

# Course Overview 27th July, 2023

## DDL753 Design of sustainable habitats

Dr Jay Dhariwal Assistant Professor, Department of Design, IIT Delhi











Have you had any sustainable habitat experiences?

## **Introductions**

- Name
- Program
- Interests and background related to Design of Sustainable Habitats



### **POOJA AGARWAL**

Design for Indoor Air Quality | Built Environment | Health and Wellnes | Prototyping | Building Modelling | Airflow Simulations

Supervisor: Prof. Jay Dhariwal Year of Joining: 2021

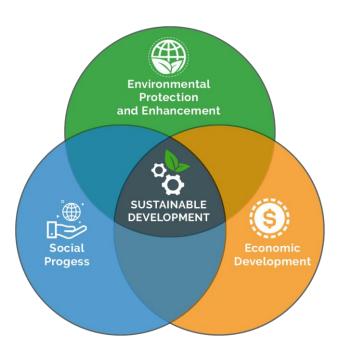
E-mail: pooja.agarwal@design.iitd.ac.in

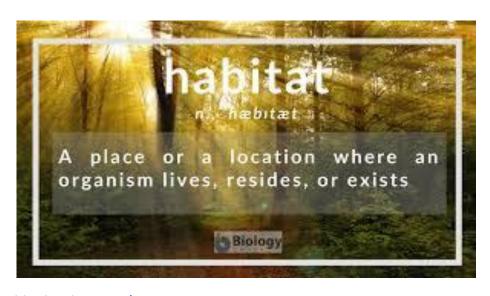
Portfolio link: https://www.linkedin.com/in/pooja-s-agarwal/



#### SONAL GANGRADE

Design for Health and Wellnes | Thermal Comfort | Building Design | Design for Sustainability


Supervisor: Prof. Jay Dhariwal Year of Joining: 2021


**E-mail:** sonal.gangrade@design.iitd.ac.in

Portfolio link: www.linkedin.com/in/sonal-gangrade-094

## TAs for the course

# Design of Sustainable Habitats





Source: https://www.arenasolutions.com/resources/glossary/sustainable-development/https://sustainability-success.com/social-sustainability-examples/#google\_vignette

# SUSTAINABLE G ALS





























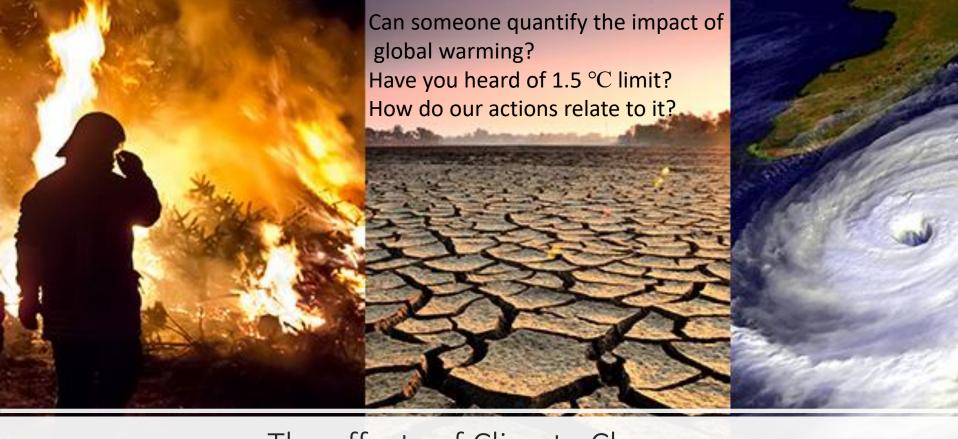




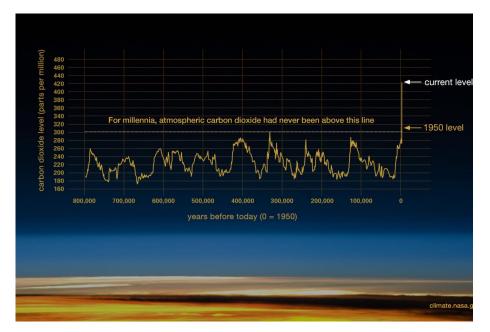


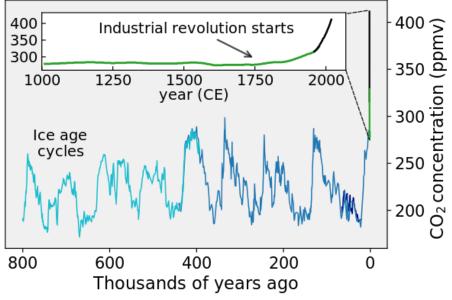






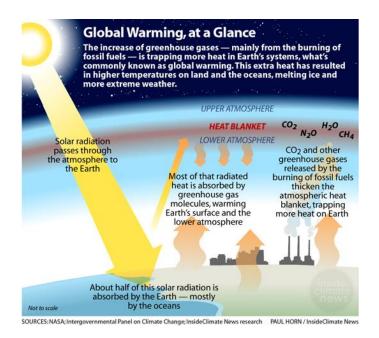

#### World's major challenges

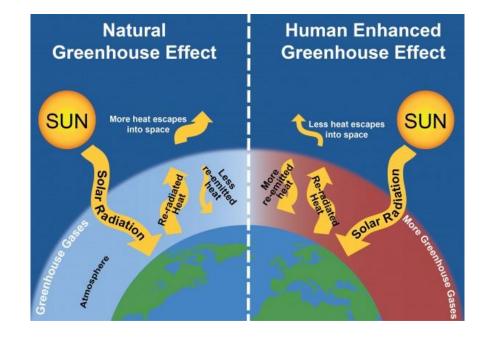




As of my last update in September 2021, the world faced several major challenges, and it is likely that many of these challenges persist in 2023. Some of the key global challenges include:

- Climate Change: The Earth's climate continues to be a pressing concern, with rising temperatures, extreme weather events, and the depletion of natural resources. The need to transition to clean energy sources and reduce greenhouse gas emissions remains critical.
- Global Health Pandemics: The ongoing COVID-19 pandemic demonstrated the vulnerabilities of the global health system. There's a continuous need to improve pandemic preparedness, enhance healthcare infrastructure, and address emerging infectious diseases.

