Fully Parallel Inference in Markov Logic Networks

Kaustubh Beedkar, Luciano Del Corro, Rainer Gemulla

Max-Planck-Institut für Informatik
Saarbrücken

Smoking and Quitting in Groups

Researchers studying a network of 12,067 people found that smokers and nonsmokers tended to cluster in groups of close friends and family members. As more people quit over the decades, remaining groups of smokers were increasingly pushed to the periphery of the social network.

1971 A sample of 1,000 people from

2000 Nearly three decades later, groups of smokers tended to be smaller and more isolated.

KEY

Male smoker

- Female smoker
- Male nonsmoker

Female nonsmoker

- Friendship marriage or family tie

Circle size is proportional to the number of cigarettes smoked per day.

THE NEW YORK TIMES

Friends			Smokes		Cancer	
Name1	Name2	Value	Name	Value	Name	Value
Anna	Bob	yes	Anna	yes	Anna	no
Bob	Anna	yes				
Anna	Anna	yes				
Bob	Bob	yes				

Frien			Smo		Can	
Name1	Name2	Value	Name	Value	Name	Value
Anna	Bob	yes	Anna	yes	Anna	no
Bob	Anna	yes				
Anna	Anna	yes	$\mathrm{F}_{1}: 1.5 \quad \forall x \cdot \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)$			
Bob	Bob	yes	$\mathrm{F}_{2}: 1.1$	$x . \forall y$. Fri	\Rightarrow (Sm	$\mathrm{s}(x) \Leftrightarrow$

Friends

Name1	Name2	Value
Anna	Bob	yes
Bob	Anna	yes
Anna	Anna	yes
Bob	Bob	yes

Smokes

Name	Value
Anna	yes

Cancer

Name	Value
Anna	no

F(A,A)

$\mathrm{F}(\mathrm{B}, \mathrm{B})$

Friends

Name1	Name2	Value
Anna	Bob	yes
Bob	Anna	yes
Anna	Anna	yes
Bob	Bob	yes

Cancer

Name	Value
Anna	no

\square True
False
Unknown

Smokes

Name	Value
Anna	yes

Friends		
Name1	Name2	Value
Anna	Bob	yes
Bob	Anna	yes
Anna	Anna	yes
Bob	Bob	yes

Smokes

Name	Value
Anna	yes

Cancer

Name	Value
Anna	no

\square True
False
F(A,B)
F(A,B)

Friends		
Name1	Name2	Value
Anna	Bob	yes
Bob	Anna	yes
Anna	Anna	yes
Bob	Bob	yes

Cancer

Name	Value
Anna	no

\square True
False
\square Unknown

Smokes

Name	Value
Anna	yes

$\mathrm{F}_{1}: 1.5 \quad \forall x \cdot \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)$
$\mathrm{F}_{2}: 1.1 \forall x . \forall y . \operatorname{Friends}(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))$

Friends		
Name1	Name2	Value
Anna	Bob	yes
Bob	Anna	yes
Anna	Anna	yes
Bob	Bob	yes

Smokes

Name	Value
Anna	yes

Cancer

Name	Value
Anna	no

$$
\begin{aligned}
& \mathrm{F}_{1}: 1.5 \quad \forall x \cdot \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x) \\
& \mathrm{F}_{2}: 1.1 \quad \forall x . \forall y \cdot \operatorname{Friends}(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))
\end{aligned}
$$

Friends

Name1	Name2	Value
Anna	Bob	yes
Bob	Anna	yes
Anna	Anna	yes
Bob	Bob	yes

Cancer

Name	Value
Anna	no

$$
\begin{aligned}
& \mathrm{F}_{1}: 1.5 \quad \forall x \cdot \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x) \\
& \mathrm{F}_{2}: 1.1 \quad \forall x . \forall y . \operatorname{Friends}(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))
\end{aligned}
$$

Inference in Markov Logic Networks (I)

Sampling in MNL

- Approximation unavoidable
- Generic technique to approximate expectations
- Simple, versatile, well understood

Inference in Markov Logic Networks (I)

Sampling in MNL

- Approximation unavoidable
- Generic technique to approximate expectations
- Simple, versatile, well understood

Sampling process

1. Assign a value to each variable
2. Count
3. Average

Var	\#true	\#false
$\mathrm{F}(\mathrm{A}, \mathrm{A})$	XX	XX
$F(A, B)$	XX	XX
$\mathrm{F}(\mathrm{B}, \mathrm{A})$	XX	XX
$\mathrm{F}(\mathrm{B}, \mathrm{B})$	XX	XX
S(A)	XX	XX
S(B)	XX	XX
C(A)	XX	XX
C(B)	XX	XX
$F(B, B)$		
		- 12

