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Abstract—Frequent sequence mining methods often make use
of constraints to control which subsequences should be mined;
e.g., length, gap, span, regular-expression, and hierarchy con-
straints. We show that many subsequence constraints—including
and beyond those considered in the literature—can be unified in
a single framework. In more detail, we propose a set of simple
and intuitive “pattern expressions” to describe subsequence
constraints and explore algorithms for efficiently mining frequent
subsequences under such general constraints. A unified treatment
allows researchers to study jointly many types of subsequence
constraints (instead of each one individually) and helps to
improve usability of pattern mining systems for practitioners.

I. INTRODUCTION

Frequent sequence mining (FSM) is a fundamental task
in data mining. Frequent sequences are useful for a wide
range of applications, including market-basket analysis [1],
web usage mining and session analysis [2], natural language
processing [3], information extraction [4], [5], or computa-
tional biology [6]. In web usage mining, for example, frequent
sequences describe common behavior across users (e.g., the
order in which users visit web pages). As another example,
frequent textual patterns such as “PERSON is married to
PERSON” are indicative of typed relations between entities
and useful for natural-language processing and information
extraction tasks [4], [5].

In FSM, we model the available data as a collection of
sequences composed of items such as words (text process-
ing), products (market-basket analysis), or actions and events
(session analysis). Often items are arranged in an application-
specific hierarchy; e.g., is—+be—VERB (for words), Canon
SD—DSLR camera—selectronics (for products), or Rakesh
Agrawal—scientist—PERSON (for entities). The goal of FSM
is to discover subsequences or generalized subsequences that
occur in sufficiently many input sequences. Since the total
number of such subsequences can potentially be very large and
not all frequent subsequences may be of interest to a particular
application, most FSM methods make use of subsequence
constraints to control the set of subsequences to be mined.

A large variety of subsequence constraints has been studied
in prior work [1], [7]-[13]. Commonly proposed constraints
include gap or span constraints, where items in the sub-
sequences need to appear “close” in the input sequence,
and length constraints, where the number of items in the
subsequences is bounded. In n-gram mining [14], for exam-
ple, the goal is to mine frequent consecutive subsequences
of exactly n words. Hierarchy constraints allow controlled
generalization according to the item hierarchy to find patterns
which do not directly occur in the input data. Examples include
shopping patterns such as “customers frequently buy some
DSLR camera, then some tripod, then some flash™ or textual
patterns such as “PERSON be born in LOCATION”. Regular
expression (RE) constraints have also been studied in the
context of FSM; here subsequences must match a given RE.
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A number of specialized algorithms for various combina-
tions of the above subsequence constraints have been proposed
in the literature. In this paper, we show that many subsequence
constraints—including and beyond those described above—
can be unified in a single framework. A unified treatment
allows researchers to study subsequence constraints in general
instead of focusing on certain combinations individually. It
also helps to improve usability of pattern mining systems for
practitioners because it avoids the need to develop customized
mining algorithms for the particular subsequence constraint of
interest. In this work, we focus on the questions of (1) how to
model and express subsequence constraints in a suitable way
and (2) how to mine efficiently all frequent sequences that
satisfy the given constraints.

In more detail, we introduce subsequence predicates to
model subsequence constraints in a general way, and we
propose a simple and intuitive pattern expression language
to concisely express subsequence predicates. Our pattern ex-
pressions are based on regular expressions, but—in contrast to
prior work on RE-constrained FSM—target input sequences
and support capture groups and item hierarchies. Capture
groups are the key ingredient for expressing most prior subse-
quence constraints in a unified way; see Tab. I for examples.
Direct support for item hierarchies allows us both to express
subsequence constraints concisely and to mine generalized
subsequences in a controlled way. Some example pattern
expressions as well as anecdotal results are given in Tab. III.

To mine frequent sequences, we propose to use finite state
transducers (FST) as the underlying computational model. To
the best of our knowledge, FSTs have not been studied in
the context of FSM before. We propose the DESQ system,
which includes two efficient mining algorithms termed DESQ-
COUNT and DESQ-DFS. Both algorithms translate a given
pattern expression to a compressed FST, which is subse-
quently optimized and simulated in a way suitable for fre-
quent sequence mining. DESQ-COUNT is a match-and-count
algorithm that aims at highly selective constraints, whereas
DESQ-DFS can handle more demanding pattern expressions
and is inspired by PrefixSpan [11]. Our experimental study on
various real-world datasets suggests that DESQ is an efficient
general-purpose FSM framework and competitive to state-of-
the-art specialized algorithms.

