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Smoking and Quitting in Groups

Researchers studying a network of 12,067 people found that smokers and nonsmokers tended to cluster in groups of close friends and family
members. As more people quit over the decades, remaining groups of smokers were increasingly pushed to the periphery of the social network.
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Friends Smokes Cancer
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Anna Anna yes F,: 1.5 Vx.Smokes(x)= Cancer(x)

Bob Bob yes F,: 1.1 Vx.¥y Friends(x,y) = (Smokes(x) < Smokes(y))
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Inference in Markov Logic Networks (I)

Sampling in MNL

* Approximation unavoidable
* Generic technique to approximate expectations

» Simple, versatile, well understood
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Inference in Markov Logic Networks (I)

Sampling in MNL

* Approximation unavoidable
* Generic technique to approximate expectations

» Simple, versatile, well understood

Sampling process

1. Assign a value to each variable

2. Count

3. Average
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Inference in Markov Logic Networks (I)

Sampling in MNL

* Approximation unavoidable
* Generic technique to approximate expectations

» Simple, versatile, well understood

Sampling process

1. Assign a value to each variable
2. Count
3. Average
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Sequential approach

MLN + Data

!

Grounding

Factor Graph
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Inference

Sequential
o
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Networks can be very large

Lots of applications

Link prediction
Information Extraction
Entity Resolution
Ontology Learning

How to gain scalability?

Grounding is expensive

Inference is expensive
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Networks can be very large

Lots of applications

Link prediction
Information Extraction
Entity Resolution
Ontology Learning

How to gain scalability?

Grounding is expensive

Inference is expensive

Why speed up sampling?

Expensive
Datasets can be big
Dataset 72k variables each sample between 2-5 seconds

1 million samples = 50 days
[



Partly parallel approach

MLN + Data

!

Grounding

Factor Graph

v

Inference

Sequential
o

MLN + Data
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Factor Graph
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Parallel Inference

Partly Parallel
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Distributing a network via graph cuts

Cut the network to sample each partition in parallel




Distributing a network via graph cuts

Cut 1s performed by removing factors to generate independent components

S(B)




Distributing a network via graph cuts

Each component can be sampled in parallel
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Distributing a network via graph cuts

Each component can be sampled in parallel

Information loss equivalent to lost connections. How big is the information loss?
° o 721



Outline

e Parallel Inference
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What 1s the best partitioning?

P

If factors 1n “cut”’are weak

> Q1*Q2*Q3=P

I Factors 1n the cut
B Local factors
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What 1s the best partitioning?

P

If factors in “cut”are weak > Q1 *Q2*Q3=P

How to find a cut with weak factors?

I Factors 1n the cut
B Local factors
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What 1s the best partitioning?

Importance Sampling

Cut the graph to get independent components

Get a sample from each component independently

Correct the sample to match the original distribution

> b=

Correction determined by factors in cut

I Factors in the cut
B Local factors

Efficiency of the estimation depends on the information loss (factors in the cut)



What 1s the best partitioning?

Importance Sampling

Cut the graph to get independent components

Get a sample from each component independently

Correct the sample to match the original distribution

> b=

Correction determined by factors in cut

I Factors in the cut
B Local factors

Efficiency of the estimation depends on the information loss (factors in the cut)

Standard Monte-Carlo Importance Sampling
X Vary|h(z)] arg|w(x ary,|h(x
Vary|i] = pn Varg(jus) ~ (1 + Varglw(z)])Vary|h(z)]

n

w(x): sum of the instantiated

factors in the cut for a sample
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Quality of the cut: a bound

* Calculating the dispersion of the weights in the cut is intractable
* What is the worst possible quality for each cut?
* What is the best of the worst?
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Quality of the cut: a bound

* Calculating the dispersion of the weights in the cut 1s intractable

*  What is the worst possible quality for each cut?

What is the best worst cut?

Minimize the sum of the factors in the cut

v

I Factors in the cut

Can be easily casted mto a B Local factors
standard min-cut algorithm
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Quality of the cut: a bound

* Calculating the dispersion of the weights in the cut is intractable

* What is the worst possible quality for each cut?

What is the best worst cut?

