
DDL753 Design of sustainable habitats Dr Jay Dhariwal, Assistant Professor, Department of Design, IIT Delhi

Topic 2: Energy 06th September, 2023

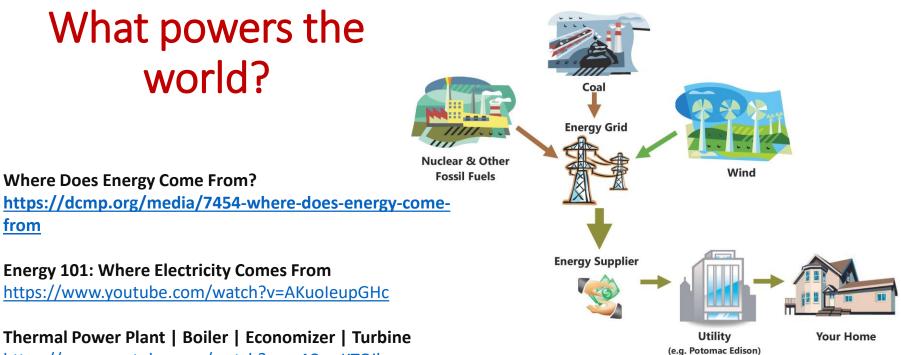

Dictionary

Definitions from Oxford Languages · Learn more

energy /'ɛnədʒi/

noun

1. the strength and vitality required for sustained physical or mental activity. "changes in the levels of vitamins can affect energy and well-being"


2. power derived from the utilization of physical or chemical resources, especially to provide light and heat or to work machines.

English

-

"nuclear energy"

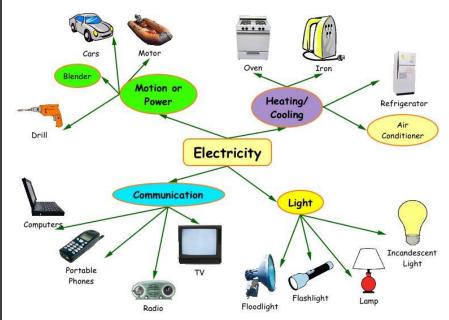
Similar: power

https://www.youtube.com/watch?v=m4CwaKTQikw

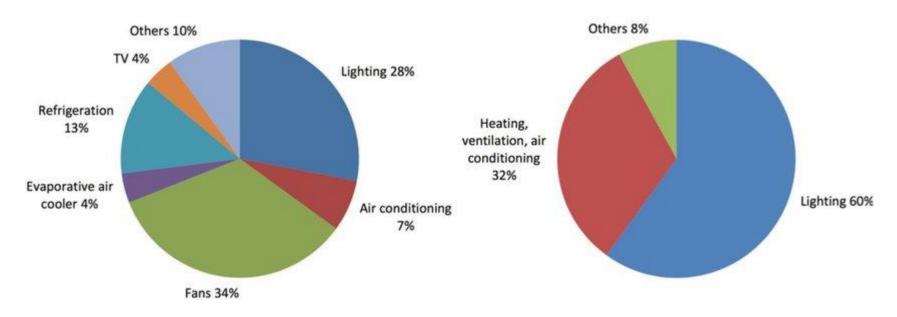
How to make 220V Steam Dynamo - DIY Energy Genarator https://www.youtube.com/watch?v=vfth8RT1j98