II. PRELIMINARIES

Sequence database. A sequence database is a multiset of
sequences, denoted 2 = { Ty, T», ... T }. Each sequence
T = tita... ¢t is an ordered list of items from a vocab-
ulary ¥ = {wy,wa,...,wyx| }. We denote by e the empty
sequence, by |T'| the length of sequence T, by ¥* (X1) the set
of all (all non-empty) sequences that can be constructed from
items in X. Fig. 1(a) shows an example sequence database
Y., consisting of six sequences.
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Fig. 1: A sequence database and its vocabulary

Item hierarchy. The items in ¥ are arranged in an ifem
hierarchy, which expresses how items can be generalized (or
that they cannot be generalized). Fig. 1(b) shows an example
hierarchy in which, for example, item a; generalizes to item
A. In general, we say that an item u directly generalizes to an
item v, denoted u = v, if u is a child of v. We further denote
by =" the reflexive transitive closure of =. For the example
of Fig. 1(b), we have b;; = by, by = B and by; =* B. For
each item w € X, we denote by anc(w) = {w' |w =" w'}
the set of ancestors of w (including w) and by desc(w) =
{w' | w' =* w} the set of descendants of w (again, including
w). In our running example, we have anc(b,) = { b1, B } and
desc(bl) = { bl, b11, b12 }

Subsequence. Let S = s152...5g) and T' = t1t3...17| be
two sequences composed of items from Y. We say that S is
a generalized subsequence of T, denoted S C T, if S can
be obtained by deleting and/or generalizing items in 7. More
formally, S C T iff there exists integers 1 < i3 <19 < - <
ijg) < |T'| such that t;, =* s; for 1 < k < [S|. Continuing
our example, we have cBe C T1, ca; C T1 and aic £ Ty.

III. FSM WITH SUBSEQUENCE CONSTRAINTS

Our goal is to provide a general framework to express subse-
quence constraints, including and beyond previously proposed
constraints. Consider the following (admittedly contrived) sub-
sequence constraint as an example of a subsequence constraint.

EXAMPLE 1. Consider our example database 9., and
suppose that we are interested in mining sequences of B’s
and/or descendants of A’s. We restrict attention to sequences
that occur consecutively in input sequences starting with c or d
and ending with e. We also allow to generalize occurrences of
descendants of A and B. Then a1 B T T} and AB C T satisfy
this subsequence constraint, whereas a1b1o C T, a1by C T,
a1B C Ty and AB T T, do not.

The above subsequence constraint cannot be expressed

using prior methods. Note that the constraint combines (i)
a gap constraint (consecutive), (ii) a hierarchy constraint
(descendants of B must be generalized), and (iii) a context
constraint (between c¢ or d, and e).
Subsequence predicates. We propose subsequence predicates
as a general, natural model for subsequence constraints. A
subsequence predicate P is a predicate on pairs (S, T), where
T € Y7 is any input sequence and S C T is a subsequence.
Subsequence S T T satisfies the constraint when P(S,T)
holds. Note that P is not a predicate on (only) subsequence
S; it also involves input sequence 1. We denote by Gp(T) =
{SCT|P(S,T)} the set of P-subsequences in T. For
each S € Gp(T), we say that S is P-generated by T. For
example, let P, be the subsequence predicate that expresses
subsequence constraint of Ex. 1, then Gp,_ (T1) = {a1 B, AB}
and Gpem (TQ) = @

Subsequence predicates can encode different application
needs, including but not limited to the various subsequence
constraints discussed before. A subsequence predicate can act
as a filter on the set of all subsequences of 71" (only A’s
and B’s), but may also consider the context in which these

subsequences occur (consecutively between c or d and e).
In practice, we may construct subsequence predicates that
generate all n-grams, all adjective-noun pairs, all relational
phrases between named entities, all electronic products, or,
in log mining, sequences of items that occur before and/or
after an error item. We propose a suitable way to express
subsequence predicates in Sec. IV.