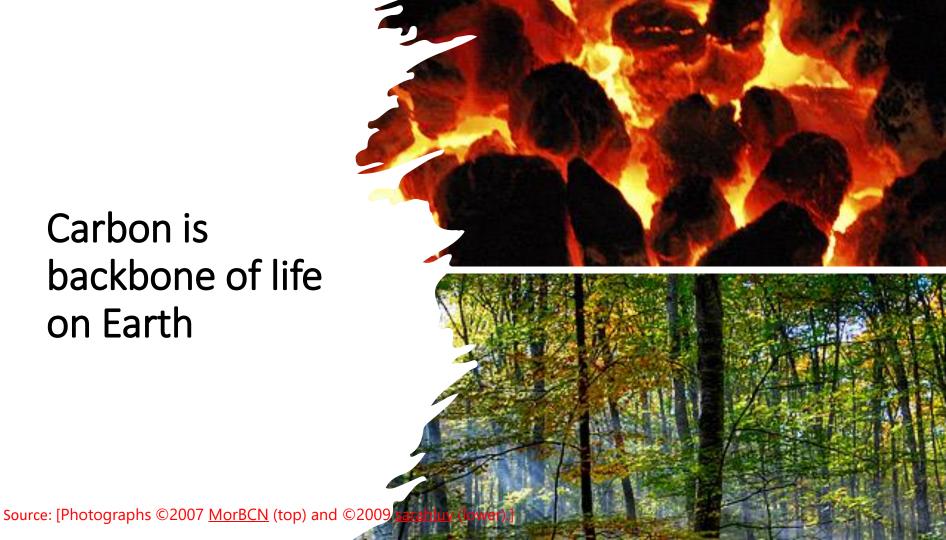


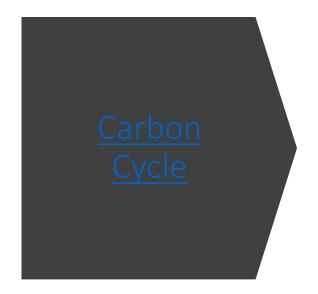

The effects of Climate Change

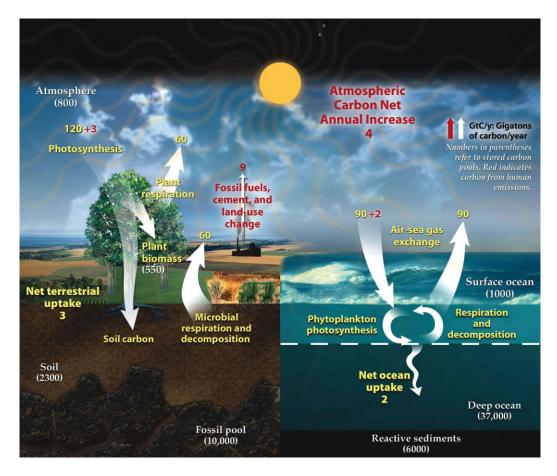


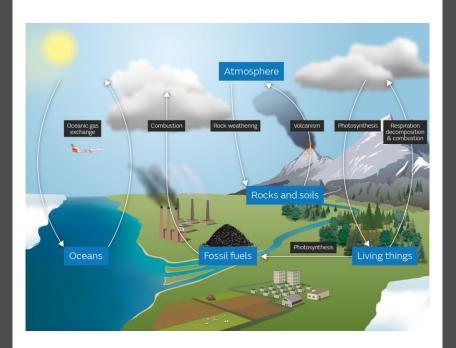



# **Evidence for Climate Change**

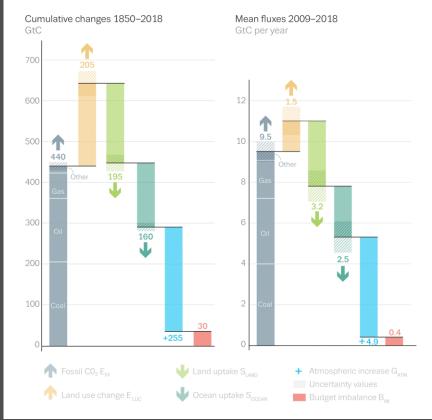

Source: <a href="https://climate.nasa.gov/evidence/">https://climate.nasa.gov/evidence/</a>, <a href="https://climate.nasa.gov/evidence/">https://climate.nasa.gov/evidence/</a>, <a href="https://cn.wikipedia.org/wiki/Carbon\_cycle">https://cn.wikipedia.org/wiki/Carbon\_cycle</a></a>
Prof Yama Dixit, IIT Delhi "Learning from the Past"





# What is causing Global Warming?

Carbon is backbone of life on Earth

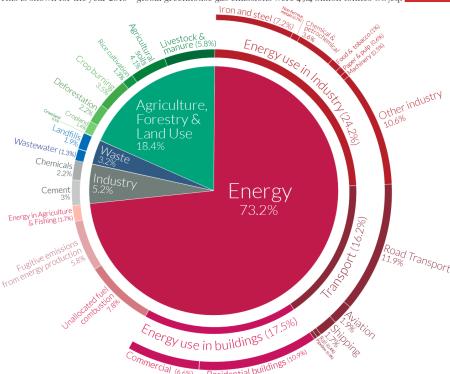









## **Anthropogenic carbon flows**




# Manmade emission sources

## Global greenhouse gas emissions by sector

Our World in Data

This is shown for the year 2016 – global greenhouse gas emissions were 49.4 billion tonnes CO<sub>2</sub>eq.



Our Worldin Data.org - Research and data to make progress against the world's largest problems.

Source: Climate Watch, the World Resources Institute (2020). Licensed under CC-BY by the author Hannah Ritchie (2020).

## How do these numbers relate to each one of us?

## Basis 1 for calculation: from fuel consumption per flight

One way to calculate CO2 emissions is from fuel consumption per flight.

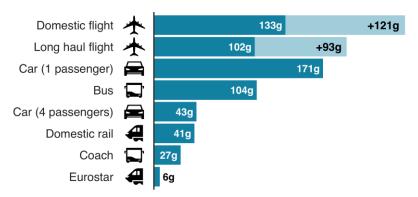
A **Boeing 737-400** jet is typically used for short international flights.

For a distance of 926 km, the amount of fuel used is estimated to be 3.61 tonnes [1], including taxiing, take-off, cruising and landing.

Using a seating capacity of 164 [Wikipedia, viewed 28.2.08] and an average seat occupancy (or 'load factor') of 65% [2], this gives a fuel use of 36.6 g per passenger per km.

CO<sub>2</sub> emissions from aviation fuel are 3.15 grams per gram of fuel [1], which gives CO<sub>2</sub> emissions from a Boeing 737-400 of 115 g per passenger per km.

At a cruising speed of 780 km per hour [Wikipedia, 28.2.08], this is equivalent to 90 kg CO<sub>2</sub> per passenger per hour.


You can relate 90 kg  $CO_2$  eq per person per hour to 50 billion tons  $CO_2$  eq per year for planet! What would be the  $CO_2$  emissions if you use a car/public transport/bike ride?

Source: <a href="https://www.carbonindependent.org/22.html#:~:text=CO2%20emissions%20from%20aviation%20fuel,CO2%20per%20per%20per%20per%20hour.">https://www.carbonindependent.org/22.html#:~:text=CO2%20emissions%20from%20aviation%20fuel,CO2%20per%20per%20per%20per%20hour.</a>

## **Emissions from different modes of transport**

Emissions per passenger per km travelled

CO2 emissions Secondary effects from high altitude, non-CO2 emissions



Note: Car refers to average diesel car

Source: BEIS/Defra Greenhouse Gas Conversion Factors 2019

BBC

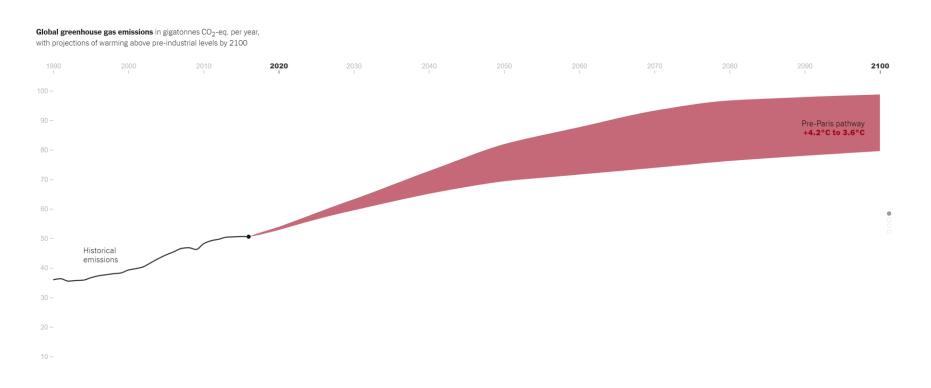
## **Emissions from different journeys**

Emissions per passenger for journey

CO2 emissions Secondary effects from high altitude, non-CO2 emissions

#### **London to Madrid**




#### Trains can differ too



Source: EcoPassenger



## GHG emissions and Global Warming



 $Source: \underline{https://www.nytimes.com/interactive/2021/10/25/climate/world-climate-pledges-cop26.html?auth=login-google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&login=google1tap\&log$ 

### We are running out of time!

The IPCC report affirms that temperature rise beyond 1.5 degree celsius will start **irreversible climate change**. The 1.5 degree celsius is the most important number for every human being. It is the number that all climate scientists are keeping an eye on. Did you know how much time is left before global warming touches the 1.5 degree celsius limit?

