Data Driven Design

Topic 2 Input and Output Devices

Instructor: Jay Dhariwal, Assistant Professor, Dept of Design, IIT Delhi

D

30th January 2024

Input Devices

- <u>Sensors</u>
- Different types of sensors to measure temperature (thermistor), distance (ultrasonic sensor), force (strain gauge), light, sound
- Do you know of any sensors that you use in your everyday life?
- What makes your smart phone so smart? <u>Link</u>

Arduino Science Journal App

Sensors in your phone

Innovating for billions

NETRA Near Eye Tool for Refractive Assessment

Vitor Pamplona, Ankit Mohan, Manuel Oliveira, Ramesh Raskar SIGGRAPH 2010

- Ramesh Raskar, Camera Culture group, MIT Media Lab

 innovating for billions
- eye-NETRA REDX.io
- INK talk: Idea Hexagon for innovation
- Scaling up of design solutions?
- <u>Mobile phone users in</u> <u>India</u>

Sensor features

- Sensor vs
 transducer
- Sensor resolution, range, speed of response, cost, reliability (datasheet)
- Sensor calibration

DIFFERENT TYPES OF TEMPERATURE SENSORS

Distance Measurement

- Ultrasonic sensor module (Lesson 2.9)
- Read datasheet (2 cm- 400 cm range)
- Lesson 1.5 (install library)
- Reading library
- Smart cane, other applications

Temperature, RH measurement

- DHT11 sensor (Lesson 2.11)
- DHT22 sensor <u>Another library</u>
- Datasheet

4X4 Keypad module

- Lesson 2.10
- Applications: cell phones, ovens, door locks, keyboards

Input Devices Summary

Smart phone sensors

Sensor characteristics

Examples: Ultrasonic sensor, Keypad module, Temp/RH. Other sensors similar procedure.

Fab Academy webpage video

Think of applications as a design student

Electrical Safety

~1 mA: fine ~10 mA: shock, contraction ~100 mA: fibrillation

 body: M ohm external, k ohm internal

"Don't touch him! He's a conductor."

Sensor to Actuator Flow

Output Devices

 LEDs, Displays, Speakers/ Buzzers, DC/Servo/Stepper Motors, Relays, Dataloggers

RGB LED

- PWM with RGB LED with common anode (Lesson 2.2). NOTE: Longest leg of RGB LED goes to 5V pin.
- <u>RGB basic RGB favorite color</u>

fritzing

Basic musical instrument

Piezo buzzer (Lesson 2.6)

0.96 inch OLED display

https://randomnerdtutorials.c om/guide-for-oled-displaywith-arduino/

Stepper Motor

- <u>Stepper motor</u> rotates in steps, open loop_position control
- Basis for many machines (motion control)
- XY plotter, 3D printer, Laser cutter, CNC router
- 28BYJ-48 stepper motor, ULN2003 Driver Board
- Lesson 2.24, Examples

Servo Motor

- Rotate 180 degrees
- SG90, Datasheet
- Lesson 2.8
- Applications: pen lift mechanism for XY plotter
- Potentiometer example <u>Gouri's</u> project

- Lesson 2.23
- L293D datasheet, Motor drivers
- PWM (speed control), potentiometer control
- Direction control
- DC power supply for higher current

DC motor control

MOSFET module

	High Power DC Loads	 Controlling a high power DC load with a microcontroller MOSFET GATE acts as a switch for high power DC loads, Fade Arduino code IRF520 MOSFET datasheet LED strip, DC fan, DC motors, etc. AC light dimmer module (dangerous!) for AC loads
--	------------------------	---

Datalogger

10

BACK.

GND

NC

SCL

SDA

3V3

SD Card Module Part ds3231 rtc pin layout Part Arduino tutorial

192

Output Devices Summary

Output devices

Examples: LCD display, RGB LED, Motors, Buzzer

Fab Academy <u>webpage</u> <u>video</u>

Think of applications as a design student

Explore other input and output devices

Examples integrating input and output devices

- Displaying output from temperature, RH sensor on OLED Display
- Smart Fan (DC motor + T, RH sensor)
- Sounds of different frequencies from the Buzzer as the distance computed from a proximity sensor varies
- Dustbin full vs. half vs. empty, LED is RED, YELLOW, GREEN.

Assignment

- A. What are the different sensors in your phone and what do they do? Use Science Journal App to conduct an experiment to measure and analyze the data from a sensor and report your findings.
- Combine a sensor with an output Β. device together and collect data for an activity connected to you. Analyze that data and make sense of it. e.g. some examples could be displaying output from temperature/Rh sensor on OLED Display to find the thermal comfort in your room, sounds of different frequencies from the Buzzer as the distance computed from a proximity sensor varies, Dustbin (full vs. half vs. empty) shows LED to be RED, YELLOW, GREEN. Please documents the steps and create a <u>video</u> showing the interaction between the sensor and the output devices. Please also upload the codes used.

Assignment due on 19th March 2024.