Sequence Mining

- **Goal**: Discover subsequences as patterns in sequence data
- **Input**: Collection of sequences of *items*, e.g.,
 - Text collection (sequence of words)
 - Customer transactions (sequence of products)
- **Output**: Subsequences that
 - occur in $\sigma > 0$ input sequences (frequency threshold)
 - have length at most $\lambda > 0$ (length threshold)
 - have gap $\gamma \geq 0$ (contiguous or non-contiguous subsequences)

Example:
- S_1: Anna lives in Melbourne
- S_2: Bob lives in the city of Berlin
- S_3: Charlie lives London

Hierarchies

Items can be naturally arranged in a hierarchy:

- **Syntactic hierarchy**
 - DET
 - a
 - all
 - the
 - PERSON
 - Scientist
 - Politician
 - Melbourne
 - CITY
 - DSLR Camera
 - Canon5D
 - Nikon5100
 - Tripod
 - Photography
 - Product hierarchy

Sequence Mining with Hierarchies

- **Item hierarchies** are specifically taken into account
- **Items** in output sequences may belong to different levels in the hierarchy

Example:
- S_1: Anna lives in Melbourne
- S_2: Bob lives in the city of Berlin
- S_3: Charlie lives London

LASH

- **Distributed framework** for generalized sequence mining
- **Build** over MapReduce for large-scale data processing
- **MAP (partitioning)**
 - Data is divided into potentially overlapping partitions
- **REDUCE (mining)**
 - Partitions are mined independently

Key features

- Scales to very large datasets
- Novel hierarchy-aware form of item-based partitioning
- Optimized partition construction
- Customized local mining
- No global post processing

Partitioning

- **Key idea**: partition the output space
- **Items** are ordered by decreasing frequency e.g., PERSON < CITY < in < lives < ...
- Create a partition for each frequent item called pivot item
- Rewrite each input sequence for each partition
 - Fast rewrites (low overhead)
 - Makes partitions as small as possible
 - Reduces communication and skew

Mining

- **Traditional approach**
 - Mine using any GSM alg.
 - Filter non-pivot sequences
 - Inefficient
- **LASH's PSM approach**
 - Only mine pivot sequences
 - Requires no filtering

Examples

- **The New York Times Corpus**, syntactic hierarchy

Experiments

The New York Times Corpus, syntactic hierarchy

- **Multiple orders of magnitude faster**
- **PSM more than 3x faster** than traditional sequence miners
- **Good strong and weak scalability**