DEADLINE TIME LEFT TO LIMIT GLOBAL WARMING TO 1.

LIFELINE WORLD'S ENERGY FROM RENEWABLES

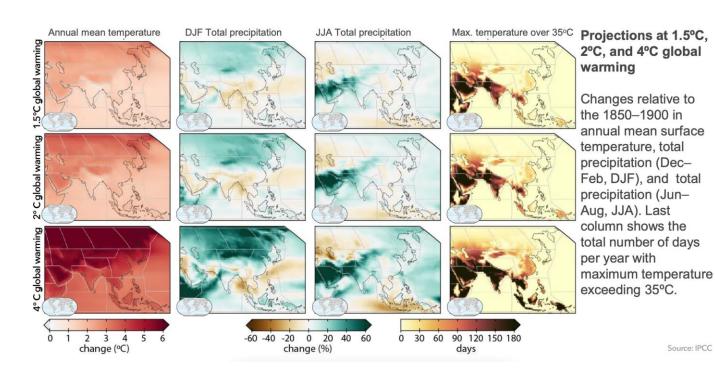
6yrs 001 DAYS 04: 23: 52

**13**.690071561%

TE FELL 29% IN 2022 | US GOVERNMENT TO INVEST \$300M IN MONITORING AGRICULTURAL EMISSIONS | QUEENSLAND ID

#ActInTime

There is a need for a Public Movement!




Energy Swaraj as a public movement!



Source: <a href="https://energyswaraj.org/">https://energyswaraj.org/</a>

## Global Warming leading to intense heat waves in India



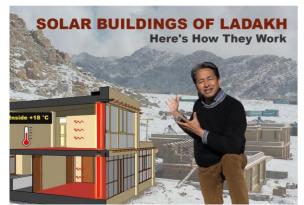
## Rising intensity of heat waves of India

- Severe heat waves increasing in frequency
- Higher temperatures arrive earlier and stay far longer
- They may break human survivability limit
- 2/3rd Indian population can't afford an AC
- 38 crore people depend on heat exposed labour in India.
- By 2030, 3.4 (8) crore in India (global) job losses due to heat stress



Source: World Bank. 2022. Climate Investment Opportunities in India's Cooling Sector. www.worldbank.org

https://www.hindustantimes.com/cities/mumbai-news/11-dead-50-hospitalized-after-maharashtra-bhushan-award-function-in-navi-mumbai-questions-raised-over-organization-and-lack-of-shade-and-water-101681673928462.html


## How should we bring down the CO<sub>2</sub> emissions?

What could you do?
What if we do that on scale?





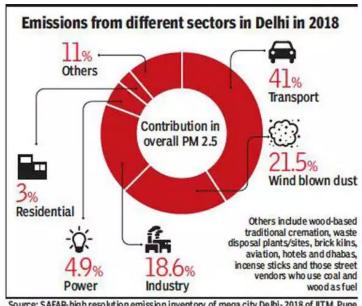




AMG approach (Prof Chetan Singh Solanki, IITB)

First 'Avoid' use of energy by 1/3rd, even if solar energy,

Then 'Minimize' use of energy by another 1/3rd, using energy efficient appliances, and

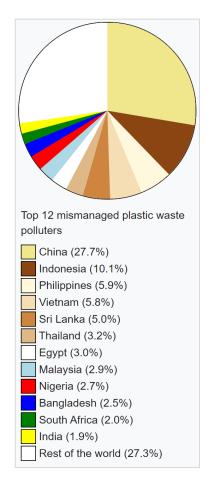

At last, 'Generate' only remaining 1/3rd energy locally using renewable sources.

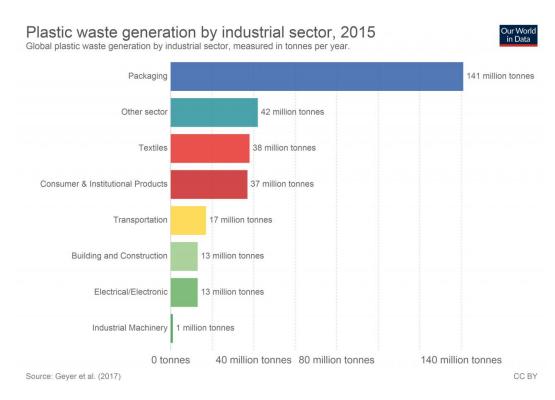


Source: https://energyswaraj.org/aboutourteam/amgapproch

## Sectoral contribution to ambient air pollution in Delhi



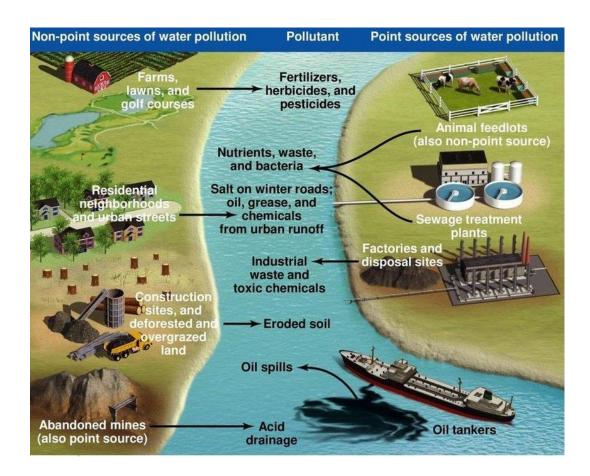




Source: SAFAR-high resolution emission inventory of mega city Delhi-2018 of IITM, Pune

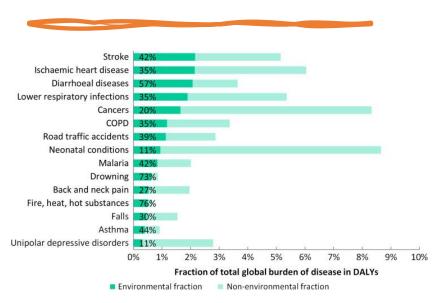
Do you see any overlap between the sectors that cause  $CO_2$  emissions and air pollution? Would it help if Delhi switches to Electric Vehicles?