FSM and subsequence predicates. Let P be a
subsequence predicate. The P-support Supp(S,2) =
{Te2|SeGp(T)} of sequence S € T in database 2
is the multiset of all sequences in & that P-generate S.

The P-frequency of S in & is given by
fr(S,2) = |Supp(S,2)|. In our example database,
we have Supp (Aa1AB,%..) = {T13,1s} and thus
fpw (AalAB, gew) =2.

Given a support threshold o > 0, we say that a sequence
S is P-frequent if fp(S,2) > o. Our goal is to find all
P-frequent sequences S € X7 along with their frequencies.
The set of all P.,-frequent sequences for ¢ = 2 in our
example database is given by {AAAB:2, AB:2, Aa; AB:2,
a1 B:2}, where we also give P-frequencies.

I'V. PATTERN EXPRESSIONS

We propose a pattern language for expressing subsequence
predicates in a simple and intuitive way. Our language is based
on regular expressions, but adds features that allows us to unify
many prior subsequence constraints. We subsequently suggest
a computational model based on FSTs, and describe the formal
semantics of our language.

A. Pattern Language

Our language consists of the following set of pattern
expressions, defined inductively: (1) For each item w € ¥, the
expressions w, w—, w', and w! are pattern expressions. (2) .
and .T are pattern expressions. (3) If F is a pattern expression,
so are (E), [F], [E]*, [E]T, [E]?, and for all n,m € N with
n < m, [El{n}, [E]{n,}, and [E]{n,m}. (4) If E; and E-
are pattern expressions, so are [F; Fs] and [Ey|Es)].

Pattern expressions are based on regular expressions, but
additionally include capture groups (in parentheses), hierar-
chies (by omitting —), and generalizations (using T and T).
We make use of the usual precedence of rules for regular
expressions to suppress square brackets (but not parentheses);
operators that appear earlier in the above definition have higher
precedence. We refer to expressions of form (1) or (2) as
item expressions. We write Gg(T) to refer to the set of
subsequences “generated” by expression E on input 7' (see
Sec. IV-B for a formal definition).

Captured and uncaptured expressions. Pattern expressions
specify which subsequences to output (captured) as well as
the context in which these subsequences should occur (un-
captured). We make use of parentheses to distinguish these
two cases; the semantics is similar to the use of capture
groups in regular expressions. Given an expression F, only
subexpressions that are enclosed in or contain a capture group
will produce non-empty output; all other subexpressions serve
to describe context information. For example, the pattern
expression E., = [c|d]([AT | BL]T)e describes precisely the
subsequence constraint of Ex. 1. Here subexpressions [c|d] and
e describe context and ([AT | BL]*) output.

Item expressions. Item expressions are the elementary form
of pattern expressions and apply to one input item. If the
item expression “matches” the input item, it can “produce” an
output item; see Tab. II for an overview. Fix some w € X. The
most basic item expression is w—: it matches only item w and



TABLE I: Pattern expr. for prior subsequence constraints

Subsequence constraint

All subsequences [1], [11], [15] I+

Example Pattern expression

Bounded length [13] length 3-5 [*( )}{3 5}

n-grams [10], [14] 3-, 4- and 5-grams (.){3,5}

Bounded gap [10], [13] each gap at most 3 ()[40, 3}()]+
Serial episodes [16] length 3, total gap < 2

L7200 12002 1()-2710)

Hierarchy [1], [8] generalized 5-grams (MH{5}

Regular expression [9], [12], [17], [18]
subsequences matching [alb] c*d  (a|b)[.*(c)]*.*(d)
contiguous subsequences matching [a|b] c*d ([alb] c*a)

produces either e (if uncaptured) or w (if captured). Using our
example hierarchy of Fig. 2(a), we have G4_(A) = 0 (note
that we ignore output €), G(4_y(A) = { A}, and G(4_)(a1) =

(). Sometimes we do not want to only match the specified
item but also all of its descendants in the item hierarchy (e.g.,
we want to match all nouns in text mining). Item expression
w serves this purpose: it matches any item w’ € desc(w)
(which includes w) and, when captured, produces the item that
has been matched. For example, we have G(4)(A) = { A},
Gay(a1) = {a1}, and G(4)(b1) = 0. Our language also
provides wild card symbol “.” to match any item; again, the
matched item is produced when the wild card is captured. For
example, G()(A4) = {A}, and G()(a1) = { a1 }.

