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Abstract
Energy saving in User Equipment (UE) is one of the important issues for limited sources of power in the device. It is critical
for the UE to maximize its energy efficiency. In this paper, we have presented two stochastic models, namely the Markov
model and semi-Markov model, for the UE based on the states of discontinuous reception (DRX) mechanism, i.e., a power
saving method in mobile communication networks. Explicit expressions are derived for transient and steady-state system
size probabilities for the Markov model. For the semi-Markov model, steady-state probabilities are computed. Further, the
performance measures such as mean and variance are computed for both models. Using these models, based on the states of
DRXmechanism, energy saving in the UE is calculated. Finally, sensitivity analysis is performed in which the results obtained
are compared for both models. Numerical results obtained in this paper ensure that energy saving can be maximized in the UE
using the Markov modelling of DRX mechanism rather than semi-Markov modelling. The energy saving using the Markov
model is atleast 33.19% more than the semi-Markov model. Also, for energy saving in the UE, the semi-Markov model for
DRX mechanism is compared with the Markov model. The semi-Markov models for the DRX mechanism are available in
the literature without considering the packet arrivals. Our analysis of DRX mechanism and conclusion on its performance
can be designed and implemented to an extension for the existing DRX mechanism. We believe that, these models can also
be extended to study the energy saving of hardware and other components of the system.

Keywords Markov model · Semi-Markov model · Working state · Short cycle · Long sleep · DRX · LTE-A

1 Introduction

Long-Term Evolution (LTE) is a standard for the wireless
communication. The goal of LTE was to increase the capac-
ity and speed of wireless data networks. LTE Advanced
(LTE-A) is a standard for wireless communication that is one
generation beyondLTE. It offers faster speeds andgreater sta-
bility than LTE. LTE-A defined a new kind of cellular access
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network with great spectral efficiency, high peak data rates,
fast round-trip times, and frequency and bandwidth flexibil-
ity. It denotes a changing level of performance as cellular
hardware, software, and network technology capabilities,
such as speed, latency, battery life, and cost effectiveness,
are improved over time.
LTE-A is a leading technology that is expected to be widely
used inwireless networking under theThird-GenerationPart-
nership Project (3GPP). Currently in thewireless technology,
important issue is energy consumption in the UE, taking into
account that anyone have to deal with a limitation of large
amount of energy consumption and LTE-A data transmis-
sion with massive speed. The energy gap between available
and desired energy in wireless user equipment (UE) pow-
ered by batteries is widening year after year. As a result, the
LTE-A standard incorporates energy saving technique like
DRX mechanism. To this end, the Discontinuous Reception
Scheme, DRX, which is a energy saving Scheme for UE in
LTE-A networks is investigated.
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The most effective scenario to roll out an LTE-A network
is by using a 900 MHz frequency. The 900 MHz frequency
is used globally for voice and basic data communications.
There aremanymodels that have beenwell studied byvarious
researchers in the literature, but therewas no stochasticmodel
proposed to study the energy saving for the UE at the packet
level. Therefore, in this paper, the stochastic models that are
unique and simple in nature are presented to evaluate the
performance of the UE.
Stochastic models, i.e., two dimensional continuous time
Markov chain and a semi-Markov model are proposed. The
state space is same for both the models but the sojourn times
in states vary. The distributions for the sojourn times of states
used for the semi-Markov model are taken from literature.
The motive of the paper is to present that the energy saving
in the UE can be maximized using the Markov modelling of
DRXmechanism rather than semi-Markovmodelling. In this
paper, we have developed the stochastic models for energy
saving in the UE.We believe that, these proposedmodels can
be used to save energy in theUE,whereUEcanbemobile,etc.
Further, we believe that, these models can also be extended
to study the energy saving of hardware and other components
of the system.
The paper is organized as follows. The literature review
is given in Sect. 2. The structure of DRX mechanism is
explained in Sect. 3. The description of the proposedMarkov
model is explained in Sect. 4. Section 4.2 deals with the
time dependability analysis of the proposed model, and Sect.
4.3 deals with steady-state analysis of the model. The semi-
Markovmodel is presented in Sect. 5. Performancemeasures
are analyzed in Sect. 6 for both themodels. In Sect. 7, numer-
ical results are presented for the proposed models. Finally
concluding remarks are given in Sect. 8.

2 Related works

In recent years, in mobile communications, power savings
in the UE and Quality of Service(QoS) provided are impor-
tant issues, and there are many researchers that have been
discussed in this direction [1]. For instance, there is a large
literature on power-awareness in mobile and wireless net-
works. The stochastic processes are used for the modelling
of wireless networks [2]. Also, there has been a great deal
of research on reducing energy consumption in wireless net-
works. Jones et al. [3] provided an overview of many energy
consumption reducing techniques. The energy issue using
indexed semi-Markov modelling was addressed in [4]. The
effects on QoS using semi-Markov modelling was presented
in [5]. The results reported in the literature were obtained
from system-level power measurement but not component-
level power measurement, although component-level power
measurement was supposed to providemore details on power

consumption. Due to the much higher data rates and lower
latency compared to LTE, a rise in UE power consumption
was inevitable [6,7].
Because of its limited on board energy, it was critical for
the UE to maximize its energy efficiency [8]. The power
consumption can be reduced by entering the UE to sleep
mode [9]. To reduce the energy consumption, the LTE-A
standard defines DRX mechanism [10] that allows UEs to
turn off its components when no data is expected to be
received. An energy efficient and QoS aware DRX scheme is
presented in [11]. A new appliance is proposed to switch
the DRX mechanism from the power active state to the
power saving state and vice versa [12]. A simple but efficient
application-aware DRX mechanism to optimize the system
performance of LTE-A networks is presented in [13]. In [14],
a semi-Markov model was developed to characterize the per-
formancemetrics of the DRXwhere themetrics were limited
to an exponential packet arrival rate. Arunsundar et al. [15]
introduced an analysis of the DRX mechanism, which inte-
grates DRX long and short cycles that influence the average
latency due to buffering, DRXSLEEP, and energy consump-
tion and created a systematic model of the DRXmechanism.

A newDRXwas introduced, called LTE-DRX, to improve
UE battery life [16]. In [17] to analyze energy saving in
the UE, a Markovian queuing model for the DRX mech-
anism in LTE/LTE-A networks was presented. There were
many authors who modeled the DRX mechanism as semi-
Markov models. For instance, the DRX mechanism was
modeled as a five-state semi-Markov model, and an eight-
state semi-Markov model in [18] and [19], respectively.
Semi-Markov modelling was performed for the performance
analysis of power saving in the DRX mechanism [20]. A
semi-Markov model was presented to analyze the DRX
mechanism in LTE/LTE-A networks [21,22]. These models
derive the power saving factor by calculating the stationary
probabilities and holding times for the active and sleeping
states of the DRX mechanism.
A new Licensed-Assisted Access DRX mechanism (LAA-
DRX) was analyzed using four-state semi-Markov model to
show the probabilistic estimation of power saving [23]. A
flexible DRX mechanism was analysed in [24]. A Markov
chain with timer inactivity, short sleep, long sleep, and active
service states is created, and the tradeoff betweenmean delay
and power saving factor is examined in [25] and the profile of
both parameters is plotted against the packet arrival rate. The
technique adopted in [20] shows that the largerwake-updelay
was needed for the efficiency of battery power saving. In [26],
the gain in power consumption was achieved when a longer
DRX cycle was applied. In [27], it was shown that extending
the length of the DRX cycle helps in reducing the energy
consumption of the UE, i.e., length of DRX cycle affects
the energy consumption in the UE [28]. The performance
of DRX in terms of energy consumption, using the Markov
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model considering both short and long cycles, was analyzed
in [27]. In [29], the power consumption in LTE networks was
discussed. The authors studied the energy saving in UE by
applying carrier aggregation in [30], i.e., a narrow and a wide
band UE power model was presented. An LTE smartphone
power model was introduced where the power consumption
of three different LTE smartphones was presented [31]. The
sleep concept with the aim of minimizing the energy waste
in case of unused buffered data was introduced [32].