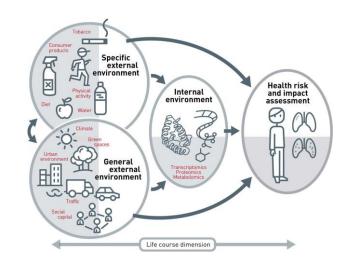
Source: Delhi air pollution: Smaller sources add up to 11% of PM2.5 emission | Delhi News - Times of India (indiatimes.com)





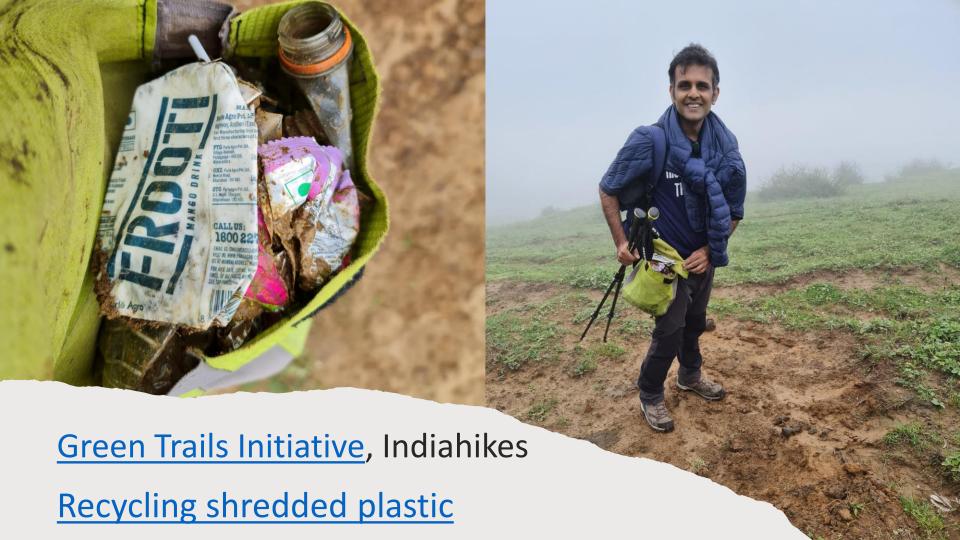




Water pollution in Yamuna

Sources of Water Pollution




# Health effects of environmental causes







• Prüss-Ustün, A., Wolf, J., Corvalán, C., Neville, T., Bos, R., Neira, M. (2017). Diseases due to unhealthy environments: an updated estimate of the global burden of disease attributable to environmental determinants of health. Journal of Public Health, 39(3), 464–475. https://doi.org/10.1093/pubmed/fdw085



## **8 ACTS OF EMERGENCY**

#### 1. SOUND THE ALARM

Acknowledge and raise awareness of the climate and ecological crisis - including its roots in systems of oppression - in our organisations and our practice.

#### 2. START THE JOURNEY

Invest in educating ourselves and our teams on methods of sustainable and regenerative design and show leadership by making measurable change to our practice.

#### 3. BRING CLIENTS WITH US

Meaningfully consider environmental and social impacts as part of every pitch, proposal, and production process. Not every design output will be carbon neutral or fully climate friendly, but every project is an opport

#### 4. MEASURE WHAT WE MAKE

Measure the environmental and social impact of our work and design projects and hold ourselves to account for what we find out.

#### 5. REDEFINE 'GOOD'

Encourage, recognise and reward sustainable and regenerative design excellence in our industry through media and awards.

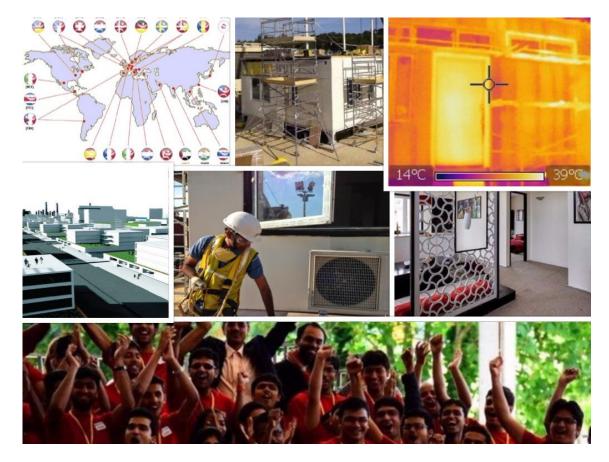
#### 6. EDUCATE, ACCELERATE

Build and foster intra- and cross-discipline knowledge networks to share tools, resources, and best practice to accelerate progress in our industry.

#### 7. DESIGN FOR JUSTICE

Create with and for the people who are disproportionately affected both by climate change and by the transition to a lower-carbon world.

#### 8. AMPLIFY VOICES FOR CHANGE


Enable systemic change by working alongside policymakers, campaigners, ecologists, scientists, activists, and others to strengthen local and national movements for change.

#DESIGNDECLARES



Design studios in UK aim to reduce envt. footprint

Team S.H.U.N.Y.A.



Solar Decathlon Europe 2014

# Fab Bhutan Challenge

# 5 challenges - 5 areas of intervention

There will be four areas of intervention in the challenge, and through them it will be possible to outline the course of the program.

The theme of the Fab Bhutan Challenge, as well as the overall theme of the event, is "designing resilient futures.", an acknowledgement of the changes and transformation that Bhutan is currently undertaking.

The Challenge, following this theme, will bring together local and global innovation communities to propose meaningful interventions that enrich, scale and invest in Bhutan's resilient economy from the bottom up following these four pillars:

- Youth & Education
- Technology

- Innovation, Sustainability and Community
- Economic Opportunity

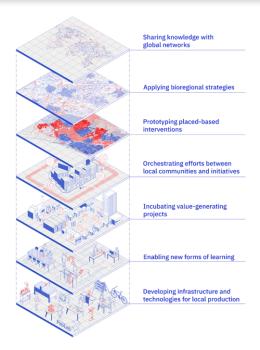
Climate Adaptive
Agriculture

2 Water Conservation

3 Human Wildlife Conflict

4 Cultural Preservation

5 Assistive Technology







society composter

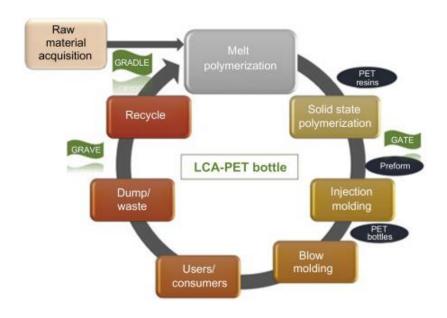
# Vigyan Ashram: self sufficient village

## Fab City Network





## What have we learnt so far?


## I just need the main ideas



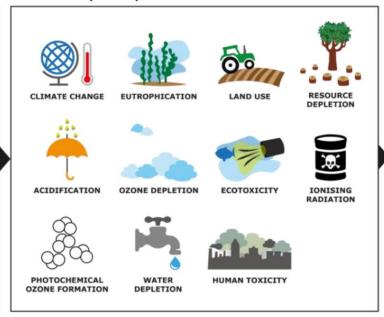
- Causes of Climate Change
- Sectoral contribution of Climate Change
- CO<sub>2</sub> emissions for an individual
- Global Warming and Heat Waves
- Air, Plastic and Water Pollution
- Health effects of environmental degradation
- Initiatives in design, architecture and engineering communities

## Topic 1: Life Cycle Assessment





#### LCA steps


#### **LCI - Life Cycle Inventory**

For each stage of a product life cycle (e.g. resource extraction, manufacturing, use, etc.) data on **emissions into the environment** (e.g. CO<sub>2</sub>, benzene, organic chemicals) and **resources used** (e.g. metals, crude oil) are collected in an inventory.



Each emission in the environment and resource used are then characterised in term of potential impact in the LCIA, covering a number of impact categories.