To support mining with control ed generalizations (e.g.,
mine patterns such as “PERSON lives in CITY”), we use
the generalization operator T, which generalizes items along
the hierarchy. Item expressions that use the generalization
operator must be captured. More specifically, item expression
w’ matches any item w’ € desc(w)—as expression w does—,
and it produces either the matched input item or any of
its ancestors that is also a descendant of w. For example,
G(BT)(blg) {blg,bl,B} and G(bI)(bU) {blg,bl }
We also allow the use of a wild card with generalization
operator: expression “.T” matches any item and produces each
of its generalizations. For example, G 1)(b1) = {b1,B}.
Our final item expression is used to enforce a generalization:
wl matches any descendant of w and produces w, indepen-
dently of which descendant has been matched. For example
G(BL)(bm) ={B}.

Composite expressions. Item expressions can be arbitrarily
combined using operators ? (optionality), * (Kleene star), +
(Kleene plus), {n,m} (bounded repetition), | (union), and
concatenation to match (sequences of) more than one input
item. The semantics of these compositions is as in regular
expressions.

Examples. Our pattern expressions allow us to express many
existing subsequence constraints in a unified way; see Tab. I
for some examples. Note that the use of capture groups enables
many of these pattern expressions. Pattern expressions can
additionally express many customized subsequence constraints
that cannot be handled by existing FSM frameworks; see
Tab. IIT for some examples.

B. Computational Model

We translate patterns expressions into FSTs, which are
a natural computational model for pattern expressions. An
FST is a type of finite state machine for string-to-string
translation [19]. FSTs are similar to finite state automata but
additionally label transitions with output strings. Conceptually,
an FST reads an input string and translates it to an output string
in a nondeterministic fashion. We will use FSTs to specify
subsequence predicate P(S,T): the predicate holds if the FST
can output subsequence S when reading input 7.

Finite state transducers. More formally, we consider a
restricted form of FSTs defined as follows. An FST A is a
5-tuple (Q, qs, QF, 2, A), where @ is a set of states, gs € Q)
is the initial state, Qr C @ is the set of final states, X is
an input and output alphabet, and A C @ x (X U {€}) x
(X U{e€e}) x @ is a transition relation. For every transition
(Gfrom,in,out,qi,) € A, we require that out € anc(in)U{ e}
and that whenever in = € then out = e. Our notion of
FSTs differs from traditional FSTs in that we use a common
input and output alphabet and in that we restrict output labels.
The latter restriction ensures that our FSTs output generalized
subsequences of their input (Lemma 1). Fig. 2(a) shows an
example FST, where gs = qo, QF = {q1}, and each
transition is marked with ¢n:out labels. We refer to transitions
with in = ¢ (and thus out = ¢€) as c-transitions; these
transitions are marked with € in the figure.
Runs and outputs. Let 7' = t;¢, ... ¢, be an input sequence.
A run for T is a sequence p = pi1ps...p, of transitions,
where for 1 < i < m: p; = (g, wi,wj,q;) € A, ¢1 = gs,
¢i+1 = ¢, and wyws ... w, = T (recall that w; € XU {€}
so that m > n). Intuitively, the FST starts in state gs and
repeatedly selects transitions that are consistent with the next
input item. If ¢, € Qp, we refer to p as an accepting run.
The output O(p) of run p is the sequence S = w} ... w,, of
output labels, where we omit all w} with w; = € and set S = ¢
if all w; = e. The set of sequences generated by FST A is
given by
GA(T) ={O(p) # €| p is an accepting run of A for T} .
EXAMPLE 2. Consider the FST Apy(q) of Fig. 2(a). Apa(a)
has two accepting runs for sequence T1 = ca1 b126 whlch are
gzven by Pl = QO—H]1 —>QB—>Q5—>Q6—>Q8—>Q10—>
05— g7 —>q9 S qi0 —>q11 with output O(p1) = a1 B, and

p2 (as py but using qe oA, qs) with output O(ps) = AB.
Thus, GAFQ( (Th) = {a1B,AB}, as desired. There is no
accepting run for Ty so that G a,,, )(Tg) = (). Observe that
Ara(a) generates precisely the P-sequences of Ex. I.

