Lecture 04
 Finding Roots of equations Bracketing Methods

Bracketing Methods

- Root finding methods can be classified into
(a) Bracketing methods and (b) Open methods
- Estimating the errors in computation roots of equations
- The methods we are going to study are:
- Graphical method
- Bisection Method
- False position method
- Compare these methods and their error estimation schemes

Non-linear Equation solving

Graphical Method

The real number $x=x_{0}$ is a root of the polynomial $f(x)$ if and only if $f(x)=0$

At least one root exists between two bounds x_{u} (upper) and x_{l} (lower) if the function is real, continuous, and changes sign.

Graphical Method - Roots

-Graphical methods not very precise.

- Serve as rough estimates of roots.
-Helpful to understanding the behavior of the functions
- Upper and lower bounds f(u) and $f(I)$
-(a) no sign change - no roots
-(b) sign change - 1 root
-(c) no sign change -2 roots
-(d) sign change - 3 roots

Graphical Method - Exceptions

-There are some exceptions to the general observations made previously.
-(a) The curve is tangential

$$
f(x)=(x-2)(x-2)(x-4)
$$

-(b) Discontinuous functions violate the general principles applicable otherwise

Incremental Search

This method is based on the observation that when a real continuous function $f(x)$ changes sign there exists a root between them, i.e $\quad f\left(x_{l}\right) f\left(x_{u}\right)<0$

Problem: The choice of the increment length. If the length is too small, the search can be very time consuming. On the other

D hand, if the length is too great, there is a possibility that closely spaced roots might be missed

Bisection Method

In this method we successively halve the intervals to search for the roots $x_{2}=\left(x_{0}+x_{1}\right) / 2$

Bisection Method

The Algorithm:

1. For the arbitrary equation of one variable, $f(x)=0$
2. Pick $x l$ and $x u$ such that they bound the root of interest, check if $\quad f(x l) . f(x u)<0$.
3. Estimate the root by evaluating $\mathrm{f}[(\mathrm{xl}+\mathrm{xu}) / 2]$.
4. Find the pair If $f(x \mid) . f[(x \mid+x u) / 2]<0$, root lies in the lower interval, then $\mathrm{xu}=(\mathrm{x} \mid+\mathrm{xu}) / 2$ and go to step 2.

Bisection Method (contd.)

5. If $f\left(x_{1}\right) . f\left[\left(x_{1}+x_{u}\right) / 2\right]>0$, root lies in the upper interval, then $x_{1}=$ $\left[\left(x_{1}+x_{u}\right) / 2\right.$, go to step 2 .
6. If $f\left(x_{1}\right) \cdot f\left[\left(x_{1}+x_{u}\right) / 2\right]=0$, then root is $\left(\mathrm{x}_{1}+\mathrm{x}_{\mathrm{u}}\right) / 2$ and terminate.

Compare ε_{s} with ε_{a}

If $\varepsilon_{\mathrm{a}}<\varepsilon_{\mathrm{s}}$, stop. Otherwise repeat the process.

Error Estimation

- To estimate the relative error, we can base it on the true value of root. If our guess is in doubt the error estimate may not be appropriate.
- Therefore, we require an error estimate that is not contingent on prior knowledge of the root. One way to do this is by estimating an approximate percent relative error as in

$$
\left|\varepsilon_{a}\right|=\left|\frac{x_{r}^{\text {new }}-x_{r}^{\text {old }}}{x_{r}^{\text {new }}}\right| 100 \%
$$

Example Error Estimation

- A typical error computation is shown in the table below. Here x_{r} are the roots, ε_{r} and ε_{t} are approximate relative error and true relative error based on true value.

Iteration	$\boldsymbol{x}_{\boldsymbol{l}}$	$\boldsymbol{x}_{\boldsymbol{u}}$	$\boldsymbol{x}_{\boldsymbol{r}}$	$\left\|\varepsilon_{a}\right\|(\%)$	$\left\|\boldsymbol{\varepsilon}_{\boldsymbol{t}}\right\|(\%)$
1	50	200	125		12.43
2	125	200	162.5	23.08	13.85
3	125	162.5	143.75	13.04	0.71
4	125	143.75	134.375	6.98	5.86
5	134.375	143.75	139.0625	3.37	2.58
6	139.0625	143.75	141.4063	1.66	0.93
7	141.4063	143.75	142.5781	0.82	0.11
8	142.5781	143.75	143.1641	0.41	0.30

Approximate Error vs True Error

Estimation of Iteration

Length of the first Interval $L_{o}=b-a$
After 1 iteration

$$
\mathrm{L}_{1}=\mathrm{L}_{\mathrm{o}} / 2
$$

After 2 iterations
$\mathrm{L}_{2}=\mathrm{L}_{\mathrm{o}} / 4$
After k iterations

$$
\mathrm{L}_{\mathrm{k}}=\mathrm{L}_{\mathrm{o}} / 2^{\mathrm{k}}
$$

- When ε_{a} becomes less than a prespecified stopping criterion ε_{s}, the computation is terminated.

$$
\varepsilon_{a} \leq \frac{L_{k}}{x} \times 100 \% \quad \varepsilon_{a} \leq \varepsilon_{s}
$$

If the absolute magnitude of the error is E and $L_{o}=2$, how many iterations will you have to do to get the required accuracy in the solution?
$\mathrm{E}=10^{-4}=\frac{2}{2^{k}} \Rightarrow 2^{k}=2 \times 10^{4} \Rightarrow k \cong 14.3=15$