3 DRXmechanism

In this Section, theDRXmechanismof theUE is explained in
detail that helps to understand the proposed stochastic mod-
els. The DRX mechanism consists of three periods that are
idle, working, and sleep periods [12,33]. The sleep period
includes two types of sleeps that are given as short sleep and
long sleep. The structure ofDRXmechanism is shown in Fig.
1. The energy consumption values are different for different
periods of DRX mechanism. These energy values are taken
from the literature [27,34] and are given in Table 1.

The UE is in an idle period if there are no pack-
ets in the system to provide service. If there is a packet
arrival, then the system starts providing service to the pack-
ets, hence moving to the working period. Once service
is provided to all the packets, the system again moves
to an idle period. After spending some random time in
this period, if there is no packet indication, then the sys-
tem moves to 1st short cycle, i.e., sleep period. If there
is no packet indication in one short cycle, then the sys-
tem keeps moving to the next short cycle. This is repeated
for the predetermined number of cycles (say, N ), and

Fig. 1 Structure of DRX mechanism

Table 1 UE energy consumption values in different periods of theDRX
mechanism

Period Energy consumption (mW/ms)

Idle period 255.5

Working period 500

Short sleep 11

Long sleep 0

many short cycles together form the short sleep, i.e. short
sleep consists of a predetermined number of short cycles
N . Suppose there is packet arrival in any short cycle,
then after spending random amount of time in that cycle,
the system moves to the working period. If there is no
packet arrival till the last short cycle, Nth short cycle,
then the system enters the long sleep. The packets arriv-
ing during long sleep are kept for a random amount
of time to provide service after the completion of long
sleep. If there is no packet indication during long sleep,
then after spending a random amount of time, the system
enters an idle period. The possible transitions from one
state to another state in the DRX mechanism is shown in
Fig. 2.

There are two kinds of sleep in DRX, to minimize the
delay experienced and to maximize the energy saving. The
energy saving in long sleep is more in comparison to that
of short sleep because if there is packet arrival in any
short cycle, then after spending random amount of time in
that cycle, the system moves to the working period. But
packets arriving during long sleep are kept for a random
amount of time to provide service after the completion of
long sleep. Hence, the delay experienced by the packets
for service is more in the case of long sleep than short
sleep [27]. Together N cycles constitute the short sleep,
and this N is predetermined number that is considered to
make sure that the system moves to long sleep only when
there is no packet arrival for some amount of time (i.e, dur-
ing short sleep). If N = 1 and there is no packet arrival
in a short sleep, then the system moves to a long sleep.
As the duration of long sleep is more than the duration of
the short sleep, whenever there is packet arrival during the
long sleep, the delay experienced by the packet is more.
Therefore, the delay experienced by the packets increases
if N = 1.
In this paper, the two models, namely the Markov model
and the semi-Markov model, are considered based on the
sojourn time distributions in sleep periods. In the Markov
model, sojourn time in each state is exponentially distributed.
In the semi-Markov model, sojourn time in sleep periods is
different from an exponential distribution.

Fig. 2 State transition in DRX mechanism
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4 Markovmodel

A stochastic model is proposed, considering the UE in differ-
ent states of theDRXMechanism. In this proposed stochastic
model, sojourn time in each state follows an independent
exponential distribution. Hence the underlying stochastic
process is a continuous time Markov chain.

4.1 Description of the Markovmodel

The proposed Markov model is explained in detail in this
Section. The four states of this model are explained:

• Idle period: It is the state in which UE is active and wait-
ing for packets to provide service.

• Working period: It is the state in which the UE is active,
i.e., providing service to the packets.

• Short cycle: It is a state in which the UE turns off most
of its components. This short cycle is repeated for a pre-
determined number of times (say N ) if no data packet
arrives and ends otherwise.

• Long sleep: It is a state in which UE enters on the expi-
ration of the short cycle if no data packet arrives.

Let {(N (t), S(t)), t ≥ 0} represents the continuous time
Markov chain where {N (t), t ≥ 0} denote the number of
packets in the system at any time t and {S(t), t ≥ 0} repre-
sents the state of the system at any time t with state space
Ω = {(i, j); i = 0, 1, . . . ; j = 0, 1, . . . , N , N + 1}.
The state (0, 0) represents that the system is in an idle period.
The state (i, 0), i = 1, 2, . . . represents that the system is in
working period providing service to i th packet and the state
(0, j), j = 1, 2, . . . , N represents the system is in j th short
cycle. The state (i, N + 1) represents the system is in long
sleep with i number of packets. In both idle and working
periods, the UE is active to provide service to the packets.
Let the time spent in the idle period before moving to the first
short cycle be exponentially distributed with parameter β.
Let the packet arrival in the system follow a Poisson process
with parameter λ, and the service time of a packet follows an
exponential distribution with parameterμ. Let the time spent
in a short cycle and long sleep be exponentially distributed
with parameters α and ν, respectively.
Let us assume that the system is initially in an idle period,
i.e., it is waiting for data packets to provide service. If there
is packet arrival in an idle period, then on the completion
of an idle period, the system moves to state (1, 0) and starts
providing service to packets. If before the service completion
of the packet, there is packet arrival, then the system moves
to (i + 1, 0), when i packets are already in the system. On
completion of every service, the system moves to state (i −
1, 0) from state (i, 0) . If there is no packet arrival in the
idle period, then the system moves to state (0, 1). It keeps

Fig. 3 State transition diagram for the proposed Markov model

on moving to state (0, j), if there is no packet arrival in state
(0, j−1); j = 1, 2, . . . , N . If there is packet arrival in any of
the state (0, j), j = 1, 2, . . . , N , the system moves to state
(1, 0). If there is no packet arrival in state (0, N ), then the
system moves to state (0, N + 1). If a packet arrives in the
state (i, N+1), then the systemmoves to state (i+1, N+1),
when i packets are already in the system. After completing
the long sleep, the system moves to state (i, 0) if i packets
arrive during the long sleep. The state transition diagram for
the proposed Markov model is presented in Fig. 3.

Let Pi, j (t) = P{N (t) = i, S(t) = j}, i = 0, 1, . . . and
j = 0, 1, . . . , N + 1 be the probability that the server is in
state j with i number of packets in the system at any time
t . Then Pi, j (t) satisfies the following forward Kolmogorov
equations [35].

P
′
0,0(t) = −(β + λ)P0,0(t) + μP1,0(t)

+(ν − λ)P0,N+1(t) (1)

P
′
1,0(t) = −(μ + λ)P1,0(t) + λP0,0(t) + μP2,0(t)

+λ(P0,1(t) + P0,2(t) + . . . + P0,N (t))

+(ν − λ)P1,N+1(t) (2)

P
′
i,0(t) = −(μ + λ)Pi,0(t) + λPi−1,0(t) + μPi+1,0(t)

+(ν − λ)Pi,N+1(t), i = 2, 3, . . . (3)

P
′
0,1(t) = −αP0,1(t) + βP0,0(t) (4)

P
′
0, j (t) = −αP0, j (t) + (α − λ)P0, j−1(t),

j = 2, 3, . . . , N (5)

P
′
0,N+1(t) = −νP0,N+1(t) + (α − λ)P0,N (t) (6)

P
′
i,N+1(t) = −νPi,N+1(t) + λPi−1,N+1(t),

i = 1, 2, . . . (7)

and assume that the system is initially empty, i.e.,
P0,0(0) = 1.

4.2 Transient analysis

This Section presents the transient probabilities of different
states of the proposedmodel, i.e., idle period,workingperiod,
short cycles and long sleep. The probability of UE being in
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short cycle P0, j (t) and long Sleep Pi,N+1(t) are presented
in terms of P0,0(t). Similarly, the probability of UE being in
working period Pn,0(t) is derived using generating function
in terms of P0,0(t), where P0,0(t) is the transient probability
for UE being in idle period.