The following lemma states that our FSTs generate general-
ized subsequences of their inputs and thus specify subsequence
predicates. Note that the lemma holds for any run, whether or
not accepting.

LEMMA 1. Let T € ¥* be an input sequence and A be an
FST. For any run p of A for T, it holds O(p) C T

Note that not all subsequence predicates can be expressed
with FSTs; e.g., there is no FST for predicate “all subse-
quences of form a*b* with an equal number of a’s and
b’s”. FST are a good trade-off between expressiveness and
computational complexity, however: they can express many
subsequence constraints that occur in practice and they lend
themselves to efficient mining (see Sec. V).

Translating pattern expression. We now describe how to
translate a pattern expression F into an FST A(F). The FST

formally defines the semantics of pattern expressions: we set

Gg(T) “a A(E)(T'). Each item expression is translated into

a two-state FST with Q = { ¢s,qr }, where gg is the initial
and g the final state. The transitions of the FST depend on the
item expression and are summarized in Tab. II, column “FST”.
The translation rules for composite expressions mirror the
Thompson construction [20] for translating regular expressions
to finite state automata. For example, expression E., translates
to the FST of Fig. 2(a).

Compressed FST. The translation rules above can produce
very large FSTs, especially when the vocabulary is large. For
example, if the hierarchy has n items and average depth d, the



TABLE II: Translation rules for item expressions (where w,w’,w” € ¥)

Expr.  Matches Transl. type ~ Produces FST Compressed FST
W= w Uncaptured € {gs =5 qr) {gs w—) qr}
Captured w {as —= ar} {gs == qr}
w w’ € desc(w)  Uncaptured € {as i:—e—>/ qr | w' € desc(w)} {gs =5 qr}
Captured w’ {gs 2 qp | w' € desc(w)} {as —$> qar}
weEX Uncaptured € {gs =S qp |w € 2} {gs =5 qr}
Captured w {as *> gr |w e X} {as =% qr}
w’ w’ € desc(w)  Captured anc(w’) Ndesc(w) {qs —> gr | w' € desc(w),w’ € anc(w’) Ndesc(w)}  {gs w¥w, qr}
N wEX Captured anc(w) {gs /—> qgr | w € E,w’ € anc(w)} {gs LN qar}
wl w’ € desc(w)  Captured w {gs =% gp | w' € desc(w)} {gs =% g}

(b) Compressed FST
Fig. 2: FST (a) and cFST (b) for [c|d]([AT | BL]")e.

FST for “.T” has ©(nd) transitions. To avoid this explosion
of FST size and support efficient mining, we make use of a
compressed FST (cFST) representation for this purpose; see
column “compressed FST” of Tab. II. The cFST of an item
expression has exactly one transition, but input and output
labels are taken from an alphabet larger than Y. Each transition
in the cFST describes a set of transitions in the corresponding
FST in a concise way. More specifically, cFSTs use as input
labels ., w, and w— for all w € X. Here “.” matches all input
items, w matches all items in desc(w), and w— matches only
item w. cFSTs use as output labels ¢, w, $, $-w, and $-T
for w € . Each transition encodes the set of output labels
in the corresponding FST: € and w are as before, $ encodes
the matched input item, $-w the matched input item and all
its ancestors up to w, and $-T the matched item and all its
ancestors. The cFST translations for composite expressions
remain unmodified. Fig. 2(b) shows a cFST A, for E.,.
Note that the cFST has fewer transitions than its uncompressed
counterpart of Fig. 2(a).

Simulating cFSTs. To simulate a cFST, we start with the
initial state gs and repeatedly select a transition in which the
input label matches (see column “Matches” in Tab. II) the next
input item. If there are multiple such transitions, we try them
one by one via backtracking. As we move from state to state,
we keep track of the outputs in a buffer (column “Produces”
in Tab. II). If we reach a final state after consuming all input
items, we add the buffered output to the set G4(T). See [21]
for more details and discussion.