Inference in Markov Logic Networks (I)

Sampling in MNL

- Approximation unavoidable
- Generic technique to approximate expectations
- Simple, versatile, well understood

Sampling process

1. Assign a value to each variable
2. Count
3. Average

$$
\frac{1}{n} \sum_{i=1}^{n} h\left(x^{(i)}\right)=\hat{\mu} \quad \operatorname{Var}_{p}[\hat{\mu}]=\frac{\operatorname{Var}_{p}[h(x)]}{n}
$$

More samples more efficiency

Sequential approach

Networks can be very large

Lots of applications

- Link prediction
- Information Extraction
- Entity Resolution
- Ontology Learning

How to gain scalability?

- Grounding is expensive
- Inference is expensive

Networks can be very large

Lots of applications

- Link prediction
- Information Extraction
- Entity Resolution
- Ontology Learning

How to gain scalability?

- Grounding is expensive
- Inference is expensive

Why speed up sampling?

- Expensive
- Datasets can be big
- Dataset 72k variables each sample between 2-5 seconds
- 1 million samples ≈ 50 days

Partly parallel approach

Distributing a network via graph cuts

Cut the network to sample each partition in parallel

Distributing a network via graph cuts

Cut is performed by removing factors to generate independent components

Distributing a network via graph cuts

Each component can be sampled in parallel

Distributing a network via graph cuts

Each component can be sampled in parallel

Information loss equivalent to lost connections. How big is the information loss?

Outline

- Background and Motivation
- Parallel Inference
- Parallel Grounding
- Conclusion

What is the best partitioning?

If factors in "cut"are weak $\longrightarrow \mathrm{Q} 1 *$ Q2 * Q3 $\approx \mathrm{P}$

What is the best partitioning?

Factors in the cut
Local factors

If factors in "cut"are weak $\longrightarrow \mathrm{Q} 1 *$ Q2 * Q3 $\approx \mathrm{P}$
How to find a cut with weak factors?

What is the best partitioning?

Importance Sampling

1. Cut the graph to get independent components
2. Get a sample from each component independently
3. Correct the sample to match the original distribution
4. Correction determined by factors in cut

\square Factors in the cut

- Local factors

What is the best partitioning?

Importance Sampling

1. Cut the graph to get independent components
2. Get a sample from each component independently
3. Correct the sample to match the original distribution
4. Correction determined by factors in cut

Factors in the cut

- Local factors

Efficiency of the estimation depends on the information loss (factors in the cut)

Standard Monte-Carlo

$$
\operatorname{Var}_{p}[\hat{\mu}]=\frac{\operatorname{Var}_{p}[h(x)]}{n}
$$

Importance Sampling

$$
\operatorname{Var}_{q}\left(\hat{\mu}_{i s}\right) \approx \frac{\left(1+\operatorname{Var}_{q}[w(x)]\right) \operatorname{Var}_{p}[h(x)]}{n}
$$

$\mathrm{w}(\mathrm{x})$: sum of the instantiated factors in the cut for a sample

Quality of the cut: a bound

- Calculating the dispersion of the weights in the cut is intractable
- What is the worst possible quality for each cut?
- What is the best of the worst?

Quality of the cut: a bound

- Calculating the dispersion of the weights in the cut is intractable
- What is the worst possible quality for each cut?

What is the best worst cut?

Minimize the sum of the factors in the cut

Can be easily casted into a

Factors in the cut

- Local factors standard min-cut algorithm

Quality of the cut: a bound

- Calculating the dispersion of the weights in the cut is intractable
- What is the worst possible quality for each cut?

What is the best worst cut?

Minimize the sum of the factors in the cut

Can be easily casted into a standard min-cut algorithm

Bound vs. Mean Square Error

Results Parallel Inference with Importance Sampling

Dataset

- UW-CSE (22 predicates, 94 clauses)
- Link prediction
- $\quad \sim 9 \mathrm{~K}$ variables and $\sim 1 \mathrm{M}$ factors (after grounding)

Results Parallel Inference with Importance Sampling

Dataset

- UW-CSE (22 predicates, 94 clauses)
- Link prediction
- $\quad \sim 9 \mathrm{~K}$ variables and $\sim 1 \mathrm{M}$ factors (after grounding)

Sequential and parallel probabilistic inference (4 partitions)