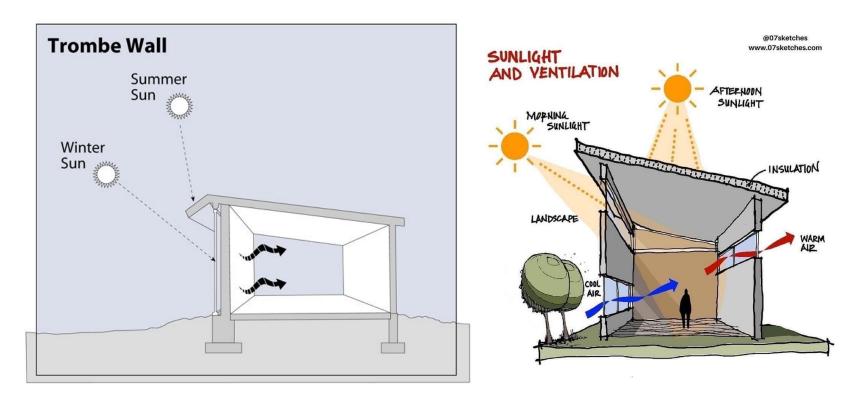
Power Generation

https://www.youtube.com/watch?v=F6YW8h8cML4


Source: https://frederickgreenchallenge.org/pages/handbooks/rshandbook/chapter1

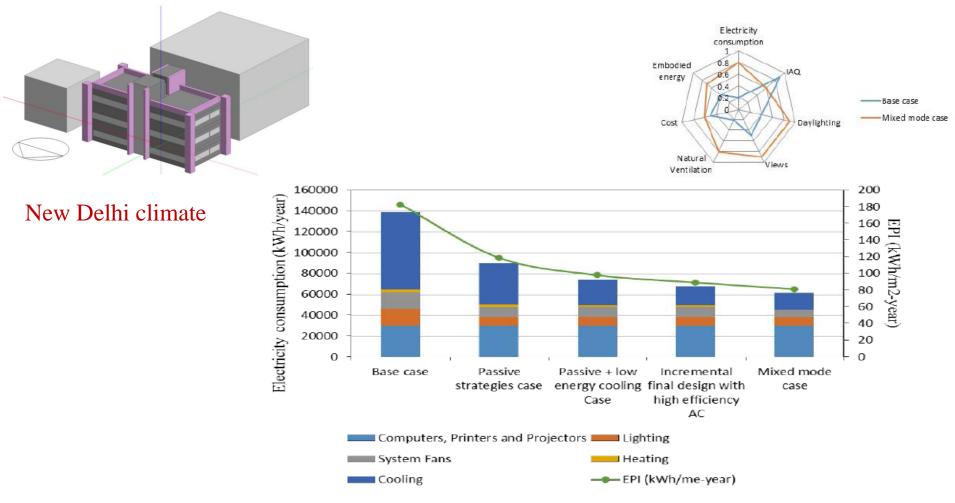
Energy use in Iron & Steel Industry


Uses Of Electricity In Our Daily Life


Energy use in buildings in India

Residential buildings

Commercial buildings



Minaal Sahlot , Saffa B. Riffat, Desiccant cooling systems: a review, *International Journal of Low-Carbon Technologies*, Volume 11, Issue 4, 15 December 2016, Pages 489–505, <u>https://doi.org/10.1093/ijlct/ctv032</u>

Eco-friendly ways of energy use

Source: https://www.energy.gov/energysaver/passive-solar-homes

Source: J. Dhariwal, R. Banerjee, Simulation based mixed mode building design, Materials Today: Proceedings, Volume 5, Issue 11, Part 2, 2018, https://doi.org/10.1016/j.matpr.2018.11.079.

Thermal, Hydraulic and Electrical analogies

q

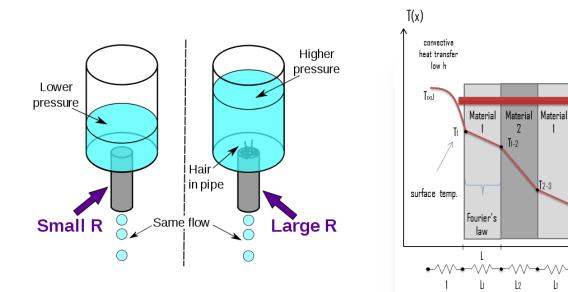
T3

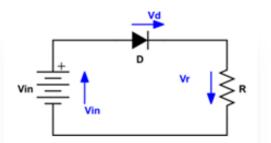
h2 A

k? A

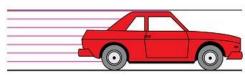
kι A

hı.A

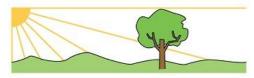

k1 A


convective

heat transfer

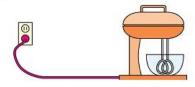

high h

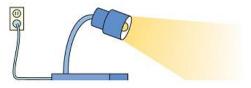
T∞.3



Energy transformation

An automobile engine changes chemical energy to mechanical and heat energy.


