MTL 106 (Introduction to Probability Theory and Stochastic Processes) Tutorial Sheet No. 6 (Limiting Probabilities)

- 1. (Jensens's Inequality) If g is a convex function and E(X) exists, then show that $g(E(X)) \leq E(g(X))$. Hence show that $E(X) \leq (E(|X|^r))^{1/r}$ for $r \geq 1$.
- 2. Let $g(X) \ge 0, \forall x \in [0, \infty)$ be a non-decreasing even function. Show that for any r.v. X such that E(g(X)) exists and $P(|X| \ge \epsilon) \le \frac{E(g(X))}{g(\epsilon)}$.
- 3. Consider a sequence of r.v.s $\{X_n\}$ with $E(X_n) = m$ and

$$Cov(X_i, X_j) = \begin{cases} \sigma^2, & i = j \\ a\sigma^2, & i = j \pm 1, \text{ where } |a| < 1, \ \sigma^2 > 0 \text{ are given contants} \\ 0, & \text{otherwise} \end{cases}$$

Show that WLLN holds for $\{X_n\}$.

4. Consider a sequence of independent r.v.s $\{X_n\}$ such that

$$P(X_n = 0) = 1 - \frac{2}{n^3}, \ P(X_n = \pm n) = \frac{1}{n^3}, \ n > 1$$

Does the sequence $\{X_n\}$ obey CLT ?

- 5. Consider a sequence $\{X_n\}$ of identically distributed r.v.s with the property that $nP(|X_i| > n) \to 0$ as $n \to \infty$. Show that $\frac{1}{n} \max_{1 \le i \le n} X_i \xrightarrow{p} 0$
- 6. Suppose $|X_n X| \leq Y_n$, almost surely for some random variable X, then show that if $E(Y_n) \to 0$, then $E(X_n) \to E(X)$ and $X_n \xrightarrow{p} X$.
- 7. Show that $X_n \xrightarrow{2} X \Rightarrow E(X_n) \to E(X), \ E(X_n^2) \to E(X^2)$ as $n \to \infty$.
- 8. Let $\{X_i\}$ be a sequence of independent r.v.s, such that each X_i has mean 0 and variance 1. Show that

$$\sqrt{n}\frac{X_1 + X_2 + \dots + X_n}{X_1^2 + X_2^2 + \dots + X_n^2} \stackrel{l}{\to} Z \sim N(0, 1).$$

9. Does WLLN hold for the following sequences

(a)
$$P(X_k = \pm 2^k) = \frac{1}{2}$$

(b) $P(X_k = \pm \frac{1}{k}) = \frac{1}{2}$.

- 10. For what values of α , does the strong law of large numbers hold for the sequence $\{X_n\}$, where $P(X_k = \pm k^{\alpha}) = \frac{1}{2}, \ k = 1, 2, \dots$
- 11. Let $\{X_n\}$ be a sequence of independent r.v.s with the following probability distribution. In each case, does the Lindeberg Condition for CLT hold ?
 - (a) $P(X_k = \pm \frac{1}{2^n}) = \frac{1}{2}$
 - **(b)** $P(X_k = \pm \frac{1}{2^{n+1}}) = \frac{1}{2^{n+3}}, \ P(X_n = 0) = 1 \frac{1}{2^{n+2}}.$
- 12. Suppose that the number of customers who visit SBI, IIT Delhi on a Saturday is a r.v. with $\mu = 75$ and $\sigma = 5$. Find the lower bound for the probability that there will be more than 50 but fewer than 100 customers in the bank?
- 13. A replacement ball is selected from an urn holding ten identical balls numbered 0 through 9.
 - (a) What can be inferred about how zeros appear in n drawings from the law of large numbers?

- (b) How many drawings are needed to ensure that the relative frequency of occurrence of 0's will be between 0.09 and 0.11 with a probability of at least 0.95?
- 14. Does the r.v. X exist for which

$$P\left[\mu - 2\sigma \le X \le \mu + 2\sigma\right] = 0.6.$$

15. Use CLT to show that

$$\lim_{n \to \infty} e^{-nt} \sum_{k=0}^{n} \frac{(nt)^k}{k!} = 1 = \begin{cases} 1, & 0 < t < 1\\ 0.5, & t = 1\\ 0, & t > 1 \end{cases}$$

- 16. Let X_1, X_2, \ldots, X_n be a sequence of r.v. from a uniform distribution on the interval from 0 to 5. What is the limiting moment generating function of $\frac{\bar{X} \mu}{\sigma/\sqrt{n}}$ as $n \to \infty$?
- 17. Let $X \sim B(n, p)$. Use the CLT to find n such that

$$P[X > n/2] \ge 1 - \alpha.$$

Calculate the value of n when $\alpha = 0.90$ and p = 0.45.

- 18. Construct a sequence of independent r.v.s $\{X_n\}$ with $P(X_n = 0) = 1 \frac{1}{n^{\alpha}}, P(X_n = \pm n) = \frac{1}{2n^{\alpha}}$. Determine the values of α for which the sequence $\{X_n\}$ obeys WLLN.
- 19. The bulbs manufactured by a plant have life lengths which follow exponential distribution with mean 100 hours. A series of 50 independent life tests is performed. Each test consist of
 - 1. choosing 4 bulbs at random from the plant
 - 2. putting them into operation simultaneously and independently of each other
 - 3. the life test ends as soon as any one of the four bulbs fails and time taken to complete the test is noted

Let Y_1, Y_2, \ldots, Y_{50} respectively be the times of 50 life tests.