Average MSE
Maximum SE

Fully Parallel Approach

Outline

- Background and Motivation
- Parallel Inference
- Parallel Grounding
- Conclusion

Parallel Grounding

- Avoids expensive graph cuts

Grounding \equiv Database joins

Formula $\operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)$	CNF $\quad \neg \operatorname{Smokes}(x) \vee \operatorname{Cancer}(x)$
Predicates and domain	Ground Clauses
Smokes $($ person $)$	$\neg \operatorname{Smokes}(A n n a) \vee \operatorname{Cancer}($ Anna $)$
Cancer $($ person $)$	$\neg \operatorname{Smokes}(B o b) \vee \operatorname{Cancer}($ Bob $)$
person $=\{$ Anna,Bob $\}$	

Grounding \equiv Database joins

Formula $\operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)$	CNF $\quad \neg \operatorname{Smokes}(x) \vee \operatorname{Cancer}(x)$
Predicates and domain	Ground Clauses
Smokes $($ person $)$	$\neg \operatorname{Smokes}($ Anna $) \vee \operatorname{Cancer}($ Anna $)$
Cancer $($ person $)$	$\neg \operatorname{Smokes}($ Bob $) \vee \operatorname{Cancer}($ Bob $)$
person $=\{$ Anna,Bob $\}$	

- Ground variables corresponds to Relations

$\mathrm{R}_{1}:$ Smokes	
Attr	Person
	Anna
	Bob

$\mathrm{R}_{2}:$ Cancer	
Attr	Person
Anna	
	Bob

Grounding \equiv Database joins

Formula $\operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)$
Predicates and domain
Smokes(person)
Cancer(person)
person $=\{$ Anna,Bob $\}$

CNF $\neg \operatorname{Smokes}(x) \vee \operatorname{Cancer}(x)$

Ground Clauses

$$
\begin{aligned}
& \mathbf{f}_{11} \neg \operatorname{Smokes}(\text { Anna }) \vee \text { Cancer }(\text { Anna }) \\
& \mathbf{f}_{12} \neg \operatorname{Smokes}(\text { Bob }) \vee \text { Cancer }(\text { Bob })
\end{aligned}
$$

- Ground clauses corresponds to natural join: Smokes \bowtie Cancer

MLN Partitioning (partitioning a relation)

```
R(x,y)
Dom(x)={Anna, Bob}
Dom(y) ={Charles, Debbie}
```

R		
Attributes	x	y
	Anna	Charles
	Bob	Charles
	Anna	Debbie
	Bob	Debbie

MLN Partitioning (partitioning a relation)

```
R(x,y)
Dom}(x)={Anna,Bob
Dom(y)={Charles, Debbie}
```

$$
\mathrm{R}_{1}=\sigma_{y=\text { Charles }}(\mathrm{R})
$$

$$
\mathrm{R}_{2}=\sigma_{y=\text { Debbie }}(\mathrm{R})
$$

R_{1}		
Attributes	x	y
	Anna	Charles
	Bob	Charles

R_{2}		
Attributes	x	y
	Anna	Debbie
	Bob	Debbie

MLN Partitioning (partitioning a relation)

```
R(x,y)
Dom(x) = {Anna, Bob}
Dom(y)={Charles, Debbie}
```

$$
\mathrm{R}_{1}=\sigma_{\mathrm{y}=\text { Charles }}(\mathrm{R})
$$

$$
\mathrm{R}_{2}=\sigma_{y=\text { Debbie }}(\mathrm{R})
$$

$\mathrm{R}(x, y)$
Ground $\operatorname{Dom}(x)=\{$ Anna, $\operatorname{Bob}\}$
$\operatorname{Dom}(y)=\{$ Debbie $\}$

MLN Partitioning (co-partitioning relations)

f: $\mathrm{R}(x, y) \vee \mathrm{S}(y)$
$\operatorname{Dom}(x)=\{\operatorname{Anna}, \operatorname{Bob}\}$
$\operatorname{Dom}(y)=\{$ Charles, Debbie $\}$

MLN Partitioning (co-partitioning relations)

```
f: \(\mathrm{R}(x, y) \vee \mathrm{S}(y)\)
\(\operatorname{Dom}(x)=\{\operatorname{Anna}, \operatorname{Bob}\}\)
\(\operatorname{Dom}(y)=\{\) Charles, Debbie \(\}\)
```