A tree changes radiant energy to chemical energy.


Hammering a nail changes mechanical energy to deformation and heat energy.

A thermonuclear reaction changes nuclear energy to radiant and heat energy.

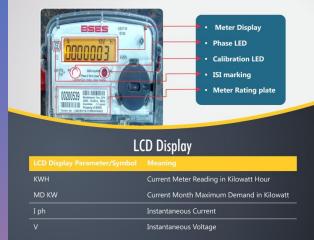
An electric mixer changes electrical energy to mechanical and heat energy.

A lamp changes electrical energy to radiant and heat energy.

Law of conservation of energy states that energy can change forms, but is neither created nor destroyed.

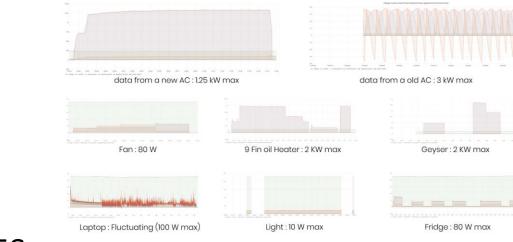
Source: https://mechanicalengineering.blog/law-of-conservation-of-energy/

Units of Energy



- 1 calorie = heat required to raise temp. of 1.00 g of H_2O by 1.0 ° C. 1000 cal = 1 kilocalorie = 1 kcal
- 1 kcal = 1 Calorie (a food "calorie")
- SI units for energy: joule (J)
- 1 cal = exactly 4.184 J

James Joule 1818-1889


KNOW YOUR METER

Units of Power

- Power is Energy used per unit Time
- SI unit of Power is Watt = Joule per second
- 1 kW = 1000 W
- Electrical Power (P) = Voltage (V) X Current (I)
- 1 unit of electrical energy consumed = 1 kWh = Power (kW) X Time (hour)

Energy measurements using Energy Monitors

Measuring Power consumption using a Smart Plug

Power consumption by Household Appliances



🚨 PZEM014 Master - Ningbo Peacefair Electronic T	- 🗆 X	
Display Area	Operate Area	
222.6V	5.454A	Set COM Port
		Exit Measure
Voltage	Current	
		Clear Energy
373.4W	147Wh	Set Parameters
Power	Energy	Calibrate
49.9Hz Frequency	0.31 Power Factor	Cancel

Energy Meter (with CT)

Power Factor = True Power/Apparent Power Apparent Power = 373.4/0.31 = 1205 VA

Measurements for an inverter AC

Computing energy consumption per person

Equipment type	Number of equipment	Operating hours per day	Number of days used per year	Power consumptio n (W) of one equipment	Shared with how many people	Energy consumptio n (kWhr)	Carbon Footprint (kg CO2 equivalent)
Laptop	1	10	350	40	1	140	119
Washing Machine							
Geyser and so on							

Energy consumption (kWhr) = (Number of equipment X Operating hours per year X Power consumption (W) of one equipment) / (Shared with how many people X 1000)

Carbon Footprint (kg CO2 eq) = Energy consumption X Emission Factor https://greencleanguide.com/calculate-your-carbon-footprint/

Can you work on your carbon footprint for transport? What else – products, food, building?

How do these numbers relate to each one of us?

Basis 1 for calculation: from fuel consumption per flight

One way to calculate CO₂ emissions is from fuel consumption per flight.

