Y), M G F(X+Y)$.