	R		
	x	y	y
$\mathbf{f}_{\mathbf{1}}$	Anna	Charles	Charles
$\mathbf{f}_{\mathbf{2}}$	Bob	Charles	Charles
$\mathbf{f}_{\mathbf{3}}$	Anna	Debbie	Debbie
$\mathbf{f}_{\mathbf{4}}$	Bob	Debbie	Debbie
		R $\bigotimes_{\mathbf{R} . \boldsymbol{y}=\mathbf{S} . \boldsymbol{y}}^{\mathbf{S}}$	

MLN Partitioning (co-partitioning relations)

```
f : \(\mathrm{R}(x, y) \vee \mathrm{S}(y)\)
\(\operatorname{Dom}(x)=\{\operatorname{Anna}, \operatorname{Bob}\}\)
\(\operatorname{Dom}(y)=\{\) Charles, Debbie \(\}\)
```

$\mathrm{R}_{1}=\sigma_{y=\text { Charles }}(\mathrm{R})$
$\mathrm{S}_{1}=\sigma_{y=\text { Charles }}(\mathrm{S})$

	R_{1}		S_{1}
	x	y	y
f_{1}	Anna	Charles	Charles
f_{2}	Bob	Charles	Charles
$\mathrm{R}_{1} \underset{\mathrm{R}_{1} \cdot y=\mathbf{S}_{1} \cdot y}{\bowtie}$			

$$
\begin{aligned}
\mathrm{R}_{2} & =\sigma_{y=\text { Debbie }}(\mathrm{R}) \\
\mathrm{S}_{2} & =\sigma_{y=\text { Debbie }}(\mathrm{S})
\end{aligned}
$$

	R_{2}		S_{2}
	x	y	y
f_{3}	Anna	Debbie	Debbie
f_{4}	Bob	Debbie	Debbie
$\mathrm{R}_{2} \underset{\mathbf{R}_{2} \cdot \boldsymbol{y}=\mathbf{S}_{2} \cdot \boldsymbol{y}}{\mathrm{~S}_{2}}$			

Local join

MLN Partitioning (co-partitioning relations)

```
f: \(\mathrm{R}(x, y) \vee \mathrm{S}(y)\)
\(\operatorname{Dom}(x)=\{\operatorname{Anna}, \operatorname{Bob}\}\)
\(\operatorname{Dom}(y)=\{\) Charles, Debbie \(\}\)
```

$$
\begin{aligned}
& \mathrm{R}_{1}=\sigma_{y=\text { Charles }}(\mathrm{R}) \\
& \mathrm{S}_{1}=\sigma_{y=\text { Charles }}(\mathrm{S})
\end{aligned}
$$

Ground $\operatorname{Dom}(x)=\{$ Anna, $\operatorname{Bob}\}$ $\operatorname{Dom}(y)=\{$ Charles $\}$

$$
\begin{aligned}
\mathrm{R}_{2} & =\sigma_{y=\text { Debbie }}(\mathrm{R}) \\
\mathrm{S}_{2} & =\sigma_{y=\text { Debbie }}(\mathrm{S})
\end{aligned}
$$

Ground $\operatorname{Dom}(x)=\{$ Anna, $\operatorname{Bob}\}$
$\operatorname{Dom}(y)=\{$ Debbie $\}$

MLN Partitioning

$$
\begin{array}{ll}
\mathrm{f}_{1}: \mathrm{R}(x, y) \vee \mathrm{S}(y) & \operatorname{Dom}(x)=\{\mathrm{A}, \mathrm{~B}\} \\
\mathrm{f}_{2}: \mathrm{R}(x, y) \vee \mathrm{T}(x, z) & \operatorname{Dom}(y)=\{\mathrm{C}, \mathrm{D}\} \\
\operatorname{Dom}(z)=\{\mathrm{P}, \mathrm{Q}\}
\end{array}
$$

MLN Partitioning

$$
\begin{array}{ll}
\mathrm{f}_{1}: \mathrm{R}(x, y) \vee \mathrm{S}(y) & \operatorname{Dom}(x)=\{\mathrm{A}, \mathrm{~B}\} \\
\mathrm{f}_{2}: \mathrm{R}(x, y) \vee \mathrm{T}(x, z) & \operatorname{Dom}(y)=\{\mathrm{C}, \mathrm{D}\} \\
\operatorname{Dom}(z)=\{\mathrm{P}, \mathrm{Q}\}
\end{array}
$$

How to compute partitions at the Markov logic level ?