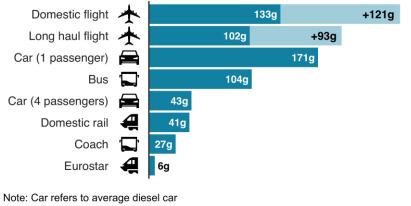
A **Boeing 737-400** jet is typically used for short international flights.

For a distance of 926 km, the amount of fuel used is estimated to be 3.61 tonnes [1], including taxiing, take-off, cruising and landing.

Using a seating capacity of 164 [Wikipedia, viewed 28.2.08] and an average seat occupancy (or 'load factor') of 65% [2], this gives a fuel use of 36.6 g per passenger per km.

CO2 emissions from aviation fuel are 3.15 grams per gram of fuel [1], which gives CO2 emissions from a Boeing 737-400 of 115 g per passenger per km.

At a cruising speed of 780 km per hour [Wikipedia, 28.2.08], this is equivalent to 90 kg CO2 per passenger per hour.


You can relate 90 kg CO_2 eq per person per hour to 50 billion tons CO_2 eq per year for planet! What would be the CO_2 emissions if you use a car/public transport/bike ride?

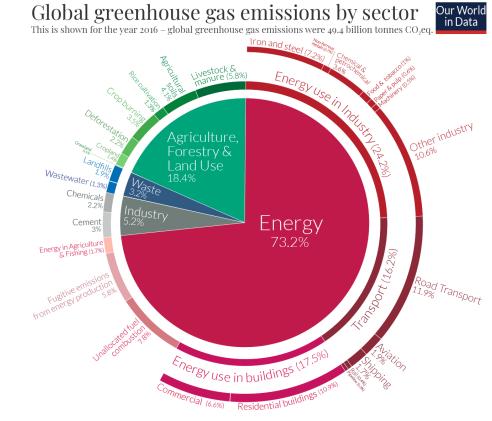
Source: https://www.carbonindependent.org/22.html#:~:text=CO2%20emissions%20from%20aviation%20fuel,CO2%20per%20passenger%20per%20hour.

Emissions from different modes of transport

CO2 emissions Secondary effects from high altitude, non-CO2 emissions

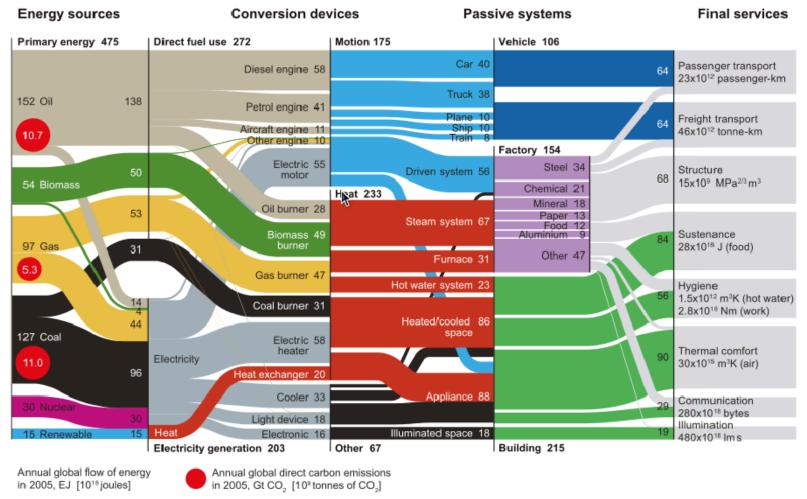
Emissions per passenger per km travelled