Minimize the sum of the factors in the cut

v

Can be easily casted into a
standard min-cut algorithm
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Results Parallel Inference with Importance Sampling

Dataset
 UW-CSE (22 predicates, 94 clauses)

* Link prediction
¢ ~9K variables and ~1M factors (after grounding)

Maximum SE
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‘Results Parallel Inference with Importance Sampling

Dataset
 UW-CSE (22 predicates, 94 clauses)

* Link prediction
¢ ~9K variables and ~1M factors (after grounding)

Sequential and parallel probabilistic inference (4 partitions)
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Fully Parallel Approach

MLN + Data

l

Grounding

MLN + Data

l

MLN + Data

l

Factor Graph

v

Grounding

MLN Partitioning

Inference

Factor Graph

v

Partitioned MLN

v

Sequential
o
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Parallel
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Partitioned Factor Graph

v

Partitioned Factor Graph

v

Parallel Inference

Parallel Inference

Partly Parallel

Fully Parallel
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Outline

* Parallel Grounding
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Parallel Grounding

K-partitions
K-partitions 1

A

7~ | MLN, | | Data, =

Markov Logic 20| —é
Network Z = = —
§ .S | MLN, | Daw, o e—)
5| T —)

Data a® =

\ ' MLN, Data, E

—

1 MLN partitioning

e Use information at the schema level
* Compute partitions before grounding

* Ground partitions in parallel

Parallel inference

* Avoids expensive graph cuts



Grounding = Database joins

Formula Smokes(x) = Cancer(x)

Predicates and domain

Smokes( person)
Cancer(person)
person = {Anna,Bob}

CNF —Smokes(x) v Cancer(x)

Ground Clauses

—Smokes(Anna) v Cancer(Anna)

—Smokes(Bob) v Cancer(Bob)
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Grounding = Database joins

Formula Smokes(x) = Cancer(x)

Predicates and domain

Smokes( person)
Cancer(person)
person = {Anna,Bob}

CNF —Smokes(x) v Cancer(x)

Ground Clauses

—Smokes(Anna) v Cancer(Anna)

—Smokes(Bob) v Cancer(Bob)

* Ground variables corresponds to Relations

R,: Smokes
Attr ' Person

Anna
Bob

R,: Cancer
Attr  Person

Anna

Bob
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Grounding = Database joins

Formula Smokes(x) = Cancer(x)

Predicates and domain

Smokes( person)
Cancer(person)

person = {Anna,Bob}

CNF —Smokes(x) v Cancer(x)
Ground Clauses

f, — Smokes(Anna) v Cancer(Anna)

f;, —Smokes(Bob) v Cancer(Bob)

 Ground clauses corresponds to natural join: Smokes PX{Cancer

Smokes Cancer

Person Person
f;; Anna Anna
fi2 Bob Bob
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MLN Partitioning (partitioning a relation)

R(x,y)

Dom(x) = {Anna, Bob}
Dom(y) = {Charles, Debbie}

R
Attributes X y
Anna Charles
Bob  Charles
Anna Debbie
Bob  Debbie
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MLN Partitioning (partitioning a relation)

R(x.)
Dom(x) = {Anna, Bob}
Dom(y) = {Charles, Debbie}

Rl = Gy=Charles (R) R2 o Gy=Debbie (R)
R, R,
Attributes  x y Attributes  x y
Anna Charles Anna Debbie
Bob Charles Bob Debbie




MLN Partitioning (partitioning a relation)

{ R(x) }
Dom(x) = {Anna, Bob}
Dom(y) = {Charles, Debbie}

Rl = Gy=Charles (R) R2 = Gy=Debbie (R)

\ Nodel | | Node 2 ]
| |
R(x.y) R(x.y)
Ground Dom(x)= {Anna, Bob} Ground Dom(x)= {Anna, Bob}
Dom(y) = {Charles} Dom(y) = {Debbie}

o ° 40



MLN Partitioning (co-partitioning relations)

Dom(x) = {Anna, Bob}

f: R(x,y)vS(y)
Dom(y) = {Charles, Debbie}
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MLN Partitioning (co-partitioning relations)

f: R(x,y)vS(y)
Dom(x) = {Anna, Bob}
Dom(y) = {Charles, Debbie}

R S

X y y

Anna Charles  Charles

Bob Charles  Charles

Anna Debbie  Debbie

Bob Debbie  Debbie
R X S

R.y=S.y
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MLN Partitioning (co-partitioning relations)

f: R(x,y)vS(y)
Dom(x) = {Anna, Bob}
Dom(y) = {Charles, Debbie}

Rl = O-y=Charles (R)
Sl = GyZCharles (S)

R, S
X y y
Anna Charles  Charles
Bob Charles  Charles
R, M §,
R,y=S,»

Local join

R, = O \—Debbie (R)
S, = O \—Debbie (S)

R, S,
X y y
Anna Debbie Debbie
Bob Debbie Debbie
R, X §,
R,)=S,.y

° 43



MLN Partitioning (co-partitioning relations)

|

f: R(x,y)vS(y)
Dom(x) = {Anna, Bob}
Dom(y) = {Charles, Debbie}

Rl = O-y=Charles (R)
Sl = GyZCharles (S)

fi @ f,
<&y CRp.0)D

\ Nodel }

R(x,y)Yv S(y)
Ground Dom(x)= {Anna, Bob}

Dom(y) = {Charles}

R, = O \—Debbie (R)
S, = O \—Debbie (S)