MLN Partitioning

$$
\begin{array}{ll}
\mathrm{f}_{1}: \mathrm{R}(x, y) \vee \mathrm{S}(y) & \operatorname{Dom}(x)=\{\mathrm{A}, \mathrm{~B}\} \\
\mathrm{f}_{2}: \mathrm{R}(x, y) \vee \mathrm{T}(x, z) & \operatorname{Dom}(y)=\{\mathrm{C}, \mathrm{D}\} \\
\operatorname{Dom}(z)=\{\mathrm{P}, \mathrm{Q}\}
\end{array}
$$

Partitioning at Rule level

- Model MLN as a join graph

MLN Partitioning

$$
\begin{array}{ll}
\mathrm{f}_{1}: \mathrm{R}(x, y) \vee \mathrm{S}(y) & \operatorname{Dom}(x)=\{\mathrm{A}, \mathrm{~B}\} \\
\mathrm{f}_{2}: \mathrm{R}(x, y) \vee \mathrm{T}(x, z) & \operatorname{Dom}(y)=\{\mathrm{C}, \mathrm{D}\} \\
\operatorname{Dom}(z)=\{\mathrm{P}, \mathrm{Q}\}
\end{array}
$$

$$
\mathrm{S}(y) \frac{\mathrm{J}_{1}}{\mathrm{R} \cdot y=\mathrm{S} \cdot y} \mathrm{R}(x, y) \frac{\mathrm{J}_{2}}{\mathrm{R} \cdot x=\mathrm{T} \cdot x} \mathrm{~T}(x, z)
$$

Partitioning at Rule level
 Co-partitioning strategy?

MLN Partitioning

$$
\begin{array}{ll}
\mathrm{f}_{1}: \mathrm{R}(x, y) \vee \mathrm{S}(y) & \operatorname{Dom}(x)=\{\mathrm{A}, \mathrm{~B}\} \\
\mathrm{f}_{2}: \mathrm{R}(x, y) \vee \mathrm{T}(x, z) & \operatorname{Dom}(y)=\{\mathrm{C}, \mathrm{D}\} \\
\operatorname{Dom}(z)=\{\mathrm{P}, \mathrm{Q}\}
\end{array}
$$

$$
\begin{aligned}
& \mathrm{S}(y) \frac{\mathrm{J}_{1}}{\mathrm{R} . y=\mathrm{S} . y} \mathrm{R}(x, y) \frac{\mathrm{J}_{2}}{{ }_{\mathrm{R} . x} . x} \mathrm{~T} . x \mathrm{t} \\
& \left|\mathrm{~J}_{1}\right|=4 \quad\left|\mathrm{~J}_{2}\right|=8
\end{aligned}
$$

Partitioning at Rule level

- Model MLN as a join graph
- Estimate join sizes

MLN Partitioning

$$
\begin{array}{ll}
\mathrm{f}_{1}: \mathrm{R}(x, y) \vee \mathrm{S}(y) & \operatorname{Dom}(x)=\{\mathrm{A}, \mathrm{~B}\} \\
\mathrm{f}_{2}: \mathrm{R}(x, y) \vee \mathrm{T}(x, z) & \operatorname{Dom}(y)=\{\mathrm{C}, \mathrm{D}\} \\
\operatorname{Dom}(z)=\{\mathrm{P}, \mathrm{Q}\}
\end{array}
$$

$$
\begin{aligned}
& \mathrm{S}(y) \frac{\mathrm{J}_{1}}{\mathrm{R}^{2} . y=\mathrm{S} . y} \mathrm{R}(x, y) \frac{\mathrm{J}_{2}}{\mathrm{R}^{M} x=\mathrm{T} . x} \mathrm{~T}(x, z) \\
& \left|\mathrm{J}_{1}\right|=4 \quad\left|\mathrm{~J}_{2}\right|=8
\end{aligned}
$$

Partitioning at Rule level

- Model MLN as a join graph
- Estimate join sizes
- Co-partition to maximize size of local joins - optimization problem
- Encode as an ILP

MLN Partitioning

$$
\begin{array}{ll}
\mathrm{f}_{1}: \mathrm{R}(x, y) \vee \mathrm{S}(y) & \operatorname{Dom}(x)=\{\mathrm{A}, \mathrm{~B}\} \\
\mathrm{f}_{2}: \mathrm{R}(x, y) \vee \mathrm{T}(x, z) & \operatorname{Dom}(y)=\{\mathrm{C}, \mathrm{D}\} \\
\operatorname{Dom}(z)=\{\mathrm{P}, \mathrm{Q}\}
\end{array}
$$