#### LCIA - Life Cycle Impact Assessment

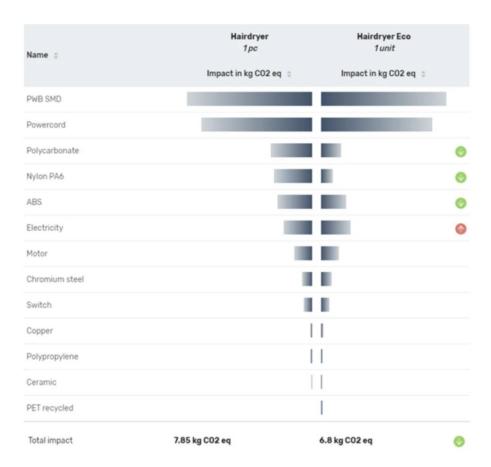


#### Areas of protection

**Human health** 

**Ecosystem health** 

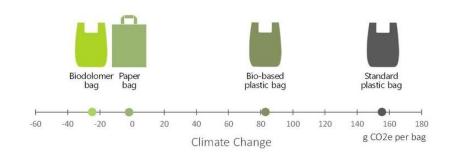
Natural resources


Interpretation

#### Goal and scope

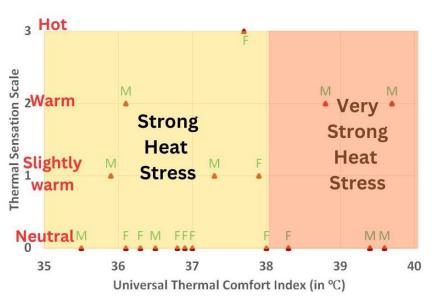


e.g. LCA of a car of typology X, assuming a use for Y years, produced in country Z, ect.





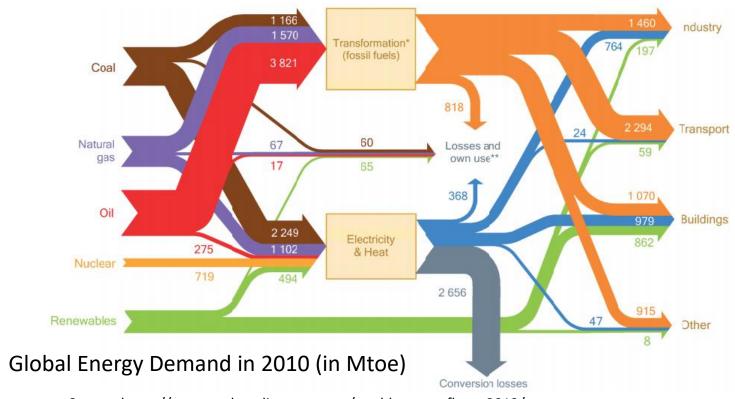

Source: https://ecochain.com/knowledge/5-ways-to-use-your-lca/


# Impact of our choices on our and our planet's health

- Bike ride vs. public transport vs. a car
- AC vs. natural ventilation
- Local foods vs. Foods with ingredients from far off places
- Online order vs. Eating at a restaurant
- Biofuel vs. Petrol



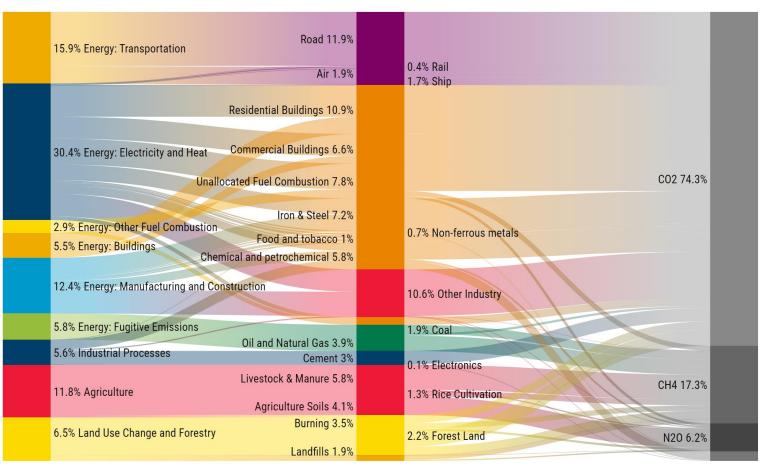
Source: https://biodolomerforlife.se/lca-comparing-biodolomer-fossil-pe-bio-pe-september-1-2019/


# Immersion 1: Communities living a low carbon lifestyle



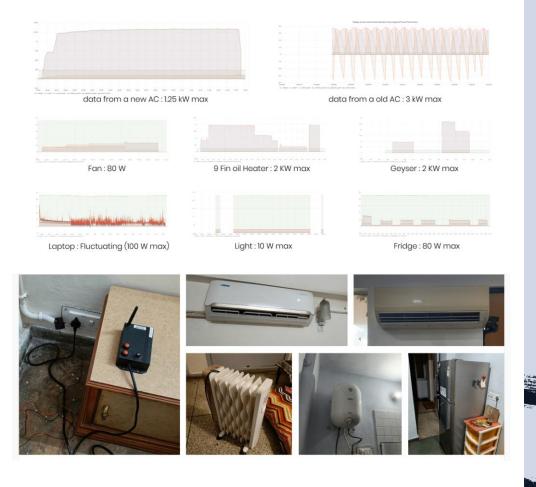


Source: Dhariwal, J., Gangrade, S. (2023). Learnings from thermal comfort adaptation of Jain ascetics during heat waves. Energise India Conference. The 'Perfect Ascetic' - Jainpedia


#### Topic 2: Energy




Source: https://www.sankey-diagrams.com/world-energy-flows-2012/


#### World Greenhouse Gas Emissions in 2016 (Sector | End Use | Gas)

Total: 49.4 GtCO2e





## Energy measurements using Energy Monitors

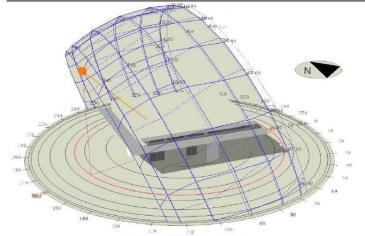


#### Topic 3: Health and Wellness in Built Envt

#### THE WELL BUILDING STANDARD™

SEVEN CONCEPTS FOR HEALTHIER BUILDINGS




2017 @ INTERNATIONAL WELL BUILDING INSTITUTE PBC

Source: https://www.metrohealth.org/transformation/transformation-blog/well-building-means-a-healthy-building

#### House Design: Passive Solar Architecture







SUN PATH ANALYSIS FOR MUMBAI



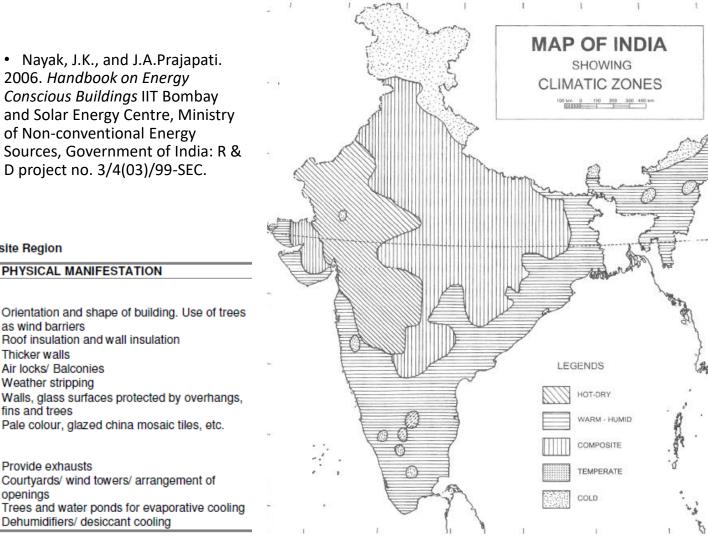
## Climatic zones of India

Increase air exchange rate (Ventilation)