Theorem 1 Time-dependent probability of UE being in short
cycle (0, j) and long sleep (i, N +1) where 1 ≤ j ≤ N ; i ≥
0 is given by

P0, j (t) = β(α − λ) j−1e−αt t j−1

( j − 1)! ∗ P0,0(t),

j = 1, 2, . . . , N .

Pi,N+1(t) = βλi (α − λ)Ne−νt t
i

i ! ∗

e−αt t N−1

(N − 1)! ∗ P0,0(t), i = 0, 1, . . . .

Proof Details of the proof are given in Appendix 1. ��
Theorem 2 Time-dependent probability ofUEbeing inwork-
ing state (n, 0) where n ≥ 1 is given by

Pn,0(t) = μbn+1P0,0(t) ∗ e−(μ+λ)(t) 2n

αt
In(αt)

+(ν − λ)

n∑

i=0

bn−i Pi,N+1(t) ∗ e−(μ+λ)(t)[In−i (αt) − In+i (αt)]

+(ν − λ)

∞∑

i=1

b−i Pn+i,N+1(t) ∗ e−(μ+λ)(t)[Ii (αt) − I2n+i (αt)]

+λbn−1
N∑

i=1

P0,i (t) ∗ e−(μ+λ)(t) 2n

αt
In(αt).

Proof Details of the proof are given in Appendix 2. ��
Theorem 3 Time-dependent probability of UE being in idle
state (0, 0) is given by the inverse Laplace transform of equa-
tion

f0,0(s)

[
1 + 2μb

α

b(d−√
d2−α2)
α

1 − b(d−√
d2−α2)
α

+ β(ν − λ)(α − λ)N

(s + ν)(s + α)N
√
d2 − α2

[
1

1 − λα

b(s+ν)(d−√
d2−α2)

( b(d−√
d2−α2)
α

1 − b(d−√
d2−α2)
α

− λα

b(s + ν − λ)(d − √
d2 − α2)

)

− 1

1 − λ(d−√
d2−α2)

αb(s+ν)

( b(d−√
d2−α2)
α

1 − b(d−√
d2−α2)
α

−
λ2(d−√

d2−α2)3

bα3(s+ν)2

1 − λ(d−√
d2−α2)2

α2(s+ν)

)]

+β(ν − λ)(α − λ)N

(s + ν)(s + α)N

1√
d2 − α2

( λ(d−√
d2−α2)

αb(s+ν)

1 − λ(d−√
d2−α2)

αb(s+ν)

)

×
[ λ

s+ν

1 − λ
s+ν

−
λ(d−√

d2−α2)2

α2(s+ν)

1 − λ(d−√
d2−α2)2

α2(s+ν)

]
+ 2λβ

αb(s + α)

×
( b(d−√

d2−α2)
α

1 − b(d−√
d2−α2)
α

)[
1 − (α−λ

s+α
)N

1 − (α−λ
s+α

)

]

+ β(α − λ)N

(s + ν)(s + α)N

(
1

1 − λ
s+ν

)

+ β

s + α

[
1 − (α−λ

s+α
)N

1 − (α−λ
s+α

)

]]
= 1

s
.

Proof Details of the proof are given in Appendix 3. ��
In this Section, we have expressed the probabilities P0, j (t),
Pi,N+1(t) and Pn,0(t) for n = 1, 2, . . .; 1 ≤ j ≤ N ; i ≥ 0
in terms of P0,0(t). The probability P0,0(t) can be obtained
taking the inverse Laplace transform of equation given in
Theorem 3.

4.3 Steady-state probabilities

In this Section, the steady state probabilities of the system
are obtained from the time-dependent system size prob-
abilities which are given in Sect. 4.2. It is known that,
limt→∞ Pi, j (t) = πi, j and limt→∞ P

′
i, j (t) = 0. Hence,

equations (1)-(7) becomes

0 = −(β + λ)π0,0 + μπ1,0 + (ν − λ)π0,N+1, (8)

0 = −(μ + λ)π1,0 + λπ0,0

+μπ2,0 + λ(π0,1 + π0,2 + . . . + π0,N )

+(ν − λ)π1,N+1, (9)

0 = −(μ + λ)πi,0 + λπi−1,0

+μπi+1,0 + (ν − λ)πi,N+1, i = 2, 3, . . . (10)

0 = −απ0,1 + βπ0,0, (11)

0 = −απ0, j + (α − λ)π0, j−1, j = 2, 3, . . . , N (12)

0 = −νπ0,N+1 + (α − λ)π0,N , (13)

0 = −νπi,N+1 + λπi−1,N+1, i = 1, 2, . . . . (14)

The stability conditions for the existence of these steady state
probabilities are λ ≤ α, λ < μ and λ < ν.

Theorem 4 Steady-state probabilities of UE being in dif-
ferent states, i.e., (0, 0), (0, j), (i, N + 1) and (n, 0) for
n = 1, 2, . . .; 1 ≤ j ≤ N ; i ≥ 0 are given by

π0, j = β(α − λ) j−1

α j
π0,0, j = 1, 2, . . . , N .

123



128 S. Dharmaraja et al.

πi,N+1 = βλi (α − λ)N

νi+1αN
π0,0, i = 0, 1, . . .

πn,0 = Anπ0,0, n ≥ 1

where

An =
[

μbn+1

(μ − λ)
+ βbn−1((α − λ)N − αN )

αN (μ − λ)

] [
bn+1 − bn−1]

+βbn(α − λ)N

(μ − λ)αN

[
(ν − λ)bn+2(1 − ( λ

νb2
)n+1)

(νb2 − λ)

−bn
(
1 −

(
λ

ν

)n+1
)

+
(

λ

ν

)n+1

(b−n − bn)

]
.

π0,0 = 1

1 + ∑∞
i=1 Ai + ∑N

j=1
β(α−λ) j−1

α j + ∑∞
i=0

βλi (α−λ)N

νi+1αN

.

Proof Details of the proof are given in Appendix 4. ��
Using the probability π0,0, we can compute all the prob-

abilities π0, j , πi,N+1; 1 ≤ j ≤ N ; i ≥ 0 and πn,0 for
n = 1, 2, . . ..

5 Semi-Markovmodel

The state space for this proposed semi-Markovmodel is same
as that of the proposedMarkovmodel. In contrast, the sojourn
time in the state corresponds to the sleep period is following
non-exponential distribution.

5.1 Description of themodel

Let I0 denotes the system is in an idle period with zero
packets, i.e., the system waiting for packets, Wk denotes
the UE is in working period with k number of packets, i.e.,
(k, 0)th state, S j denotes the UE is in j th short cycle, i.e.,
(0, j)th state and Li denotes the UE is in long sleep with i
number of packets to serve, i.e., (i, N + 1)th state, where
k = 1, 2, . . ., i = 0, 1, . . . and j = 1, 2, . . . , N . Let Fm,n(t)
denotes the CDF associated with transition from state m to
n, wherem, n ∈ Ω ,Ω = {I0,Wk, S j , Li , k = 1, 2, . . . ; i =
0, 1, . . . ; j = 1, 2, . . . , N }. There are papers that talk about
the sojourn time distribution for different states of DRX
mechanism [22,27]. Hence, the sojourn time distribution
for different states of the semi-Markov model is shown in
Table 2.

The transition from one state to another is influenced
by many factors and hence exhibits random behavior. In
this process, the distribution of transition from one state
to another is influenced by the real time scenario of DRX
mechanisms. Hence, the sojourn time of some states fol-
lows the deterministic distribution, and time epochs possess
the Markov property. Therefore, this stochastic process can

Table 2 Distributions of sojourn times in semi-Markov model

CDF Distribution Parameter

FI0,S1 (t) Deterministic 1
β

FSj ,S j+1 (t) Deterministic 1
α

FSN ,L0 (t) Deterministic 1
α

FWk ,Wk+1 (t) Exponential λ

FW1,I0 (t) Exponential μ

FWk ,Wk−1 (t) Exponential μ

FSj ,W1 (t) Exponential λ

FLi ,Li+1 (t) Exponential λ

FL0,I0 (t) Deterministic 1
ν

FLi ,Wi (t) Deterministic 1
ν

Fig. 4 State transition diagram for the proposed semi-Markov model

be visualized as an SMP (Semi-Markov Process) [35]. The
state transition diagram of the proposed semi-Markov model
is shown in Fig. 4. The state space of this model is given
as Ω = {I0,Wk, S j , Li , k = 1, 2, . . . ; i = 0, 1, . . . ; j =
1, 2, . . . , N }.

