LASH: Large-Scale Sequence Mining with Hierarchies

Kaustubh Beedkar and Rainer Gemulla

Data and Web Science Group University of Mannheim, Germany {kbeedkar,rgemulla}@uni-mannheim.de

Sequence Mining

- Goal: Discover subsequences as patterns in sequence data
- Input: Collection of sequences of items, e.g.,
- \rightarrow Text collection (sequence of words)
- \rightarrow Customer transactions (sequence of products)
- Output: Subsequences that
- \rightarrow occur in $\sigma > 0$ input sequences (frequency threshold)

LASH

- Distributed framework for generalized sequence mining
- Build over MapReduce for large-scale data processing
- MAP (partitioning)
- \rightarrow Data is divided into potentially overlapping partitions
- REDUCE (mining)

- \rightarrow have length at most $\lambda > 0$ (length threshold)
- \rightarrow have gap $\gamma \geq 0$ (contiguous or non-contiguous subsequences)

Example:

- S_1 : Anna lives in Melbourne
- S_2 : Bob lives in the city of Berlin
- S_3 : Charlie likes London
- lives in
- $(\sigma = 2, \gamma = 0, \lambda = 2)$

\rightarrow Partitions are mined independently

Key features

- Scales to very large datasets
- Novel hierarchy aware form of item-based partitioning
- Optimized partition construction
- Customized local mining
- No global post processing

Hierarchies

Items can be naturally arranged in a hierarchy:

DET the an a Syntactic hierarchy PERSON

Partitioning

PERSON lives in CITY

PERSON lives in $_3$ CITY : 1

: 1

lives

• Key idea: partition the output space

- Items are ordered by decreasing frequency e.g. $PERSON < CITY < in < lives < \dots$
- Create a partition for each frequent item called pivot item
- Rewrite each input sequence for each partition
- \rightarrow Fast rewrites (low overhead)

Sequence Mining with Hierarchies

• Item hierarchies are specifically taken into account

• Items in output sequences may belong to different levels in the hierarchy

Example: S_1 : Anna lives in Melbourne

 \rightarrow Makes partitions as small as possible

 \rightarrow Reduces communication and skew

{}

PER.

Mining

- Traditional approach
- \rightarrow Mine using any GSM alg.
- \rightarrow Filter non-pivot sequences
- \rightarrow Inefficient
- LASH's PSM approach
- \rightarrow Only mine pivot sequences
- \rightarrow Requires no filtering

 S_2 : Bob lives in the city of Berlin S_3 : Charlie likes London **PERSON** lives in CITY $(\sigma = 2, \gamma = 3, \lambda = 4)$

• Applications:

 $\rightarrow \dots$

- → Linguistic patterns: read **DET** book
- \rightarrow Information extraction: **PERSON** lives in **CITY**
- \rightarrow Market-basket analysis: buy **DSLR Camera** \rightarrow **Photogra**phy book \rightarrow flash
- → Web-usage mining

Experiments

The New York Times Corpus, syntactic hierarchy

CITY

in CITY

in