\ Node 2 }

R(x,yyv S(y)
Ground Dom(x) = {Anna, Bob}

Dom(y) = {Debbie}
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MLN Partitioning

[ £ R(x.y) v S()

Dom(x) = {A, B}

= C,
f, : R(x,y) v T(x,2) ggﬁg; = gR (]2)}}
R(A,C) B
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MLN Partitioning

f, : R(x,y) v S(y) Dom(x) = {A, B}

- (C
f, : R(x,y) v T(x,2) ggﬁg; = iP:(IQ)}}

R(A,Q) |

How to compute partitions at the Markov logic level ?



MLN Partitioning

Dom(x) = {A, B}
Dom(y) = {C, D}
Dom(z) = {P, Q}

f; : R(x,y) v S(y)
f,: R(x,y) v T(x,2)

J 1
S(») X R(x,y)

W
Ry=S.y

Partitioning at Rule level

* Model MLN as a join graph

T(x,z)
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MLN Partitioning

|

f, : R(x,y) v S(y)

Dom(x) = {A, B}

D ={C,D
f, : R(x,y) v T(x,z) Dgﬁg)) = iP, Q}}
j J
S(y) Rz?ﬁ S,y R(x.y) Rzgi Tx Tx2)

Co-partitioning strategy?
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MLN Partitioning

f, : R(x,y) v S(y) Dom(x) = {A, B}

— (C.D
f, : R(x,y) v T(x,z) ggﬁg)) = iP, Q}}

S(y) s - R(x,y)

Partitioning at Rule level
* Model MLN as a join graph

* Estimate join sizes

V' N
Rx=Tx

I, =8

T(x,z)
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MLN Partitioning

f 1 R(6,)) v S() Do = 16D
£, : R(x,y) v T(x,2) Barn(is) = {P,,Q}
Ji Iy
S») R.ylr>§ Sy R(x.y) R.)Ei Tax Tx2)
3 =4 1) =8
Partitioning at Rule level
* Model MLN as a join graph

Estimate join sizes

Co-partition to maximize size of local joins — optimization problem

* Encode as an ILP



MLN Partitioning

f, : R(x,y) v T(x,2) Dom(y) = {C, D}

f, : R(x,y) v S(y) Dom(x) = {A, B}
Dom(z) = {P, Q}

Ji j

2M
S0) Ry=Sy R(x.y) R.x = Tx Tx2)

IS(y) =4 Local join

JS(J,) =8

Co-partition R and T on Dom(x)

S on Dom(y)

A
a N

Ground Ground
R(x,y) Dom(x) = {A}, Dom(y) = {C,D} R(x,y) Dom(x) = {B}, Dom(y) = {C,D}
T(x,z) Dom(x) = {A}, Dom(z) = {P,Q} T(x,z) Dom(x) = {B}, Dom(z) = {P,Q}
S(v)  Dom(y) = {Cj} S(v) Dom(y) = {Dj
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MLN Partitioning

f, : R(x,y) v S(y)
f,: R(x,y) v T(x,2)

Dom(x) = {A, B}
Dom(y) = {C, D}
Dom(z) = {P, Q}

R(A,C) ]

| \

Ground

R(x,y) Dom(x) = {A}, Dom(y) = {C,D}
T(x,z) Dom(x) = {A}, Dom(z) = {P,Q}
S(») Dom(y) = {C}

Ground
R(x,y) Dom(x) = {B}, Dom(y) = {C,D}
T(x,z) Dom(x) = {B}, Dom(z) = {P,Q}
S(») Dom(y) = {D}
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MLN Partitioning (evaluation)

Comparison of various graph partitioning approaches for k partitions

k Approach Factors in cut Weight of cut Balancing Runtime
k=2 PaToH 4678 1109.04 0.000 948.288s
Tufty 4686 1108.66 0.000 1.092s
MLN part. 4690 1109.47 0.000 0.003s
k=4 PaToH 63001 64500.40 0.012 952.254s
Tufty 7040 1662.46 0.000 1.288s
MLN part. 7023 1662.84 0.000 0.003s
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Outline

Conclusion
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Conclusions

Markov logic networks
* Incomplete database + first order rules
* Scalability challenges

First fully parallel approach to MLN inference
* Partition the MLN before grounding
* Ground partitions 1n parallel

* Run parallel inference

Preliminary experimental results
* Orders of magnitude faster partitioning at similar quality
 Parallel inference effective
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Questions?

Thank you!
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