The steady-state probabilities πm∀ m ∈ S exist under the
stability conditions, λ < μ, λ ≤ α and λ < ν.

Theorem 5 The steady-state probabilities for the semi-
Markov model are given as:

πI0 = 1 − e− λ
β

λM
,

πW1 = 1 − e−
(

λ
β
+ λN

α
+ λ

ν

)

μM
,

πWk = 1

μM

[( λ

μ

)k−1(1 − e−
(

λ
β
+ λN

α
+ λ

ν

))

+
(

λ
μ

)(
1 − e− λ

ν

)2
(

λ
μ

− 1 + e− λ
ν

)e−
(

λ
β
+ λN

α

)

[(
λ

μ

)k−2

−
(
1 − e− λ

ν

)k−2
]]

, k = 2, 3, . . .
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πS j = e− λ
β
(
e− λ

α

) j−1(1 − e− λ
α

)

λM
, j = 1, 2, . . . , N

πLi = e−
(

λ
β
+ λN

α

)(
1 − e− λ

ν

)i+1

λM
, i = 0, 1, . . .

where M is given in Appendix 5.

Proof Details of the proof are given in Appendix 5. ��

6 Performance analysis

Performance measures for both the proposed models are pre-
sented in this Section. Firstly, we present the measures for
the Markov model in Sect. 6.1. Section 6.2 deals with the
performance measures for the semi-Markov model.

6.1 Markovmodel

This section computes various time-dependent and long-run
performance measures for the Markov model and analyzes
the same. We illustrate the evaluation of attributes for the
different states (i.e., active, short cycle, and long sleep) of
the model.

6.1.1 Time-dependent measures

As {(N (t), S(t)), t ≥ 0} represents the continuous time
Markov chain where N (t) denotes the number of packets
in the system at time t and {S(t), t ≥ 0} represents the state
of the system at time t with state space S = {(i, j); i =
0, 1, . . . ; j = 0, 1, . . . , N + 1}.
Let W (t),C(t), L(t) represent that the system is in active
state, short sleep and long sleep respectively, at any time
t , t > 0. Let P{(N (t), S(t)) = W (t)}, P{(N (t), S(t)) =
C(t)} and P{(N (t), S(t)) = L(t)} be the probabilities for
being in active state, short sleep and long sleep respectively,
at any time t , t > 0. Then

P{(N (t), S(t)) = W (t)} =
∞∑

n=0

Pn,0(t).

P{(N (t), S(t)) = C(t)} =
N∑

j=1

P0, j (t)

= βe−αt
{ N∑

j=1

(t(α − λ)) j−1

( j − 1)!
}

∗ P0,0(t).

P{(N (t), S(t)) = L(t)} =
∞∑

i=0

Pi,N+1(t)

= β(α − λ)Ne(λ−ν)t ∗ e−αt t N−1

(N − 1)! ∗ P0,0(t).

6.1.2 Steady-state measures

Let AM , SM and LM represents the steady-state probabilities
for system being in the active state, short sleep and long sleep
respectively, for the Markov model. Then,

AM =
∞∑

n=0

πn,0 =
{
1 −

[
λ

(μ − λ)
+ β((α − λ)N − αN )

αN (μ − λ)

]

+β(α − λ)N

(μ − λ)αN

[
(ν − λ)b4

(νb2 − λ)(1 − b2)
− λ2

ν(νb2 − λ)

− b2

1 − b2
+ λ2

ν(ν − λ)

]}
π0,0,

SM =
N∑

j=1

π0, j = β(αN − (α − λ)N )

λαN
π0,0,

LM =
∞∑

n=0

πn,N+1 = β(α − λ)N

(ν − λ)αN
π0,0.

6.1.3 Mean

Let E[NM ]denotes themeannumber of packets in the system
and let E[NAM ] and E[NSM ] denotes the mean number of
packets in an activemode and sleepmode,respectively. Then,

E[NM ] = E[NAM ] + E[NSM ],

where

E[NAM ] =
∞∑

n=0

nπn,0 =
{

μ

(λ − μ)

[
λ

(μ − λ)

+β((α − λ)N − αN )

αN (μ − λ)

]
+ β(α − λ)N

(μ − λ)αN

[
(ν − λ)b4

(νb2 − λ)(1 − b2)2

− λ2

(ν − λ)(νb2 − λ)
− b2

(1 − b2)2
+ λ2

(ν − λ)2

]}
π0,0,

E[NSM ] =
∞∑

n=0

nπn,N+1 = βλ(α − λ)N

(ν − λ)2αN
π0,0.

Let M(t) be the expected system size at any time t , t > 0.
Then,

M(t) =
∞∑

n=0

nPn,0(t) +
∞∑

n=0

nPn,N+1(t).

6.1.4 Variance

Let V (t) denotes the variance of system size at any time t ,
t > 0. Then

V (t) = M2(t) − (M(t))2,
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where M2(t) is the second order moment for the number of
packets in the system at any time t , t > 0.

M2(t) =
∞∑

n=0

n2Pn,0(t) +
∞∑

n=0

n2Pn,N+1(t).

6.1.5 Energy saving

The energy saving factor is defined as the percentage of time
the UE spends in sleep state i.e., the ratio of time UE spends
in a sleep period to total time across all the states. Hence,
using steady-state probabilities πi, j for i = 0, 1, 2, ...; j =
1, 2, ..., N energy saving factor ES is computed as [18,19]:

ES =
N∑

j=1

π0, j +
∞∑

i=0

πi,N+1

=
{

β(αN − (α − λ)N )

λαN
+ β(α − λ)N

(ν − λ)αN

}
π0,0.

6.2 Semi-Markovmodel

In this Section, performance measures are computed for long
run probabilities for the semi-Markov model.

6.2.1 Steady-state measures

Let ASM , SSM and LSM be the steady-state probabilities for
being in active state, short sleep and long sleep respectively
for the semi-Markov model in a long run. Then

ASM = πI0 +
∞∑

k=1

πWk = 1

M

[
μ

λ(μ − λ)
− e−

(
λ
β
+ λN

α
+ λ

ν

)

μ − λ

−e− λ
β

λ
− λ

μ

e−
(

λN
α

+ λ
β

)(
1 − e− λ

ν

)2
(

λ
μ

− 1 + e− λ
ν

)
[
e

λ
ν

μ
− 1

μ − λ

]]
,

SSM =
N∑

j=1

πS j = 1

M

[
e− λ

β
(
1 − e− λN

α

)

λ

]
,

LSM =
∞∑

i=0

πLi = 1

M

[
e−

(
λN
α

+ λ
β

)(
e

λ
ν − 1

)

λ

]
.

6.2.2 Mean

Let E[NSM ] be the mean number of packets in the system
and let E[NASM ] and E[NSSM ] denotes the mean number
of packets in an active mode and sleep mode, respectively.
Then,

E[NSM ] = E[NASM ] + E[NSSM ],

where

E[NASM ] =
∞∑

n=1

nπWn = 1

M

[
μ

(
1 − e−

(
λ
β

+ λN
α

+ λ
ν

))

(μ − λ)2

+ λ

μ2

e−
(

λN
α

+ λ
β

)(
1 − e− λ

ν

)

(
λ
μ

− 1 + e− λ
ν

)
[
1 − e

2λ
ν −

(
1 − e− λ

ν

)(
2 − λ

μ

)

(
1 − λ

μ

)2

]]
,

E[NSSM ] =
∞∑

n=0

nπLn = 1

M

[
e−

(
λN
α

+ λ
β

)
e
2λ
ν

(
1 − e

λ
ν

)2

λ

]
.