V. PATTERN MINING

We now outline three methods for mining P-frequent
sequences: Naive, DESQ-COUNT, and DESQ-DFS; more
information can be found in [21]. We assume that subsequence
predicate P is described by a cFST A.

Naive approach. The naive “generate-and-count” approach
is to compute G 4(T") for each input sequence T € ¥ via
cFST simulation and count how often each sequence has
been generated. The naive approach is generally inefficient
because it considers many globally infrequent sequences. For
example, we obtain G4, (T3) = {AAAB, AAas B, Aa, AB,
AaiasB,as AAB, as Aas B, asa1 AB, asayas B} for input se-
quence T3, but only AAAB and Aai AB are P-frequent.
DESQ-COUNT. DESQ-COUNT reduces the number of
sequences that are generated and counted by mak-
ing use of an flist F, which contains all items
along with their frequencies and can be precomputed.
For our example database, we obtain f-list F., =
{A:6,e:6, B:6,a1:6,d:3,02:3,b1:2, ¢:2, by2:1,b11:1, as:1}.

In DESQ-COUNT, we make use of the f-list to reduce the
size of G 4(T') by generating sequences composed of frequent
items only. For example, for T3, we have G4_, (T5) =
{ AAAB, Aay AB}, which is much smaller than the full set
given above. We compute the reduced G 4(T") by adapting
cFST simulation to work with the f-list. To do so, we stop
exploring a run as soon as an infrequent item is produced.

The pruning performed by DESQ-COUNT can substantially

reduce the number of candidate sequences. DESQ-COUNT is
inefficient (and sometimes infeasible), however, if pruning is
not sufficiently effective and the sets G 4(7T') are very large.
The DESQ-DFS algorithm, which we present next, addresses
such cases.
DESQ-DFS. In DESQ-DFS, we adapt the pattern-growth
framework of PrefixSpan [11] to FSTs. Pattern growth ap-
proaches arrange the output sequences in a tree, in which
each node corresponds to a sequence S and associated with
a projected database, which stores the set of input sequences
in which S occurs. Starting with an empty sequence database
and the full sequence database, the tree is build recursively
by performing a series of expansions. In each expansion,
a frequent sequence S (I items) is expanded to generate
sequences with prefix S (of [ + 1 items), their projected
databases as well as their supports.

We adapt this pattern-growth approach to efficiently gener-
ate P-frequent sequences as follows. For a sequence S, we
store in its projected database the state of simulations of A
on all input sequences that generate S as a partial output. We
refer to a state of simulation as a snapshot, which is a triple
T'[pos@q] where T is the input sequence, pos is the position
of the next input item, and ¢ is the current state in A. Thus,
our projected database for a sequence S contains all snapshots
that generate S as a partial output. When expanding a sequence
S, for all snapshots in its projected database, we resume the
simulation of the FST for T' at item ¢,,s in state ¢ until an
output item is produced or the entire input is consumed. In the
former case, we add a new snapshot to respective child node.



In the latter case, we add T to the support of S if we end up
in a final state. During each expansion, we also keep track of
number of input sequences that can generate .S, which allows
us to prune partial sequences as soon as it becomes clear that
they cannot be expanded to a P-frequent sequences.

VI. EXPERIMENTAL EVALUATION

We conducted an experimental study on two publicly avail-
able real-world datasets. Our goal was to investigate whether
pattern expressions are sufficiently powerful to express prior
and new subsequence constraints, whether DESQ’s algorithms
are efficient, and how they perform relative to each other
and to prior algorithms. We summarize the key results of our
experimental study here. Additional experiments and a more
in-depth discussion can be found in [21].

Datasets. Our first dataset, NYT, contains over 21M sen-

tences from articles published in the the New York Times
corpus [22]. We generated an item hierarchy using annotations
from the Stanford CoreNLP tools. The NYT hierarchy consists
of named entities, which generalize to their type (PERSON,
ORGANIZATION, LOCATION, MISC) and then to ENTITY,
and of words, which generalize to their lemma and then to
their part-of-speech tag. Our second dataset, PRT, is a dataset
of over 100K protein sequences obtained from [23] and is
composed of 25 amino acid codes (items). The hierarchy is
flat, i.e., there are no generalizations.
Implementation and setup. We implemented DESQ in
Java (JDK 1.8; http://dws.informatik.uni-mannheim.de/en/
resources/software/desq/). For length and gap constraints, we
additionally used (1) C++ implementation of cSPADE [13]
from the authors, (2) our implementation of SPADE in Java
which adds hierarchy constraints, (3) our implementation of
prefix-growth [12] in Java. For RE constraints, we used prefix-
growth and (4) a C++ executable of SMA [18] obtained from
the authors.