- (a) What is the PDF of any Y_i
- (b) What is the PDF of T, the total time of 50 tests
- (c) Use central limit theorem to compute approximately P(T > 1000)
- 20. Suppose that X_i , i = 1, 2, ..., 30 are independent r.v. each having a Poisson distribution with parameter 0.01. Let $S = X_1 + X_2 + \cdots + X_{30}$.
 - (a) Using central limit theorem evaluate $P(S \ge 3)$.
 - (b) Compare the answer in (a) with exact value of this probability.
- 21. Let X_1, X_2, \ldots be a sequence of i.i.d. r.v. with mean 1 and variance 1600, and assume that these variables are non-negative. Let $Y = \sum_{k=1}^{100} X_k$. Use the central limit theorem to approximate the probability $P(Y \ge 900)$.
- 22. A machine requires 4 of the 6 independent parts to function. Let each component's lifetime be represented by X_1, X_2, \ldots, X_6 . Assume they are all distributed exponentially with theta as the parameter. What is the machine lifetime PDF?
- 23. Let X be a r.v. having a Gamma distribution with parameters n and 1. How large must n be in order to guarantee that

$$P\left(\left|\frac{X}{n} - 1\right| > 0.01\right) < 0.01?$$

- 24. In order for the probability that the average number of heads obtained deviates from 0.5 by no more than 0.01 is at least 0.90, how many fair coin flips are required?
- 25. Let X be a nonnegative r.v. Prove:

$$E(X) \le [E(X^2)]^{\frac{1}{2}} \le [E(X^3)]^{\frac{1}{3}} \le \dots$$

Verify the above result for $X \sim Geo(p)$.

26. Find out the nature of convergence of $\{X_n, n = 1, 2, 3, ...\}$ for different values of k for n = 1, 2, ...

$$P(X_n = n^k) = \frac{1}{n}; P(X_n = 0) = 1 - \frac{2}{n}; P(X_n = -n^k) = \frac{1}{n}.$$

27. Show that the convergence in the *r*th mean does not imply almost sure convergence for the sequence $\{X_n, n = 1, 2, 3, ...\}$ defined below:

$$P(X_n = 0) = 1 - \frac{1}{n}; P(X_n = -n^{1/2r}) = \frac{1}{n}.$$

28. For each $n \ge 1$, let X_n be an uniformly distributed r.v. over set $\{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}$, i.e.,

$$P\left(X_n = \frac{k}{n}\right) = \frac{1}{n+1}, k = 0, 1, \dots, n,$$

Let U be a r.v. with uniform distribution in the interval [0, 1]. Show that $X_n \xrightarrow{d} U$.

29. Let $\{X_n, n = 1, 2, 3, \ldots\}$ be a sequence of i.i.d. r.v. with

$$E(X_1) = Var(X_1) = \lambda \in (0, \infty)$$

and $P(X_1 > 0) = 1$. Show that for $n \to \infty$,

$$\sqrt{n}\frac{Y_n-\lambda}{\sqrt{\lambda}} \xrightarrow{d} N(0,1)$$

where

$$Y_n = \frac{1}{n} \sum_{k=1}^n X_k$$

30. Let $\{X_n, n = 1, 2, 3, ...\}$ be a sequence of i.i.d. r.v. with

$$P(X_n = 1) = P(X_n = -1) = \frac{1}{2}.$$

Show that

$$\frac{1}{n}\sum_{j=1}^{n}X_{j}$$

converges in probability to 0.

- 31. Let X, X_1, X_2, \ldots be a sequence of r.v. defined on a same probability space (Ω, S, P) . Prove that
 - (a) If $X_n \xrightarrow{a.s.} X$ and $Y_n \xrightarrow{a.s.} Y$, then $X_n + Y_n \xrightarrow{a.s.} X + Y$.
 - (b) If $X_n \xrightarrow{a.s.} X$ and $Y_n \xrightarrow{a.s.} Y$, then $X_n Y_n \xrightarrow{a.s.} XY$.

- (c) If $X_n \xrightarrow{P} X$ iff $X_n X \xrightarrow{P} 0$.
- (d) If $X_n \xrightarrow{P} X$ and $Y_n \xrightarrow{P} Y$, then P(X = Y) = 1.
- (e) If $X_n \xrightarrow{P} X$ then $X_n X_m \xrightarrow{P} 0$.
- (f) If $X_n \xrightarrow{P} X$ and $Y_n \xrightarrow{P} Y$, then $X_n + Y_n \xrightarrow{P} X + Y$.
- (g) If $X_n \xrightarrow{P} X$ and $Y_n \xrightarrow{P} Y$, then $X_n Y_n \xrightarrow{P} XY$.
- 32. A fair coin is tossed 200 consecutive times. Let X be the number of tails. Use Chebyschev's inequality to find a lower bound for the probability that $\frac{X}{200}$ differs from $\frac{1}{2}$ by less than 0.1.
- 33. Let X_1, X_2, \ldots, X_n be *n* independent Poisson distributed r.v. with means $1, 2, \ldots, n$, respectively. Find an x in terms of t such that

$$P\left(\frac{S_n - \frac{n^2}{2}}{n} \le t\right) \approx \Phi(x)$$

for sufficiently large n, where Φ is the CDF of N(0, 1).

34. Let Y be a gamma distributed r.v. with PDF

$$f(y) = \begin{cases} \frac{1}{\Gamma(r)} e^{-y} y^{r-1}, & y > 0\\ 0, & \text{otherwise} \end{cases}.$$

Find the limiting distribution of $\frac{Y-E(Y)}{\sqrt{Var(Y)}}$ as $r \to \infty$.

- 35. Suppose that the MGF $(M_x(t))$ of a r.v. X exists. Use Markov's inequality to show that for any $a \in R$ the following holds:

 - $P(X \ge a) \le exp(-ta)M_x(t), \quad \forall \ t > 0.$ $P(X \le a) \le exp(-ta)M_x(t), \quad \forall \ t < 0.$