6.2.3 Energy saving

The energy saving factor is defined as the percentage of time
the UE spends in sleep state i.e., the ratio of time UE spends
in a sleep period to total time across all the states. Hence,
using steady-state probabilities πm , m ∈ Ω , energy saving
factor ES is computed as

ES =
N∑

j=1

πS j +
∞∑

i=0

πLi

= 1

M

[
e− λ

β
(
1 − e− λN

α

)

λ
+ e−

(
λN
α

+ λ
β

)(
e

λ
ν − 1

)

λ

]
.

7 Discussion part

In this section, numerical results are discussed for both mod-
els. For this, we assume some reasonable values for the mean
sojourn rates or times for numerical illustration. The graph
for long-run probabilities for both the models are plotted by
varying various parameters, and their behaviour is analyzed.
To plot the graphs, the values of parameters are fixed based
on the stability conditions of the proposed models λ

μ
< 1,

λ
ν

< 1 and α ≥ λ, β > 0 and λ > 0. The values are as
follows α = 1, β = 1.2, λ = 0.5, μ = 1.5 and ν = 1.8.
To show the results of the Markov model, MM is written
with the varying parameter values, and for the Semi-Markov
model, SMM is written with the varying parameter values.
Figure 5 exemplifies the behaviour of working stateπn,0 with
respect to n, for varying values of number of short cycles N .
For the Markov model, the graph is plotted for five different
values of N , and the Semi-Markovmodel graph is plotted for
N = 5. It is observed that the increase in the number of short
cycles leads to an increase in the steady-state probability of
working state πn,0 and as the number of packets n increases,
probability decreases and reaches the stable value.

Figure 6 presents the graph of steady-state probability of
long sleep πn,N+1 with respect to n, with number of short
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Fig. 5 Steady-state probability of working states varying number of
packets and short cycles

Fig. 6 Steady-state probability of Long sleep varying number of pack-
ets

cycles N = 5 for both the models. It is evident from Fig. 6
that, rise in the number of packets leads to a decrease in the
steady-state probability of long sleep and finally converges
to zero for an increasing number of packets, i.e., the value of
n.

The steady-state probability of being in a working state
against the values of N for varying values of μ is plotted in
Fig. 7 for both the models. This is plotted, keeping the other
parameter values same as given except for the value of μ.
It can be observed that the steady-state probability for being
in a working state decreases with the increase in the number
of short cycles. For the semi-Markov, the probability of the
system remaining in a working state is more.

The steady-state probability of being in short sleep against
the values of N for varying values ofα is plotted in Fig. 8. For

Fig. 7 Steady-state probability of being in active state varying number
of short cycles and packet service rate

Fig. 8 Steady-state probability of being in Short Sleep varying the
number of short cycles and the value of α

the Markov model, α is the expected sojourn rate, whereas
for the semi-Markov model, 1

α
is the expected sojourn rate.

This is also plotted, keeping the other parameter values same
as given above except for a value of α. It can be observed that
the steady-state probability for being in short sleep increases
with the increase in the number of short cycles. It can be
observed that less the value of α more is the probability.

The steady-state probability of being in long sleep against
the values of N for varying values of ν is plotted in Fig. 9.
This is also plotted, keeping the other parameter values same
as given except for the value of ν. For the Markov model,
ν is the expected sojourn rate, whereas for the semi-Markov
model, 1

ν
is the expected sojourn rate. It can be observed that

the steady-state probability for being in long sleep decreases
with the increase in the number of short cycles. It can be
observed that less the value of ν more is the probability.
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Fig. 9 Steady-state probability of being in long sleep varying the num-
ber of short cycles and the value of ν

Fig. 10 Energy saving factor varying number of short cycles

The energy saving factor against the values of N is plotted
in Fig. 10. All the other parameter values are kept same. For
the semi-Markovmodel, as the steady-state probability ofUE
being in active state is more than the Markov model, hence
the power saving factor is less for the semi-Markov model.
The factor stabilizes as the value of N increases.

The percentage of difference in measures of both the
models is computed as themeasuredvalue reaches the steady-
state value. For comparison purpose, the values of parameters
used are as follows α = 1, β = 1.2, λ = 0.5, μ = 1.5
and ν = 1.8 for both the models. Comparison between the
energy saving factor for both the models is given in Table 3.
We have observed from the Table 3 that, the energy saving
factor approaches the steady-state value for Markov model
with N ≥ 12 and for semi-Markov model with N ≥ 16.
Also,we have observed that the energy saving factor is atleast
33.19% more for the Markov model than the semi Markov

Table 3 Values for energy saving factor by varying number of short
cycles

N Markov
model(MM)

Semi-Markov
model(SMM)

% Difference
between MM
and SMM

8 0.5852 0.4377 33.69

9 0.5853 0.4384 33.50

10 0.5853 0.4388 33.38

11 0.5853 0.4391 33.29

12 0.5854 0.4393 33.25

13 0.5854 0.4393 33.25

14 0.5854 0.4394 33.22

15 0.5854 0.4394 33.22

16 0.5854 0.4395 33.19

17 0.5854 0.4395 33.19

18 0.5854 0.4395 33.19

model. Hence, energy saving can be maximized in the UE
using the Markov modeling of the DRX mechanism. These
percentage difference for other measures is computed from
the observations presented in Figs. 7, 8, 9. From Fig. 7, we
have observed that the active state steady-state probability
is less for the Markov model by 36% than the semi-Markov
model. From Fig. 8, we have observed that the short sleep
steady-state probability is more for the Markov model by
37% than the semi-Markov model. Similarly, from Fig. 9,
we have observed that the long sleep steady-state probability
is less for the Markov model by 48% than the semi-Markov
model.

8 Conclusion and future work

In this paper, two stochastic models are investigated for the
UE. The models are two dimensional infinite state continu-
ous timemodels proposedwith few assumption. The states of
the models are based on different periods of the DRX mech-
anism. In models, energy saving in the UE is analyzed using
the closed-form solutions of steady-state probability and the
expected sojourn times for both theMarkov model and semi-
Markov model. The distributions for sojourn time in states
used for the semi-Markov model are taken from literature.
The paper has presented that the energy saving in the UE
can be maximized in the UE using the Markov modeling of
DRX mechanism rather than semi-Markov modelling. The
energy saving factor stabilizes as the number of short sleep
increases.
We propose that with some other distributions for sojourn
time in states, there can be more improvement in the energy
saving in the UE. One can also extend this stochastic mod-
elling of energy saving in the UE to the base station for the
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LTE-A networks. Stochastic modelling of the proposed work
with 5G and NR can also be considered as the future work.
Further, we plan to develop testbed for the DRX mechanism
to validate and refine our proposed model.
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Appendix

Appendix 1

Let fi, j (s) represents the Laplace transform of Pi, j (t). Tak-
ing Laplace transform of (4), we get

(s + α) f0,1(s) = β f0,0(s). (15)

On the inversion of the above equation, we have

P0,1(t) = βe−αt ∗ P0,0(t),

where ’∗’ represents the convolution of functions. Taking
Laplace transform on Equation (5), we have

f0, j (s) = (α − λ)

(s + α)
f0, j−1(s), j = 2, 3, . . . , N

which recursively yields,

f0, j (s) = (α − λ) j−1

(s + α) j−1 f0,1(s), j = 2, 3, . . . , N .

Using equation (15) in above equation, we obtain

f0, j (s) = β(α − λ) j−1

(s + α) j
f0,0(s), j = 1, 2, . . . , N . (16)

On inversion of equation (16), we obtain the required tran-
sient probabilities P0, j (t), j = 1, 2, . . . , N . Now, taking
Laplace transform on (6), we get

f0,N+1(s) = (α − λ)

(s + ν)
f0,N (s).

Using (16) for j = N in above equation, we obtain

f0,N+1(s) = β(α − λ)N

(s + ν)(s + α)N
f0,0(s). (17)

Inversion yields,

P0,N+1(t) = β(α − λ)Ne−νt ∗ e−αt t N−1

(N − 1)! ∗ P0,0(t).

