MTL 106 (Introduction to Probability Theory and Stochastic Processes) Tutorial Sheet No. 9 (CTMC)

1. Consider a time-homogeneous CTMC $\{X(t), t \ge 0\}$ with the infinitesimal generator matrix $\mathbf{Q} = \begin{pmatrix} -3 & 2 & 1 \\ 1 & -2 & 1 \\ 1 & 4 & -5 \end{pmatrix}$

and initial distribution (0, 0, 1). Find $P(\tau > t)$ where τ denotes the first transition time of the Markov chain.

2. In orbit, there are two communication satellites. Each satellite has an exponential lifetime with a mean of $\frac{1}{\mu}$. A replacement is sent up if one fails. The preparation and sending up of a replacement takes an exponential amount of time, with mean $\frac{1}{\lambda}$. Let X_t represent the number of satellites in orbit at the given moment. Consider $\{X_t, t \ge 0\}$ as a CTMC with a state space $\{0, 1, 2\}$. Show that the infinitesimal generator matrix is given by

$$\mathbf{Q} = \begin{pmatrix} -\lambda & \lambda & 0\\ \mu & -(\lambda + \mu) & \lambda\\ 0 & 2\mu & -2\mu \end{pmatrix}.$$

Write down the Kolmogorov forward and backward equations for the above process.

3. Consider a CTMC $\{X(t),t\geq 0\}$ with state space $\{0,1,2\}$ and

$$\mathbf{Q} = \begin{pmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 1 & 0 & -1 \end{pmatrix}.$$

(a) Prove that its transition probability matrix is

$$\mathbf{P(t)} = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} + \frac{2}{3}R(t)$$

where

$$\mathbf{R}(\mathbf{t}) = \begin{pmatrix} \cos(\frac{\sqrt{3}}{2}) & \cos(\frac{\sqrt{3}}{2} - \frac{2\pi}{3}) & \cos(\frac{\sqrt{3}}{2} + \frac{2\pi}{3}) \\ \cos(\frac{\sqrt{3}}{2} + \frac{2\pi}{3}) & \cos(\frac{\sqrt{3}}{2}) & \cos(\frac{\sqrt{3}}{2} - \frac{2\pi}{3}) \\ \cos(\frac{\sqrt{3}}{2} - \frac{2\pi}{3}) & \cos(\frac{\sqrt{3}}{2} + \frac{2\pi}{3}) & \cos(\frac{\sqrt{3}}{2}) \end{pmatrix}.$$

(b) Show that the limiting distribution of P(t) as $t \to \infty$ is $\pi = (1/3, 1/3, 1/3)$ and

$$\sum_{i=1}^{2} \frac{2}{3} e^{-3t/2} \le \sup_{i=1}^{2} \sum_{j=1}^{2} |p_{ij}(t) - \pi_j| \le \frac{4}{3} e^{-3t/2}$$

4. Let

$$\mathbf{Q} = \begin{pmatrix} -3 & 1 & 2\\ 2 & -4 & 2\\ 2 & 1 & -3 \end{pmatrix}.$$

Prove that its transition probability matrix is

$$\mathbf{P(t)} = \frac{1}{5} \begin{pmatrix} 2 + 3e^{-5t} & 1 - e^{-5t} & 2 - 2e^{-5t} \\ 2 - 2e^{-5t} & 1 + 4e^{-5t} & 2 - 2e^{-5t} \\ 2 - 2e^{-5t} & 1 - e^{-5t} & 2 + 3e^{-5t} \end{pmatrix}.$$

hence, the limiting distribution of P(t) is $\pi = (2/5, 1/5, 2/5)$ and

$$\sup_{i} \sum_{j} |p_{ij}(t) - \pi_{j}| = \frac{8}{5}e^{-5t}.$$

- 5. The birth-death process is called a pure death process if $\lambda_i=0$ for all *i*. Suppose $\mu_i = i\mu$, i = 1, 2, 3, ... and initially $X_0 = n$. Show that X_t has B(n, p) distribution with $p = e^{-\mu t}$.
- 6. Consider birth-death process with $\lambda_i=0$ for all *i*. Suppose $\mu_i=\mu$, $i=1,2,3,\ldots$ Find the value of $P_{ij}(t)$ for this process.
- 7. The birth-death process is called a birth process if $\mu_n=0$ for every n. Suppose $\lambda_n = n\lambda$, n = 1, 2, 3, ... If $X_0 = i$ show that

$$P(X_t = n | X_0 = i) = P_{in}(t) = {\binom{i-1}{i-n}} e^{-n\lambda t} (1 - e^{-\lambda t})^{i-n}, \quad i \ge n$$

- 8. Consider a birth-death process with birth rate $\lambda_i = (i+1)\lambda$, $i \ge 0$ and $\mu_i = i\mu$, $i \ge 0$. Find the expected time to go from state 0 to 1.
- 9. Prove that the irreducible birth-death process is transient iff

$$\sum_{n=1}^{\infty} \frac{\mu_1 \dots \mu_n}{\lambda_1 \dots \lambda_n} < \infty, \tag{1}$$

positive recurrent iff

$$\sum_{n=1}^{\infty} \frac{\lambda_1 \dots \lambda_n}{\mu_1 \dots \mu_n} < \infty, \tag{2}$$

and null recurrent iff neither (1) nor (2) holds.

- 10. Consider a birth-death process with state space $S = \{0, 1, 2\}$ and birth rates $\lambda_0 = \mu_2 = \lambda$. Find P(X(t) = n|X(0) = 0), n = 0, 1, 2.
- 11. Consider a birth-death process $\{X(t), t \ge 0\}$ with state space $S = \{0, 1, ...\}$ and birth and death rates of the form $\lambda_n = n\lambda$ and $\mu_n = n\mu$, n = 0, 1, ... where λ and μ are non-negative constants. Assume $P_{ii}(j) = 1$ for fixed *i*. Take $m(t) = \mathbb{E}(X(t)) = \sum_{k=0}^{\infty} k P_{ik}(t)$. Prove that $m(t) = ie^{(\lambda \mu)t}$.
- 12. Suppose there are *n* identical machines operating independently and serviced by a single repair crew. If a machine breaks down while another is being repaired it must wait its turn before repairs can start. Assume each machine has an operating time exponential with mean $\frac{1}{\mu}$ and a repair time exponential with mean $\frac{1}{\lambda}$. Let X(t) = no. of machines in operating condition at time *t*. Model X(t) as a Markov chain with state space $E = \{0, 1, 2, \ldots, N\}$. Determine rate matrix Λ and the forward Kolmogorov equations. Determine the limiting equilibrium probability distribution of the process.
- 13. Every Wednesday night, free vision screenings are provided by the eye clinic at City Hospital. Three ophthalmologists are on call. The real-time is found to be spread with potential distribution around the average test time of 20 minutes. Patients are accepted on a first-come, first-served basis and clients arrive according to a Poisson process with a mean of 6/hr. The hospital planners are interested in knowing:
 - (a) What is the mean number of people waiting?
 - (b) What is the total amount of time a patient spends at the clinic?
 - (c) What is the average percentage idle time of each of the doctors?