False Position Method

- If a real root is bounded by x_{1} and x_{u} of $f(x)=0$, then approximate solution is a linear interpolation between the points [$\mathrm{x}_{\mathrm{l}}, \mathrm{f}\left(\mathrm{x}_{\mathrm{l}}\right)$] and $\left[\mathrm{x}_{\mathrm{u}}\right.$, $\left.f\left(x_{u}\right)\right]$ to find the x_{r} value such that $1\left(\mathrm{x}_{\mathrm{r}}\right)=0,1(\mathrm{x})$ is the linear
approximation of $\mathrm{f}(\mathrm{x})$.
- The method is also known as Regula-

(Regula-Falsi)

False Position Method

- To determine x_{r}
- Consider the slope of the chord of $f(x)=0$
$\frac{f\left(x_{u}\right)-f\left(x_{l}\right)}{x_{u}-x_{l}}=\frac{f\left(x_{u}\right)-f\left(x_{r}\right)}{x_{u}-x_{r}}=\frac{f\left(x_{l}\right)-0}{x_{u}-x_{r}}$
$x_{u}-x_{r}=\frac{f\left(x_{u}\right)\left(x_{u}-x_{l}\right)}{f\left(x_{u}\right)-f\left(x_{l}\right)}$
$x_{r}=x_{u}-\frac{f\left(x_{u}\right)\left(x_{l}-x_{u}\right)}{f\left(x_{l}\right)-f\left(x_{u}\right)}=\frac{x_{l} f\left(x_{u}\right)-x_{u} f\left(x_{l}\right)}{f\left(x_{l}\right)-f\left(x_{u}\right)}$

The Regula-falsi Algorithm

1. Find a pair of values of $\mathrm{x}, \mathrm{x}_{1}$ and x_{u} such that $\mathrm{f}_{\mathrm{l}}=\mathrm{f}\left(\mathrm{x}_{1}\right)<0$ and $\mathrm{f}_{\mathrm{u}}=\mathrm{f}\left(\mathrm{x}_{\mathrm{u}}\right)>0$.
2. Estimate the value of the root from the following formula and evaluate $\mathrm{f}\left(\mathrm{x}_{\mathrm{r}}\right)$.
3. $x_{r}=x_{u}-\frac{f\left(x_{u}\right)\left(x_{l}-x_{u}\right)}{f\left(x_{l}\right)-f\left(x_{u}\right)} \Rightarrow x_{r}=\frac{x_{l} f_{u}-x_{u} f_{l}}{f_{u}-f_{l}}$

Use the new point to replace one of the original points,
keeping the two points on opposite sides of the x axis.
If $\mathrm{f}\left(\mathrm{x}_{\mathrm{r}}\right)<0$ then $\mathrm{x}_{1}=\mathrm{x}_{\mathrm{r}}==>\quad \mathrm{f}_{1}=\mathrm{f}\left(\mathrm{x}_{\mathrm{r}}\right)$
If $f\left(x_{r}\right)>0$ then $x_{u}=x_{r}==>f_{u}=f\left(x_{r}\right)$
If $f\left(x_{r}\right)=0$ then you have found the root and need go no further!

Regula-falsi Algorithm (contd.)

4. See if the new x_{1} and x_{u} are close enough for convergence to be declared. If they are not go back to step 2.

Why this method?
Faster (than bisection)
Always converges for a single root.

Note: Always check by substituting estimated root in the original equation to determine whether $\mathrm{f}\left(\mathrm{x}_{\mathrm{r}}\right) \approx 0$.

Bisection and False Position

Consider the solution of $f(x)=x^{10}-1$ between 0 and 1.3 first by bisection and then by talse position

Iteration	x_{l}	x_{u}	\boldsymbol{x}_{r}	$\varepsilon_{a}(\%)$	$\varepsilon_{t}(\%)$
1	0	1.3	0.65	100.0	35
2	0.65	1.3	0.975	33.3	2.5
3	0.975	1.3	1.1375	14.3	13.8
4	0.975	1.1375	1.05625	7.7	5.6
5	0.975	1.05625	1.015625	4.0	1.6
Iteration	x_{l}	x_{n}	\boldsymbol{x}_{r}	$\varepsilon_{a}(\%)$	$\varepsilon_{t}(\%)$
1	0	1.3	0.09430		90.6
2	0.09430	1.3	0.18176	48.1	81.8
3	0.18176	1.3	0.26287	30.9	73.7
4	0.26287	1.3	0.33811	22.3	66.2
5	0.33811	1.3	0.40788	17.1	59.2

Modified False Position - Illinois Method

- The improved false position method is obtained by modifying the root finding expression as given below
- This is known as Illinois method. Here we multiply by $1 / 2$ the first term in the numerator and in the denominator.

$$
x_{r}=\frac{\frac{1}{2} x_{l} f\left(x_{u}\right)-x_{u} f\left(x_{l}\right)}{\frac{1}{2} f\left(x_{u}\right)-f\left(x_{l}\right)}
$$

$$
\text { - Or } x_{r}=\frac{x_{l} f\left(x_{u}\right)-\frac{1}{2} x_{u} f\left(x_{l}\right)}{f\left(x_{u}\right)-\frac{1}{2} f\left(x_{l}\right)}
$$