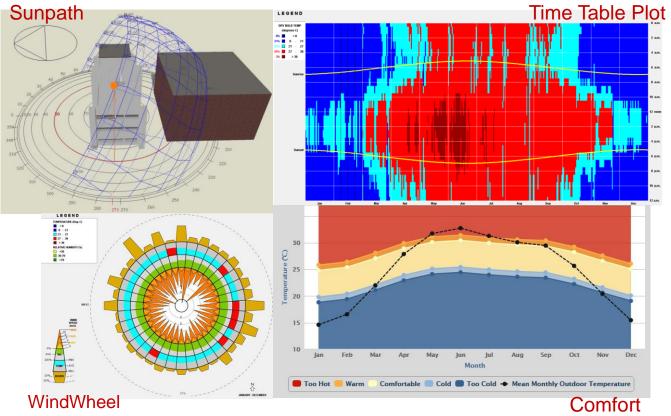
Increase humidity levels in dry summer

Decrease humidity in monsoon

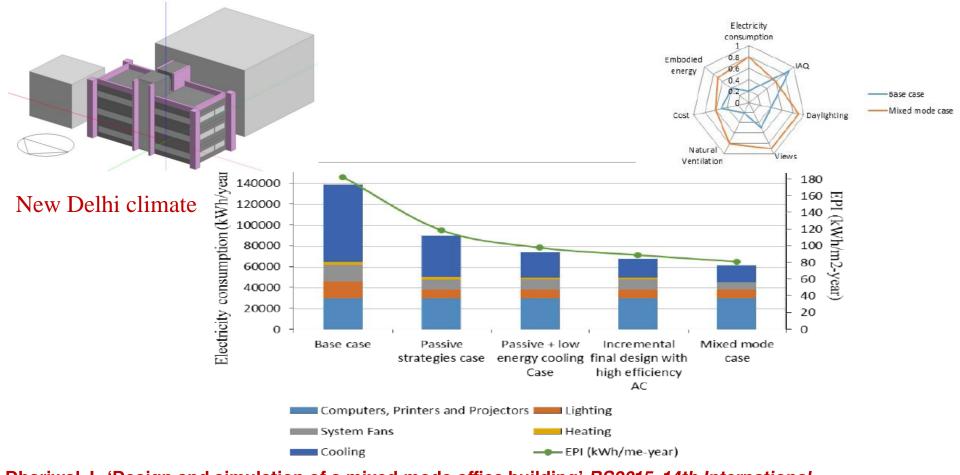
 Nayak, J.K., and J.A.Prajapati. 2006. Handbook on Energy Conscious Buildings IIT Bombay and Solar Energy Centre, Ministry of Non-conventional Energy Sources, Government of India: R & D project no. 3/4(03)/99-SEC.


Courtyards/ wind towers/ arrangement of

Dehumidifiers/ desiccant cooling

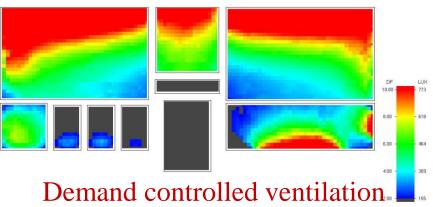

#### 5) Composite Region

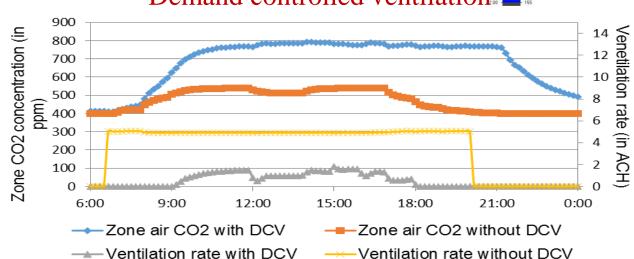
| OBJECTIVES                                               | PHYSICAL MANIFESTATION                                           |
|----------------------------------------------------------|------------------------------------------------------------------|
| 1)Resist heat gain in summer and Resist                  |                                                                  |
| heat loss in winter                                      |                                                                  |
| Decrease exposed surface area                            | Orientation and shape of building. Use of trees as wind barriers |
| <ul> <li>Increase thermal resistance</li> </ul>          | Roof insulation and wall insulation                              |
| <ul> <li>Increase thermal capacity (Time lag)</li> </ul> | Thicker walls                                                    |
| <ul> <li>Increase buffer spaces</li> </ul>               | Air locks/ Balconies                                             |
| Decrease air exchange rate                               | Weather stripping                                                |
| Increase shading                                         | Walls, glass surfaces protected by overhangs, fins and trees     |
| Increase surface reflectivity                            | Pale colour, glazed china mosaic tiles, etc.                     |
| 2)Promote heat loss in summer/ monsoon                   |                                                                  |
| <ul> <li>Ventilation of appliances</li> </ul>            | Provide exhausts                                                 |


openings

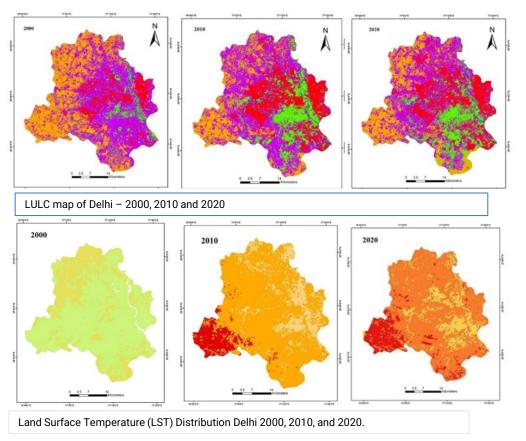


#### **Climate Analysis**





Software: DesignBuilder, Climate Consultant, CARBSE tools




Dhariwal J., 'Design and simulation of a mixed-mode office building', *BS2015*, *14th International Conference of International Building PerformanceSimulation Association (IBPSA)*, Dec 2015. Winner of the student modelling competition for this entry.