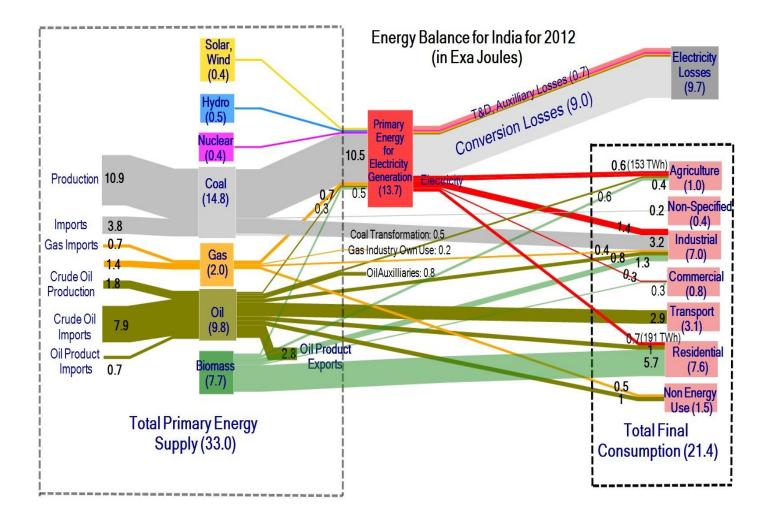
BBC


Source: BEIS/Defra Greenhouse Gas Conversion Factors 2019

Emissions from different journeys

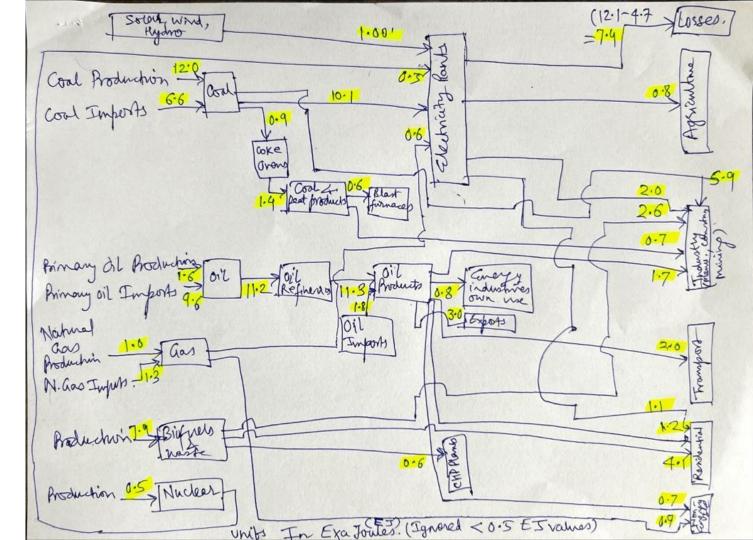
Emissions per passenger for journey

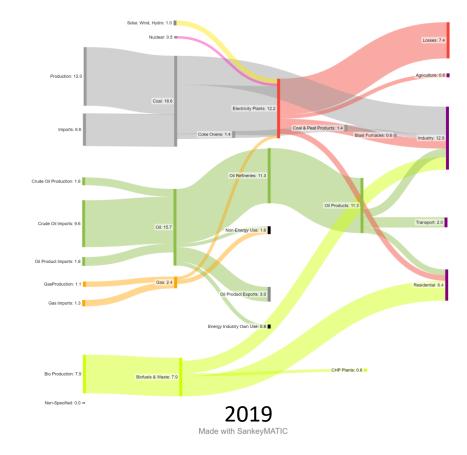

CO2 emissions Secondary effects from high altitude, non-CO2 emissions

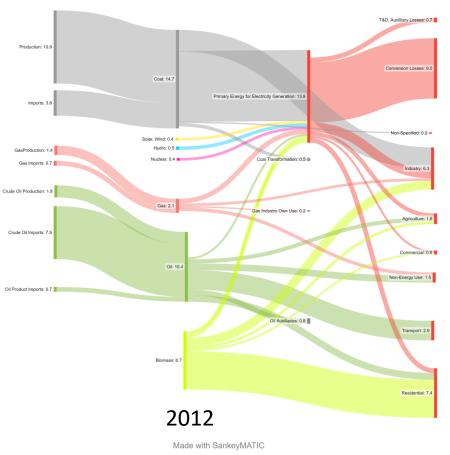


OurWorldinData.org - Research and data to make progress against the world's largest problems. Source: Climate Watch, the World Resources Institute (2020). Licensed under CC-BY by the author Hannah Ritchie (2020).