Experiments on the NYT dataset were performed on a ma-

chine with two Intel(R) Xeon(R) CPU E5-2640 v2 processors
and 128GB of RAM running CentOS Linux 7.1. Experiments
on the PRT dataset were performed on a machine equipped
with Intel Core i7-4712HQ and 16GB RAM running Windows
10. We used a different setup for the PRT dataset as the SMA
implementation is provided as a Windows binary only.
Traditional constraints. We first investigated the overhead of
DESQ compared to specialized miners for prior subsequence
constraints. In particular we considered length and gap con-
straints as well as item hierarchies (17-73 of Tab. III). We
used the NYT dataset; the results are shown in Fig. 3(a)
using log-scale. We observed that DESQ-DFS was up to two
orders of magnitude faster than cSPADE and had negligible
overhead (less than 2.5%) compared to prefix-growth. For all
other experiments, DESQ-DFS was competitive and had an
overhead of up to 13%.
RE constraints. In this set of experiments, we evaluated the
efficiency of DESQ for mining frequent subsequences (all or
contiguous) that match a RE (P,—P, in Tab. III, PRT dataset,
constraints from [24]). We compared DESQ’s performance
against state-of-the-art RE-constraint FSM methods SMA and
prefix-growth. The results are shown in log-scale in Fig. 3(b).
We observed that DESQ was up to 2.5x slower than SMA for
P, and up to 1.3x slower than SMA on P». We do not give
SMA results for P; and P, because the implementation pro-
duced incorrect results (acknowledged by the original authors).
We did not investigate this further as the SMA source code is
not available. DESQ was roughly on par with prefix-growth
for Pi—P, (up to 1.3x) slower.

Customized constraints. We considered pattern expressions
that express constraints in information extraction (IE) and
natural language processing (NLP) applications (N1—N5 in
Tab. III, constraints inspired from [4], [5], [25], [26]). We eval-
uated the performance of Naive, DESQ-COUNT and DESQ-
DFS. The runtime results are shown in Fig. 3(c) in log-scale.
For expressions N1—N3, DESQ-COUNT and DESQ-DFS had
similar performance. For N4—N5, however, runtimes were
higher and DESQ-DFS was significantly faster than DESQ-
COUNT (up to 14x). To gain insight into these results, we
computed the average number p of P-sequences per input se-
quence (shown above each bar). For small values of n, DESQ-
COUNT and DESQ-DFS had similar performance, whereas
for larger values of i, DESQ-DFS was much more efficient.
When g is small, the simple counting method of DESQ-
COUNT is expected to work well because few sequences
are generated. When p is large, however, DESQ-COUNT
enumerates many sequences that turn out to be infrequent,
which is expensive. Many of these sequences are pruned early
by DESQ-DFS.

Summary. (1) Many subsequence constraints can be expressed
with pattern expressions. (2) DESQ has acceptable overhead
over state-of-the-art specialized sequence miners for common
subsequence constraints. (3) DESQ-COUNT was consistently
faster than Naive. (4) DESQ-COUNT and DESQ-DFS had
similar performance in cases where the average number of
P-subsequences per input sequence was small. (5) When
many subsequences per input were generated, DESQ-DFS was
more than an order of magnitude faster than DESQ-COUNT
and Naive. (6) cFSTs sped up pattern matching by multiple
orders of magnitude when compared to the state-of-the-art
FST library OpenFST (see [21]). Our results indicate that
DESQ is a suitable general-purpose system for a wide range
of subsequence constraints.