### Heat stress assessment & mitigation





On **28<sup>th</sup> June 2022**, the outdoor temperatures in Delhi was **40°C**, but because of high humidity, it felt like **58°C** & we had to use AC

**UTCI** calculator

<u>Urban heat island effect</u> and <u>vulnerable populations</u>

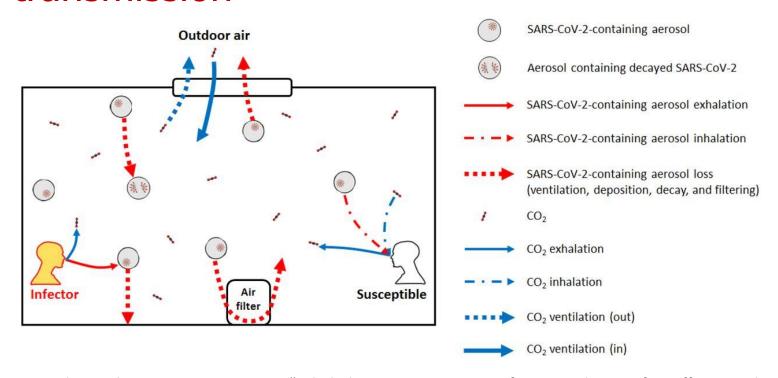
LAND USE / COVER

Thick Vegetation

Dense Built Up Area

Barren / Fallow Land

Built Up Area Water Bodies


LST (°C)

# Need for adequate ventilation (high CO<sub>2</sub> levels)

|                                                        | CO <sub>2</sub> concentration (ppm) | Duration         | Selected key references                                                                                                                                                                                                   |
|--------------------------------------------------------|-------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Adverse health outcomes associated with acute C        | CO <sub>2</sub> exposure            |                  |                                                                                                                                                                                                                           |
| CO <sub>2</sub> retention                              | 1,000-5,000                         | <4 h             | Zhang et al. <sup>75</sup> ; Zhang et al. <sup>73</sup> ; Vehvilainen et al. <sup>77</sup> ; Shiraram et al. <sup>76</sup>                                                                                                |
| Inflammation                                           | 2,000-4,000                         | 2 h              | Thom et al. <sup>80,81</sup> ; Schneberger et al. <sup>82</sup>                                                                                                                                                           |
| Cognitive effects                                      | 1,000-2,700                         | 1-6 h            | Kajtar and Herczeg <sup>85</sup> ; Satish et al. <sup>86</sup> ; Allen et al. <sup>82,88</sup> ; Zhang et al. <sup>75</sup> ; Zhang et al. <sup>73,74</sup> ; Rodeheffer et al. <sup>91</sup> , Snow et al. <sup>90</sup> |
| Adverse health outcomes associated with chronic        | CO <sub>2</sub> exposure            |                  |                                                                                                                                                                                                                           |
| Chronic, low-grade systemic inflammation               | ~3,000                              | 13 d             | Zappulla <sup>2,69</sup> ; Beheshti et al. <sup>101</sup>                                                                                                                                                                 |
| Bone demineralization and kidney calcification         | ~2,000-3,000                        | 60-90 d          | Schaefer et al. <sup>102,103</sup>                                                                                                                                                                                        |
| Chronic, low-grade (sub-clinical) respiratory acidosis | Unknown                             | Decades          | Carnauba et al. <sup>109</sup> ; Robertson <sup>61,106</sup>                                                                                                                                                              |
| Behavioural changes and physiological stress           | 700-3,000                           | 13-15 d          | Beheshti et al. <sup>101</sup> ; Wade et al. <sup>104</sup> ; Martrette et al. <sup>111</sup> ; Kiray et al. <sup>112</sup>                                                                                               |
| Hedonic feeding behaviours                             | Unknown                             | Ecological       | Hersoug et al. <sup>113</sup> ; Zheutlin et al. <sup>1</sup>                                                                                                                                                              |
| Oxidative stress and endothelial dysfunction           | 3,000-5,000                         | 13 d to 6 months | Beheshti et al. <sup>101</sup> ; Thom et al. <sup>80,81</sup> ; Zwart et al. <sup>115</sup>                                                                                                                               |

Jacobson, Tyler A, Jasdeep S Kler, Michael T Hernke, Rudolf K Braun, Keith C Meyer, and William E Funk. 2019. "Direct Human Health Risks of Increased Atmospheric Carbon Dioxide." *Nature Sustainability* 2 (8): 691–701. https://doi.org/10.1038/s41893-019-0323-1.

# CO<sub>2</sub> levels as a proxy for Covid-19 transmission



Peng, Zhe, and Jose L. Jimenez. 2021. "Exhaled CO2as a COVID-19 Infection Risk Proxy for Different Indoor Environments and Activities." *Environmental Science and Technology Letters* 8 (5): 392–97. https://doi.org/10.1021/acs.estlett.1c00183.

### Impacts of Sick Building Syndrome on well-being

| Author(s)                          | Country                 | Type of building     | Identified symptoms associated with SBS                                                  |
|------------------------------------|-------------------------|----------------------|------------------------------------------------------------------------------------------|
| Magnavita (2015)                   | Italy                   | Companies            | Anxiety, depression, environmental discomfort and job strain                             |
| Jafari et al. (2015)               | Iran                    | Office buildings     | Malaise, headache, throat dryness, cough, sputum,<br>wheezing, skin dryness and eye pain |
| Zhang et al. (2014)                | China                   | Schools              | Skin symptoms, mucosal symptoms                                                          |
| Shan et al. (2016)                 | Singapore               | Schools              | Head and eye related issues                                                              |
| Norbäck et al. (2016a)             | Malaysia                | Schools              | Ocular, rhinitis, throat symptoms, headache and tiredness, dermal symptoms               |
| Lim et al. (2015)                  | Malaysia                | University           | Dermal, mucosal and general symptoms                                                     |
| Amin, Akasah, and Razzaly (2015)   | Malaysia                | University           | Dry skin, runny nose, dry eyes, blocked/stuffy nose, tiredness and flu-like symptoms     |
| Sun et al. (2013)                  | China                   | Dormitory            | General symptoms of sick building, mucosal or skin problems and nose irritation          |
| Sahlberg et al. (2013)             | Sweden/Estonia/ Iceland | Residential Building | General signs of sick building (i.e. mucosal symptoms)                                   |
| Takigawa et al. (2010)             | Japan                   | Residential Building | Optical, nasal, and gular symptoms                                                       |
| Tsai, Lin, and Chan (2012)         | Taiwan                  | Office building      | Eye irritation and upper respiratory symptoms                                            |
| Lukcso et al. (2016)               | U.S.A.                  | Office building      | Asthma and allergic disease                                                              |
| Gomzi et al. (2007)                | Croatia                 | Office buildings     | Fatigue, sore and dry eyes, and headache                                                 |
| Runeson-Broberg and Norbäck (2013) | Sweden                  | Office buildings     | Headache, tiredness, nausea, and sensation of a cold                                     |

Ghaffarianhoseini, Amirhosein, Husam AlWaer, Hossein Omrany, Ali Ghaffarianhoseini, Chaham Alalouch, Derek Clements-Croome and John Tookey. 2018. "Sick Building Syndrome: Are We Doing Enough?" *Architectural Science Review* 61 (3): 99–121. https://doi.org/10.1080/00038628.2018.1461060.

Experiment 1: understanding CO<sub>2</sub> build up with occupancy in a closed car Date: 17<sup>th</sup> December, Location: Jodhpur 9400 Insights: 1. CO2 levels Calibration 8400 can build up to unhealthy 7400 levels in less than an hour 6400 with just 4 people. 5400 2. CO2 levels higher close 4400 to the people exhaling CO2 3400 than in other Spatial Expt. **!** parts of the 2400 Door open car. Have any 1400 of you been such 400 situation 4:19 PM 4:26 PM 4:33 PM 4:40 PM 4:48 PM 4:55 PM 5:02 PM 5:09 PM 5:16 PM 5:24 PN in Time classes,

offices,
trains, etc.?