Taking Laplace transform of (7), we get

fi,N+1(s) = λ

(s + ν)
fi−1,N+1(s), i = 1, 2, . . .

which recursively yields,

fi,N+1(s) = (
λ

s + ν
)i f0,N+1(s), i = 1, 2, . . . .

Using (17) in above equation, we obtain

fi,N+1(s) = βλi (α − λ)N

(s + ν)i+1(s + α)N
f0,0(s), i = 0, 1, . . . .

(18)

Taking inverse Laplace transform of (18) yields the required
transient probabilities Pi,N+1(t), i = 0, 1, . . ..

Appendix 2

Define a generating functionwith coefficients as the transient
probabilities of working states,

G(z, t) = P0,0(t) +
∞∑

i=1

Pi,0(t)z
i .

Then,

∂G(z, t)

∂z
= P

′
0,0(t) +

∞∑

i=1

P
′
i,0(t)z

i .

Substituting (1), (2) and (3) in the above equation, we get

∂G(z, t)

∂z
−

(
λz + μ

z
− (μ + λ)

)
G(z, t)

= −
(

β + μ

z
− μ

)
P0,0(t)

+(ν − λ)

∞∑

i=0

Pi,N+1(t)z
i + λz

N∑

i=1

P0,i (t).

Solving the above partial differential equation, we obtain

G(z, t) = −
(

β + μ

z
− μ

) ∫ t

0
P0,0(y)e

(
λz+ μ

z −(μ+λ)
)
(t−y)dy

+(ν − λ)

∫ t

0

∞∑

i=0

Pi,N+1(y)z
i e

(
λz+ μ

z −(μ+λ)
)
(t−y)dy
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+λz
∫ t

0

N∑

i=1

P0,i (y)e
(
λz+ μ

z −(μ+λ)
)
(t−y)dy + e−

(
μ+λ−(λz+ μ

z )
)
t
.

If a = 2
√

λμ and b =
√

λ
μ
then

e
(
λz+ μ

z

)
(t−y) =

∞∑

n=−∞
(bz)n In(a(t − y)),

where In(.) is themodified bessel function of first kind. Then,

G(z, t) = −
(

β + μ

z
− μ

) ∫ t

0
P0,0(y)e

−(μ+λ)(t−y)

[ ∞∑

n=−∞
(bz)n In(a(t − y))

]
dy + (ν − λ)

∫ t

0

∞∑

i=0

Pi,N+1(y)z
i

[
e−(μ+λ)(t−y)

∞∑

n=−∞
(bz)n In(a(t − y))

]
dy

+λz
∫ t

0

N∑

i=1

P0,i (y)e
−(μ+λ)(t−y)

∞∑

n=−∞
(bz)n In(a(t − y))dy

+e−(μ+λ)t
∞∑

n=−∞
(bz)n In(a(t)).

Further comparing the coefficient of zn for n = 1, 2, . . .
from both sides in above equation, we find

Pn,0(t) = −
∫ t

0
P0,0(y)e

−(μ+λ)(t−y)bn

[(β − μ)In(.) + μbIn+1(.)]dy

+(ν − λ)

∫ t

0

n∑

i=0

Pi,N+1(y)e
−(μ+λ)(t−y)bn−i In−i (.)dy

+(ν − λ)

∫ t

0

∞∑

i=1

Pn+i,N+1(y)e
−(μ+λ)(t−y)b−i I−i (.)dy

+λ

∫ t

0

N∑

i=1

P0,i (y)e
−(μ+λ)(t−y)bn−1 In−1(.)dy

+e−(μ+λ)t bn In(at), (19)

whereIn(.) = In(a(t − y)).
And comparing the coefficient of z−n for n = 1,2,3,.. on both
sides, we have,

0 = −
∫ t

0
P0,0(y)e

−(μ+λ)(t−y)b−n[(β − μ)I−n(.)

+μbI−n+1(.)]dy + (ν − λ)

∫ t

0

∞∑

i=0

Pi,N+1(y)e
−(μ+λ)(t−y)

×b−n−i I−n−i (.)dy + λ

∫ t

0

N∑

i=1

P0,i (y)e
−(μ+λ)(t−y)

×b−n−1 I−n−1(.)dy + e−(μ+λ)t b−n I−n(at). (20)

Using the property of modified Bessel function that In(.) =
I−n(.) and Eqs. (19) and (20) [(19) - b2n × (20)], we have
for n = 1, 2, . . .

Pn,0(t) = −
∫ t

0
P0,0(y)e

−(μ+λ)(t−y)μbn+1

×[In+1(.) − In−1(.)]dy + (ν − λ)
∫ t

0

n∑

i=0

Pi,N+1(y)e
−(μ+λ)(t−y)

×bn−i [In−i (.) − In+i (.)]dy + (ν − λ)
∫ t

0

∞∑

i=1

Pn+i,N+1(y)

×e−(μ+λ)(t−y)b−i [Ii (.) − I2n+i (.)]dy + λ

∫ t

0

N∑

i=1

P0,i (y)

×e−(μ+λ)(t−y)bn−1[In−1(.) − In+1(.)]dy. (21)

After doing some simplemanipulation on the above equation,
we get

Pn,0(t) = −μbn+1P0,0(t)

×[In+1(at) − In−1(at)]e−(μ+λ)(t)

+
n∑

i=0

(ν − λ)bn−i Pi,N+1(t) × [In−i (at)

−In+i (at)]e−(μ+λ)(t)

+
∞∑

i=1

(ν − λ)b−i Pn+i,N+1(t) × [Ii (at)

−I2n+i (at)]e−(μ+λ)(t)

+
N∑

i=1

λbn−1P0,i (t) × [In−1(at)

−In+1(at)]e−(μ+λ)(t).

Using In−1(αx) − In+1(αx) = 2n
αx In(αx) in (21) yields the

required transient probabilities Pn,0(t), n ≥ 1.

Appendix 3

In Eq. (19), substituting n = 0, we have

P0,0(t) = −
∫ t

0
P0,0(y)e

−(μ+λ)(t−y)[(β − μ)I0(.) + μbI1(.)]dy

+(ν − λ)

∫ t

0

∞∑

i=0

Pi,N+1(y)e
−(μ+λ)(t−y)b−i Ii (.)dy + λ

b

×
∫ t

0

N∑

i=1

P0,i (y)e
−(μ+λ)(t−y) I1(.)dy + e−(μ+λ)t I0(at). (22)
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As

∞∑

n=0

Pn,0(t) +
N∑

j=1

P0, j (t) +
∞∑

i=0

Pi,N+1(t) = 1.

Taking Laplace transform of above equation, we get

∞∑

n=0

fn,0(s) +
N∑

j=1

f0, j (s) +
∞∑

i=0

fi,N+1(t) = 1

s
. (23)

Taking Laplace transform of transient probabilities obtained

in Theorem 2 and using L[In(αt)] = 1√
s2−α2

(
s−√

s2−α2

α

)n

and L

[
2n
αt In(αt)

]
= 2αn−1

(s+√
s2−α2)n

, we get

fn,0(s) = μbn+1 f0,0(s)
2αn−1

(d + √
d2 − α2)n

+(ν − λ)

n∑

i=0

bn−i fi,N+1(s)
1√

d2 − α2

×
[ (

d − √
d2 − α2

α

)n−i

−
(
d − √

d2 − α2

α

)n+i ]

+(ν − λ)

∞∑

i=1

b−i fn+i,N+1(s)
1√

d2 − α2

×
[ (

d − √
d2 − α2

α

)i

−
(
d − √

d2 − α2

α

)2n+i ]

+λbn−1
N∑

i=1

f0,i (s)
2αn−1

(d + √
d2 − α2)n

(24)

where d = s + λ + μ .
Using (16), (18) and (24) in equation (23), we obtain the
required Laplace transform of transient probability of idle
state (0,0). Inverse Laplace transform of the above equation
yields the idle state probability P0,0(t).