VII. RELATED WORK

Subsequence constraints. Prior work on FSM has mostly fo-
cused on specific notions of subsequence constraints. GSP [1]
and LASH [8], for example, allow gap constraints and in-
corporate item hierarchies. cSPADE [13] handles length, gap
and item constraints. Wu et al. [27] consider subsequences
with periodic wild card gaps, i.e., subsequences where con-
secutive items are separated by the same gap in the input. RE
constraints have been studied by [9], [12], [17], [18]; these
methods do not support capture groups. Some of the above
constraints (e.g., gap constraints) target the input sequence,
whereas others (e.g., length constraints, RE constraints) target
subsequences. Pattern expressions unify both targets and can
express all of the above subsequence constraints (e.g., see
Tab. 1) as well as customized subsequence constraints that arise
in FSM applications (e.g., see Tab. III).

Pattern matching. Our work is also related to to pattern
matching. There are many languages and systems for pattern
matching over sequences; e.g., for information extraction [28],
[29], computational linguistics [30], complex event process-
ing [31], and sequence databases [32], [33]. Our pattern
expressions are simpler than most pattern matching languages,
yet expressive enough to specify many subsequence con-
straints that arise in applications. The existing pattern matching
languages can conceivably be used to specify subsequence
predicates and mine P-frequent sequences using Naive, i.e.,
by first enumerating all matches and subsequently counting
frequencies. Our experiments indicate that this approach is
infeasible for many subsequence constraints. Instead, it is
beneficial to integrate pattern matching and mining, e.g., along
the lines of DESQ-COUNT and DESQ-DFS.


http://dws.informatik.uni-mannheim.de/en/resources/software/desq/
http://dws.informatik.uni-mannheim.de/en/resources/software/desq/

TABLE III: Pattern expr. for traditional FSM (77-T3), RE-constrained FSM (P;—P;), and IE and NLP applications (N1—N5)

Pattern expression Description Example patterns from NYT dataset (frequency)
Ti: (){LA} n-grams of up to \ words green tea (337), editor in chief (3275)
To: OL{0}OI{1,A — 1}Skip n-grams with gap at most v words and of up to length A flight from to (758), son of and of (15896)
Ts: (.T){l,)\} Generalized n-grams of up to A words NOUN PREP DET NOUN (4.2M), PERSON be NOUN (2199)
Example patterns from PRT dataset (frequency)

Py: ([SITD .*() . *([RIKD) subsequences that match RE=[S|T]. [R|K] SLR (103,093), TAK (102,941), SAK (102,946)
Py: (IVD .*(D).*(L) .*(G) .*(T) .*([S|T]) .* () .*([S|CD subsequences that match IDLGTTLS (102,975), VDLGTSTC (92,662)
RE=[I\VIDLGT[S|T].[S|C] VDLGTSDS (102,901)

Ps: ([S|T]. [R\K]) contiguous subsequences that match REE[S|T]. [R|K] SLR (14,995), TAK (8,840), SAK (10,397)
Py: ([S|T]..[DIED contiguous subsequences that match RE=[S|T]..[D|E] SDLE (2,015), TLEE (2,329), SGLD (1,054)

Example patterns from NYT dataset (frequency)

Nip: ENTITY (VERBT NOUNT?PREP?) ENTITY Relational phrase between entities lives in (847), is being advised by (15), has coached (10)

No: (ENTITYT VERB+ NOUNT?PREP?ENTITYT) Typed relational phrases ORG headed by ENTITY (275), PER born in LOC (481)
Ns: (ENTITYT beT=)DET? (ADV? ADJ?NOUN) Copular relation for an entity PER be novelist (165), LOC be great place (38),
Ny: (T){B} NOUN Generalized 3-grams before a noun NOUN PREP DET (4,223,219), DET ADV ADIJ (350,005)
Ns: (LTI T - T Generalized 3-grams, where at most one item is generalized the ADJ human (1,238), for DET book (1,704)
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Fig. 3: Wall-lock times of various mining tasks and mining algorithms

VIII. CONCLUSIONS

In this paper, we introduced subsequence predicates as a
general model for unifying and extending subsequence con-
straints for FSM. We proposed pattern expressions as a simple,
intuitive way to express subsequence constraints, suggested
compressed finite state transducers as an underlying compu-
tation model, and proposed the DESQ-COUNT and DESQ-
DEFS algorithms for efficient mining. Our experiments indicate
that DESQ is an efficient, general-purpose FSM framework for
common as well as customized subsequence constraints.
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