- $\mathrm{JS}\left(\mathrm{J}_{1}\right)=4$
- $\mathrm{JS}\left(\mathrm{J}_{2}\right)=8$

Local join

- Co-partition R and T on $\operatorname{Dom}(x)$
- S on $\operatorname{Dom}(y)$

Ground
$\mathrm{R}(x, y) \operatorname{Dom}(x)=\{\mathbf{A}\}, \operatorname{Dom}(y)=\{\mathrm{C}, \mathrm{D}\}$
$\mathrm{T}(x, z) \operatorname{Dom}(x)=\{\mathbf{A}\}, \operatorname{Dom}(z)=\{\mathrm{P}, \mathrm{Q}\}$
$\mathrm{S}(y) \quad \operatorname{Dom}(y)=\{\mathrm{C}\}$

Ground
$\mathrm{R}(x, y) \operatorname{Dom}(x)=\{\mathbf{B}\}, \operatorname{Dom}(y)=\{\mathrm{C}, \mathrm{D}\}$
$\mathrm{T}(x, z) \operatorname{Dom}(x)=\{\mathrm{B}\}, \operatorname{Dom}(z)=\{\mathrm{P}, \mathrm{Q}\}$
$\mathrm{S}(y) \quad \operatorname{Dom}(y)=\{\mathrm{D}\}$

MLN Partitioning

$$
\begin{array}{ll}
\mathrm{f}_{1}: \mathrm{R}(x, y) \vee \mathrm{S}(y) & \operatorname{Dom}(x)=\{\mathrm{A}, \mathrm{~B}\} \\
\mathrm{f}_{2}: \mathrm{R}(x, y) \vee \mathrm{T}(x, z) & \operatorname{Dom}(y)=\{\mathrm{C}, \mathrm{D}\} \\
\operatorname{Dom}(z)=\{\mathrm{P}, \mathrm{Q}\}
\end{array}
$$

Ground

$\mathrm{R}(x, y) \operatorname{Dom}(x)=\{\mathbf{A}\}, \operatorname{Dom}(y)=\{\mathrm{C}, \mathrm{D}\}$
$\mathrm{T}(x, z) \operatorname{Dom}(x)=\{\mathbf{A}\}, \operatorname{Dom}(z)=\{\mathrm{P}, \mathrm{Q}\}$
$\mathrm{S}(y) \quad \operatorname{Dom}(y)=\{\mathrm{C}\}$

Ground
$\mathrm{R}(x, y) \operatorname{Dom}(x)=\{\mathbf{B}\}, \operatorname{Dom}(y)=\{\mathrm{C}, \mathrm{D}\}$
$\mathrm{T}(x, z) \operatorname{Dom}(x)=\{\mathrm{B}\}, \operatorname{Dom}(z)=\{\mathrm{P}, \mathrm{Q}\}$
$\mathrm{S}(y) \quad \operatorname{Dom}(y)=\{\mathrm{D}\}$

MLN Partitioning (evaluation)

Comparison of various graph partitioning approaches for k partitions

k	Approach	Factors in cut	Weight of cut	Balancing	Runtime
$k=2$	PaToH	4678	1109.04	0.000	948.288 s
	Tuffy	4686	1108.66	0.000	1.092 s
	MLN part.	$\mathbf{4 6 9 0}$	$\mathbf{1 1 0 9 . 4 7}$	$\mathbf{0 . 0 0 0}$	$\mathbf{0 . 0 0 3 s}$
$k=4$	PaToH	63001	64500.40	0.012	952.254 s
	Tuffy	7040	1662.46	0.000	1.288 s
	MLN part.	$\mathbf{7 0 2 3}$	$\mathbf{1 6 6 2 . 8 4}$	$\mathbf{0 . 0 0 0}$	$\mathbf{0 . 0 0 3 s}$

Outline

- Background and Motivation
- Parallel Inference
- Parallel Grounding
- Conclusion

Conclusions

Markov logic networks

- Incomplete database + first order rules
- Scalability challenges

First fully parallel approach to MLN inference

- Partition the MLN before grounding
- Ground partitions in parallel
- Run parallel inference

Preliminary experimental results

- Orders of magnitude faster partitioning at similar quality
- Parallel inference effective

Conclusions

Markov logic networks Questions?

- Incomplete database + first order rules
- Scalability challenges

First fully parallel approach to MLN inference

- Partition the MLN before grounding
- Ground partitions in Thank you!
- Run parallel inference

Preliminary experimental results

- Orders of magnitude faster partitioning at similar quality
- Parallel inference effective