Appendix 4

From Eq. (11), we get

π0,1 = β

α
π0,0. (25)

From Eq. (12), we get

απ0, j = (α − λ)π0, j−1., j = 2, 3, . . . , N

which recursively yields,

π0, j = (α − λ) j−1

α j−1 π0,1, j = 2, 3, . . . , N .

Using the value of π0,1 obtained in equation (25), we get

π0, j = β(α − λ) j−1

α j
π0,0, j = 1, 2, . . . , N . (26)

From Eq. (13), we have

π0,N+1 = (α − λ)

ν
π0,N

and using Eq. (26) we obtain, for j = N

π0,N+1 = β(α − λ)N

ναN
π0,0. (27)

From Eq. (14), we get

πi,N+1 = λ

ν
πi−1,N+1, i = 1, 2, . . .

which recursively yields

πi,N+1 = λi

νi
π0,N+1, i = 1, 2, . . .

and using value of π0,N+1 obtained in equation (27), we have

πi,N+1 = βλi (α − λ)N

νi+1αN
π0,0, i = 0, 1, . . . . (28)

Taking Laplace transform of (21) for n = 1, 2, . . . we have

fn,0(s) = f0,0(s)μb
n+1

[
1√

d2 − a2

(
d − √

d2 − a2

a

)n+1

− 1√
d2 − a2

(
d − √

d2 − a2

a

)n−1 ]

+(ν − λ)

n∑

i=0

fi,N+1(s)b
n−i

[
1√

d2 − a2

(
d − √

d2 − a2

a

)n−i

− 1√
d2 − a2

(
d − √

d2 − a2

a

)n+i ]

+(ν − λ)

∞∑

i=1

fn+i,N+1(s)b
−i

[
1√

d2 − a2

(
d − √

d2 − a2

a

)i

− 1√
d2 − a2

(
d − √

d2 − a2

a

)2n+i ]

+λ

N∑

i=1

f0,i (s)b
n−1

[
1√

d2 − a2

(
d − √

d2 − a2

a

)n−1
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− 1√
d2 − a2

(
d − √

d2 − a2

a

)n+1 ]

where d = s + λ + μ , a = 2
√

λμ and b =
√

λ
μ
.

Using Eqs. (16) and (18) in above equation, we get

fn,0(s) = μbn+1

√
d2 − a2

[ (
d − √

d2 − a2

a

)n+1

−
(
d − √

d2 − a2

a

)n−1 ]
f0,0(s)

+(ν − λ)

n∑

i=0

bn−i

√
d2 − a2

βλi (α − λ)N

(s + ν)i+1(s + α)N

×
⎡

⎣
(
d − √

d2 − a2

a

)n−i

−
(
d − √

d2 − a2

a

)n+i
⎤

⎦ f0,0(s)

+(ν − λ)

∞∑

i=1

b−i

√
d2 − a2

βλn+i (α − λ)N

(s + ν)n+i+1(s + α)N

×
⎡

⎣
(
d − √

d2 − a2

a

)i

−
(
d − √

d2 − a2

a

)2n+i
⎤

⎦ f0,0(s)

+λ

N∑

i=1

bn−1

√
d2 − a2

β(α − λ)i−1

(s + α)i

[ (
d − √

d2 − a2

a

)n−1

−
(
d − √

d2 − a2

a

)n+1 ]
f0,0(s).

The steady-state probability πn,0 for n = 1, 2, . . . can
be found using the well known properties of the Laplace
transform. It is well known that for steady-state

λ

μ
< 1

and

lim
t→∞ Pn,0(t) = πn,0 = lim

s→0
s fn,0(s),

where n = 1, 2, . . . . Hence,

πn,0 =
{

μbn+1

(μ − λ)

[
bn+1 − bn−1

]
+

n∑

i=0

(ν − λ)bn−i

(μ − λ)

×βλi (α − λ)N

νi+1αN

[
bn−i − bn+i

]
+ (ν − λ)

∞∑

i=1

b−i

(μ − λ)

×βλn+i (α − λ)N

νn+i+1αN

[
bi − b2n+i

]
+ λ

N∑

i=1

bn−1

(μ − λ)

×β(α − λ)i−1

αi

[
bn−1 − bn+1

] }
π0,0.

πn,0 =
{[

μbn+1

(μ − λ)
+ βbn−1((α − λ)N − αN )

αN (μ − λ)

]

×
[
bn+1 − bn−1

]
+ βbn(α − λ)N

(μ − λ)αN

×
[
(ν − λ)bn+2(1 − ( λ

νb2
)n+1)

(νb2 − λ)
− bn

(
1 −

(
λ

ν

)n+1
)

+
(

λ

ν

)n+1

(b−n − bn)

]}
π0,0.

πn,0 = Anπ0,0, (29)

where

An =
[

μbn+1

(μ − λ)
+ βbn−1((α − λ)N − αN )

αN (μ − λ)

] [
bn+1 − bn−1]

+βbn(α − λ)N

(μ − λ)αN

[
(ν − λ)bn+2(1 − ( λ

νb2
)n+1)

(νb2 − λ)

−bn
(
1 −

(
λ

ν

)n+1
)

+
(

λ

ν

)n+1

(b−n − bn)

]
.

And as

∞∑

i=0

πi,0 +
N∑

j=1

π0, j +
∞∑

i=0

πi,N+1 = 1.

Substituting (26), (28) and (29) in above equation, we get

π0,0 +
∞∑

i=1

Aiπ0,0 +
N∑

j=1

β(α − λ) j−1

α j
π0,0

+
∞∑

i=0

βλi (α − λ)N

νi+1αN
π0,0 = 1.

Hence,

π0,0 = 1

1 + ∑∞
i=1 Ai + ∑N

j=1
β(α−λ) j−1

α j + ∑∞
i=0

βλi (α−λ)N

νi+1αN

.

Here, π0,0 exist as λ ≤ α, λ < μ and λ < ν.

Appendix 5

The two stage method is used to solve the SMPmodel which
is described by its kernel matrix [5]. Let Km,n(t) denotes
the elements of kernel matrix K (t), where Km,n(t) is the
probability that the system has just entered the statem and in
the next transition is going the enter the state n within time
t . In this Section, we present the steady-state analysis for
the semi-Markov model. The non-zero elements for kernel
matrix are given as:
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KI0,S1(t) =
∫ t

0
(1 − FI0,W1(x))dFI0,S1(x)

KI0,S1(t) =
{
0 if t < 1

β

e− λ
β if t ≥ 1

β

KI0,W1(t) =
∫ t

0
(1 − FI0,S1(x))dFI0,W1(x)

KI0,W1(t) =
{
1 − e−λt if t < 1

β

1 − e− λ
β if t ≥ 1

β

KSj ,S j+1(t) =
∫ t

0
(1 − FSj ,W1(x))dFSj ,S j+1(x)

KSj ,S j+1(t) =
{
0 if t < 1

α

e− λ
α if t ≥ 1

α

, j = 1, 2, . . . , N − 1

KSN ,L0(t) =
∫ t

0
(1 − FSN ,W1(x))dFSN ,L0(x)

KSN ,L0(t) =
{
0 if t < 1

ν

e− λ
α if t ≥ 1

α

KWk ,Wk+1(t) =
∫ t

0
(1 − FWk ,Wk−1(x))dFWk ,Wk+1(x)

KWk ,Wk+1(t) = λ

λ + μ
(1 − e−(λ+μ)t ), k = 1, 2, . . .

KW1,I0(t) =
∫ t

0
(1 − FW1,W2(x))dFW1,I0(x)

KW1,I0(t) = μ

λ + μ
(1 − e−(λ+μ)t )

KWk ,Wk−1(t) =
∫ t

0
(1 − FWk ,Wk+1(x))dFWk ,Wk−1(x)

KWk ,Wk−1(t) = μ

λ + μ
(1 − e−(λ+μ)t ), k = 2, 3, . . .