Manmade emission sources

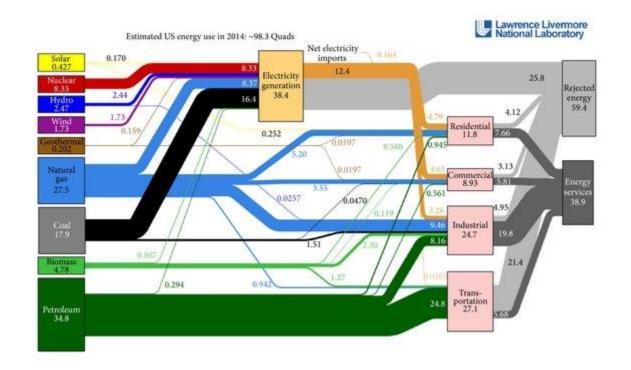



Source: World Energy Flows Sankey Diagram, as shown on http://aspoireland.org/2011/05/08/a-review-of-green-energy-growth-prospects-at-the-oil-economy-maxima/ Diagram originally by Cullen, J.M. & Allwood, J.M. (2010)



Energy Balance for India (2019)

Source: https://unstats.un.org/unsd /energystats/pubs/balance/



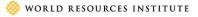
Energy Balance for India (in Exa Joules)

IEA Webinar : Energy Balances

Energy balance data for countries

Pick a country and make a Sankey Diagram for the Energy Flows Sankey Diagram for Japan

Source: https://www.researchgate.net/figure/Sankey-diagram-of-USA-Source-5-Data-is-based-on-DOE-EIA-00352015-03-March-2014_fig1_306245519


World Greenhouse Gas Emissions in 2016 (Sector | End Use | Gas)

Total: 49.4 GtCO2e

Energy to Emission Factors

15.9% Energy: Transportation	Road 11.9% Air 1.9%	0.4% Rail 1.7% Ship	
	Residential Buildings 10.9%		
30.4% Energy: Electricity and Heat	Commercial Buildings 6.6%		
Unalloc	ated Fuel Combustion 7.8%		CO2 74.3%
2.9% Energy: Other Fuel Combustion 5.5% Energy: Buildings Chemi	Iron & Steel 7.2% Food and tobacco 1% cal and petrochemical 5.8%	0.7% Non-ferrous metals	
12.4% Energy: Manufacturing and Cons	truction	10.6% Other Industry	
5.8% Energy: Fugitive Emissions		1.9% Coal	
5.6% Industrial Processes	Oil and Natural Gas 3.9% Cement 3%	0.1% Electronics	
11.8% Agriculture	Livestock & Manure 5.8% Agriculture Soils 4.1%	1.3% Rice Cultivation	CH4 17.3%
6.5% Land Use Change and Forestry	Burning 3.5% Landfills 1.9%	2.2% Forest Land	N20 6.2%

Source: <u>Climate Watch</u>, based on raw data from IEA (2018), CO2 Emissions from Fuel Combustion, www.iea.org/statistics; modified by WRI.

G-20 Summit 2023 | New Delhi Declaration underlines need for more finance to arrest global warming

The Leader's Declaration lays down that USD 5.8-5.9 trillion will be required in the pre-2030 period for developing countries to reach net zero by 2050

September 09, 2023 10:50 pm | Updated 10:50 pm IST - NEW DELHI

How the Russia-Ukraine war accelerated a global energy crisis

By David Gaffen

December 15, 2022 3:44 PM GMT+5:30 · Updated 9 months ago

UK PM Rishi Sunak defends shift in climate policy as 'realistic' approach

Thank you!