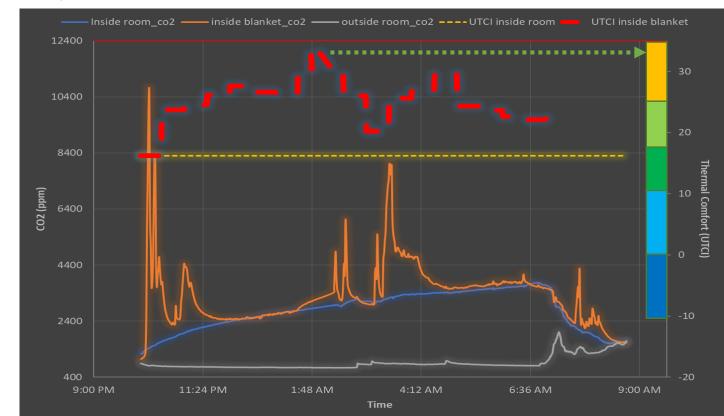

IAQ monitors from Testó and <a href="https://aerogram.in/">https://aerogram.in/</a>
Courtesy: Prof Seshan Srirangarajan

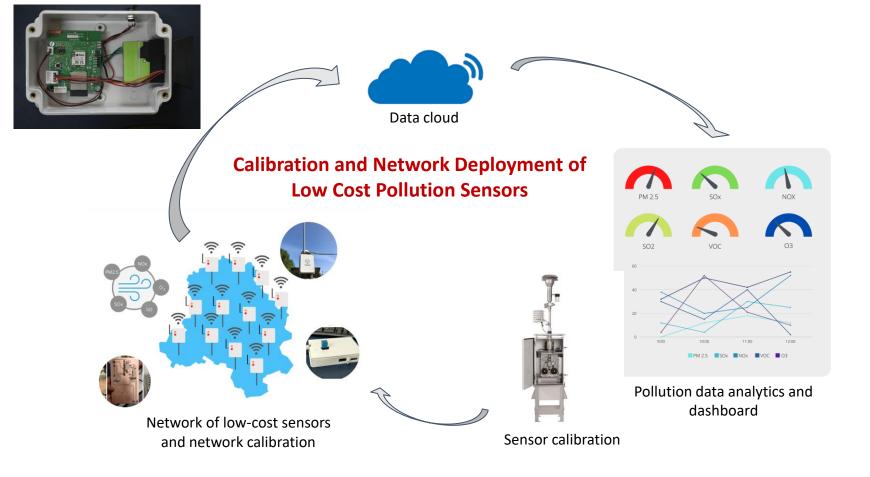
Experiment 2: CO<sub>2</sub> levels in a bedroom (no heater) Date: 25<sup>th</sup> December, Location: New Delhi

# Drawing Room Bedroom 13' 1" Kitchen Lobby Bathroom 7' 4"

#### Insights:

- 1. Outside room CO<sub>2</sub> levels were around 800 ppm
- 2. Indoor room CO<sub>2</sub> levels reached 3500+ for two occupants. It's a fact as pointed out by the Nature paper.
- 3. CO<sub>2</sub> levels inside the blanket spiked to 10000+ ppm also. Its better to keep the face outside the blanket as we spend 1/3<sup>rd</sup> of our life sleeping. How many of you would want to put your face into the blanket as it is cold?
- 4. Door opening led to mixing of CO<sub>2</sub> levels for inside and outside of room

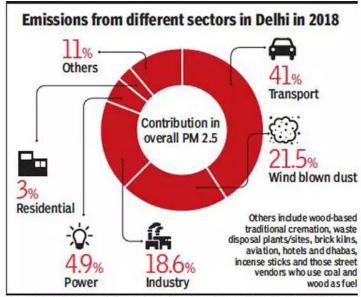



Date: 25<sup>th</sup> December, Location: New Delhi

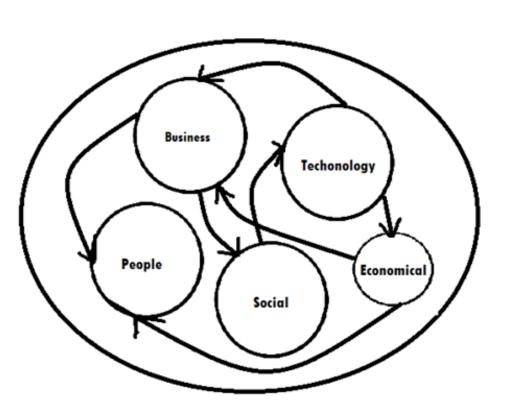
#### Insights:

- 1. Outside and inside room UTCI was around 16 C
- 2. Inside blanket UTCI reached even 34 C
- 3. With no heater, it is better if the door can be kept open to have low CO<sub>2</sub> levels.






PIs: Prof. Seshan Srirangarajan & Prof. Jay Dhariwal, IIT Delhi


## Air pollution mitigation

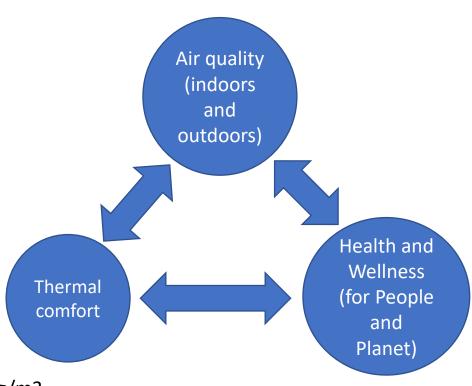
- Electric Vehicles
- Crop residue as insulation, eco-friendly plates, packaging
- Air purifiers
- Renewables



Source: SAFAR-high resolution emission inventory of mega city Delhi-2018 of IITM, Pune

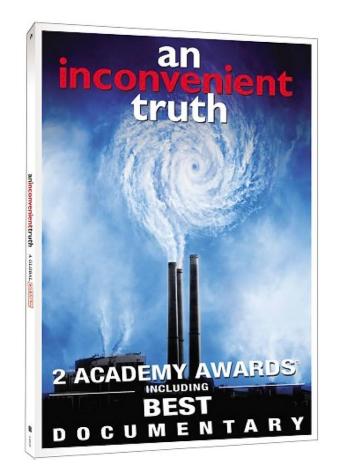
## **Systems Thinking**




- What happens if we don't use systems thinking?
- Was the invention of electricity, cars, plastics good from systems thinking point of view?

### Design for Health and Wellness in a Delhi Classroom




Maximize Health and Wellness for Class Occupants Constraints:

- 1) Keep Thermal Comfort: < 32°C
- 2) Keep Air Quality:  $CO_2 < 800 \text{ ppm}$ , PM2.5 < 50 µg/m3
- B) Minimize Energy Consumption



## Topic 4: Other fun things

- Industry visit to understand plastic recycling
- Understand strategies to mitigate Water Pollution
- Documentaries related to environmental issues



# Evaluation Policy

| Evaluation mode                                                           | Weightage (%) |
|---------------------------------------------------------------------------|---------------|
| 10 Assignments                                                            | 50            |
| Classroom Participation & Attendance                                      | 10            |
| Project Proposal (5) + Project<br>Presentation (20) + Project Display (5) | 30            |
| Exam and/or Viva                                                          | 10            |
| Other notes:                                                              |               |
| Marks required for D grade                                                | 40            |
| Marks required for Audit Pass                                             | 40            |
|                                                                           |               |

The student should do at least 5 assignments for Audit pass.

# The gist of the course: improve our and our planet's health

UMAN BEINGS USE

Products (Industry)

Shelter (Buildings)

Mobility (Transport)

Food (Agriculture)

SAUSING ENVT IMPACTS

Climate Change

**Heat Waves** 

Air Pollution

Water Pollution

**Plastic Pollution** 

LEADING TO HEALTH EFFECTS

Stroke, COPD, Cancers,

Respiratory
Diseases, Child

and Maternity

Health,

Mental Health

# Thank you!