KSj ,W1(t) =
∫ t

0
(1 − FSj ,S j+1(x))dFSj ,W1(x)

KSj ,W1(t) =
{
1 − e−λt if t < 1

α

1 − e− λ
α if t ≥ 1

α

, j = 1, 2, . . . , N

KLi ,Li+1(t) =
∫ t

0
(1 − FLi ,Wk (x))dFLi ,Li+1(x)

KLi ,Li+1(t) =
{
1 − e−λt if t < 1

ν

1 − e− λ
ν if t ≥ 1

ν

, i = 0, 1, . . .

KL0,I0(t) =
∫ t

0
(1 − FL0,L1(x))dFL0,I0(x)

KL0,I0(t) =
{
0 if t < 1

ν

e− λ
ν if t ≥ 1

ν

KLi ,Wi (t) =
∫ t

0
(1 − FLi ,Li+1(x))dFLi ,Wi (x)

KLi ,Wi (t) =
{
0 if t < 1

ν

e− λ
ν if t ≥ 1

ν

, i = 1, 2, . . .

By the two stage analysis of semi-Markov model,
Km,n(∞) = limt→∞ Km,n(t), where m, n ∈ Ω , where
matrix K (∞) with entries Km,n(∞) gives the one step tran-
sition probabilities for the EMC(Embedded Markov Chain)
of the SMPmodel and row sum of matrix K (∞) is 1. Hence,
the one step transition probabilities for the model are given
as:
KI0,S1(∞) = e− λ

β

KI0,W1(∞) = 1 − e− λ
β

KSj ,S j+1(∞) = e− λ
α , j = 1, 2, . . . , N − 1

KSN ,L0(∞) = e− λ
α

KWk ,Wk+1(∞) = λ
λ+μ

, k = 1, 2, . . .

KW1,I0(∞) = μ
λ+μ

KWk ,Wk−1(∞) = μ
λ+μ

, k = 2, 3, . . .

KSj ,W1(∞) = 1 − e− λ
α , j = 1, 2, . . . , N

KLi ,Li+1(∞) = 1 − e− λ
ν , i = 0, 1, . . .

KL0,I0(t) = e− λ
ν

KLi ,Wi (∞) = e− λ
ν , i = 1, 2, . . .

The steady-state probabilities for states of EMC, given by
vector H and is defined as
(HI , HW1 , . . . , HS1 , . . . , HSN , HL0 , HL1 , . . .) can be obtai
ned by solving [35]:

H = HK (∞),
∑

m∈Ω

Hm = 1.

Hence, using H = HK (∞) and the entries of matrix K (∞),
we get the system of linear equations, i.e.,

HI0 = μ
λ+μ

HW1 + e− λ
ν HL0

HW1 = (
1 − e− λ

β
)
HI0 + μ

λ+μ
HW2 + e− λ

ν HL1 + (
1 −

e− λ
α

)
(HS1 + HS2 + . . . + HSN )

HWk = λ
λ+μ

HWk−1 + μ
λ+μ

HWk+1 + e− λ
ν HLi , k = 2, . . .

HS1 = e− λ
β HI0

HSj+1 = e− λ
α HSj , j = 1, 2, . . . , N − 1

HL0 = e− λ
α HSN

HLi+1 = (
1 − e− λ

ν

)
HLi , i = 0, 1, . . . .

Solving this system of equations, we get the steady-state
probabilities of each state, Hm,m ∈ Ω in terms of HI0 , i.e.,

HSj = e− λ
β
(
e− λ

α

) j−1
HI0 , j = 1, 2, . . . , N

HLi = e−
(

λ
β
+ λN

α

)(
1 − e− λ

ν

)i
HI0 , i = 0, 1, . . .

HW1 = (
λ+μ
μ

)(
1 − e−

(
λ
β
+ λN

α
+ λ

ν

))
HI0

HWk = (
λ+μ
μ

)[(
λ
μ

)k−1(1 − e−
(

λ
β
+ λN

α
+ λ

ν

))+
∑k

j=2 e
−
(

λ
β
+ λN

α

)[(
λ
μ

)k− j
(1 − e− λ

ν ) j
]]

HI0 , k = 2, . . .
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Using equation
∑

m∈Ω Hm = 1 and the probabilities,
Hm,m ∈ Ω in terms of HI0 , we obtain

HI0 = 1

D
,

where,

D = 2μ

μ − λ
− λ + μ

μ − λ
e−

(
λ
β
+ λN

α
+ λ

ν

)

+e− λ
β − e−

(
λN
α

+ λ
β

)

1 − e− λ
α

+ e−
(

λN
α

+ λ
β

)

e− λ
ν

−λ(λ + μ)

μ

e−
(

λN
α

+ λ
β

)
(1 − e− λ

ν )2

(
λ
μ

− 1 + e− λ
ν

)
[
e

λ
ν

μ
− 1

μ − λ

]
.

Let Tm denotes the sojourn time in state m ∈ Ω . Since,
the EMC obtained for this model is irreducible, aperiodic
and positive recurrent, i.e, ergodic, hence the steady-state
probabilities of each state m ∈ Ω of semi-Markov model
[35] can be obtained as:

πm = HmE[Tm]∑
n∈Ω HnE[Tn] ,m ∈ Ω,

where E[Tm] denotes the expected sojourn time in state m ∈
Ω . Then the expected sojourn time spent in each state can be
obtained as:

E[TI0 ] =
∫ ∞

0
(1 − FI0,S1(t))(1 − FI0,W1(t))dt

E[TI0 ] = 1 − e
−λ
β

λ

E[TWk ] =
∫ ∞

0
(1 − FWk ,Wk−1(t))(1 − FWk ,Wk+1(t))dt

E[TWk ] = 1

λ + μ
, k = 1, 2, . . .

E[TSj ] =
∫ ∞

0
(1 − FSj ,W1(t))(1 − FSj ,S j+1(t))dt

E[TSj ] = 1 − e
−λ
α

λ
, j = 1, 2, . . . , N − 1

E[TSN ] =
∫ ∞

0
(1 − FSN ,W1(t))(1 − FSN ,L0(t))dt

E[TSN ] = 1 − e
−λ
α

λ

E[TLi ] =
∫ ∞

0
(1 − FLi ,Li+1(t))(1 − FLi ,Wk (t))dt

E[TLi ] = 1 − e
−λ
ν

λ
, i = 0, 1, . . . .

The stability conditions for the existence of steady-state prob-
abilities of the semi-Markovmodel are given asλ < μ,λ ≤ α

and λ < ν. Hence, under stability conditions using expected
sojourn times and the steady-state probabilities of EMC, we
get

∑

n∈Ω

HnE[Tn] = MHI0 ,

where

M = μ

λ(μ − λ)
− e−

(
λ
β
+ λN

α
+ λ

ν

)

μ − λ
− e−

(
λN
α

+ λ
β

)

λ

[
2 − e

λ
ν
]

− λ

μ

e−
(

λN
α

+ λ
β

)(
1 − e− λ

ν

)2
(

λ
μ

− 1 + e− λ
ν

)
[
e

λ
ν

μ
− 1

μ − λ

]
.

Hence, the steady-state probabilities for the semi-Markov
model are given as:

πI0 = 1 − e− λ
β

λM
,

πW1 = 1 − e−
(

λ
β
+ λN

α
+ λ

ν

)

μM
,

πWk = 1

μM

[( λ

μ

)k−1(1 − e−
(

λ
β
+ λN

α
+ λ

ν

))

+
(

λ
μ

)(
1 − e− λ

ν

)2
(

λ
μ

− 1 + e− λ
ν

)e−
(

λ
β
+ λN

α

)

[(
λ

μ

)k−2

−
(
1 − e− λ

ν

)k−2
] ]

, k = 2, 3, . . .

πS j = e− λ
β
(
e− λ

α

) j−1(1 − e− λ
α

)

λM
, j = 1, 2, . . . , N

πLi = e−
(

λ
β
+ λN

α

)(
1 − e− λ

ν

)i+1

λM
, i = 0, 1, . . .

The steady-state probabilities πm∀ m ∈ S exist as λ < μ,
λ ≤ α and λ < ν.
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