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•Goal: Discover subsequences as patterns in sequence data

• Input: Collection of sequences of items, e.g.,
→ Text collection (sequence of words)
→Customer transactions (sequence of products)

•Output: Subsequences that
→ occur in σ > 0 input sequences (frequency threshold)
→ have length at most λ > 0 (length threshold)
→ have gap γ ≥ 0 (contiguous or non-contiguous subse-

quences)

Sequence Mining

Example:
S1: Anna lives in Melbourne
S2: Bob lives in the city of Berlin
S3: Charlie likes London
lives in
(σ = 2, γ = 0, λ = 2)
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Items can be naturally arranged in a hierarchy:

a an the

DET

Syntactic hierarchy

Albert Einstein . . . . . . Barack Obama

Scientist Politician

PERSON

Melbourne . . .

CITY

Semantic hierarchy

Cannon5D Nikon5100

DSLR Camera Tripod

Photography

. . .

Product hierarchy

Hierarchies

• Item hierarchies are specifically taken into account

• Items in output sequences may belong to different levels in the
hierarchy

•Applications:
→ Linguistic patterns: read DET book
→ Information extraction: PERSON lives in CITY
→Market-basket analysis: buy DSLR Camera → Photogra-

phy book → flash
→Web-usage mining
→ . . .

Sequence Mining with Hierarchies

Example:
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•Distributed framework for generalized sequence mining

•Build over MapReduce for large-scale data processing

•MAP (partitioning)
→Data is divided into potentially overlapping partitions

•REDUCE (mining)
→Partitions are mined independently

•Scales to very large datasets
•Novel hierarchy aware form of item-based

partitioning
•Optimized partition construction
•Customized local mining
•No global post processing

Key features
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•Key idea: partition the output space

• Items are ordered by decreasing frequency
e.g. PERSON < CITY < in < lives < . . .

•Create a partition for each frequent item called
pivot item

•Rewrite each input sequence for each partition
→Fast rewrites (low overhead)
→Makes partitions as small as possible
→Reduces communication and skew

Partitioning

S1
S2
S3

(σ = 2, γ = 3, λ = 4)

PERSON _2 CITY : 1
PERSON _ CITY : 1

PERSON : 3

PERSON _ in CITY : 1
PERSON _ in _3 CITY : 1

PERSON lives in CITY : 1
PERSON lives in _3 CITY : 1

PERSON

CITY

in

lives

• Traditional approach
→Mine using any GSM alg.
→Filter non-pivot sequences
→ Inefficient

• LASH’s PSM approach
→Only mine pivot sequences
→Requires no filtering

{}
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Mining “lives” partition
(σ = 2, γ = 3, λ = 4)

Mining

The New York Times Corpus, syntactic hierarchy
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Overall runtime
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Local Mining

•Multiple orders of magnitude
faster
•PSM more than 3× faster than

traditional sequence miners
•Good strong and weak scalability

Highlights

Experiments

http://uma-pi1.github.io/lash/


