Integer domination of Cartesian product graphs

K. Choudhary a, S. Margulies b,∗, I.V. Hicks c

a Department of Computer Science & Engineering, IIT Kanpur, Kanpur, India
b Department of Mathematics, US Naval Academy, Annapolis, MD, United States
c Department of Computational and Applied Mathematics, Rice University, Houston, TX, United States

A R T I C L E I N F O

Article history:
Received 10 May 2014
Received in revised form 24 January 2015
Accepted 27 January 2015
Available online 6 March 2015

Keywords:
Vizing’s conjecture
Domination theory
Product graphs

A B S T R A C T

Given a graph G, a dominating set D is a set of vertices such that any vertex not in D has at least one neighbor in D. A \([k]\)-dominating multiset \(D_k\) is a multiset of vertices such that any vertex in \(G\) has at least \(k\) vertices from its closed neighborhood in \(D_k\) when counted with multiplicity. In this paper, we utilize the approach developed by Clark and Suen (2000) to prove a “Vizing-like” inequality on minimum \([k]\)-dominating multisets of graphs \(G, H\) and the Cartesian product graph \(G \square H\). Specifically, denoting the size of a minimum \([k]\)-dominating multiset as \(\gamma_{[k]}(G)\), we demonstrate that \(\gamma_{[k]}(G)\gamma_{[k]}(H) \leq 2k \gamma_{[k]}(G \square H)\).

Published by Elsevier B.V.

1. Introduction

Let \(G\) be a simple undirected graph \(G = (V, E)\) with vertex set \(V\) and edge set \(E\). The open neighborhood of a vertex \(v \in V(G)\) is denoted by \(N_G(v)\), and the closed neighborhood of \(v\) is denoted by \(N_C(v)\). A dominating set \(D\) of a graph \(G\) is a subset of \(V(G)\) such that for all \(v \in V(G)\), \(N_C(v) \cap D \neq \emptyset\), and the size of a minimum dominating set is denoted by \(\gamma(G)\). The Cartesian product of two graphs \(G\) and \(H\), denoted \(G \square H\), is the graph with vertex set \(V(G) \times V(H)\), where vertices \(gh, g'h' \in V(G \square H)\) are adjacent whenever \(g = g'\) and \((h, h') \in E(H)\), or \(h = h'\) and \((g, g') \in E(G)\).

In 1963, and again more formally in 1968, Vizing proposed a simple and elegant conjecture that has subsequently become one of the most famous open questions in domination theory.

Conjecture (Vizing [11], 1968). Given graphs \(G\) and \(H\), \(\gamma(G)\gamma(H) \leq \gamma(G \square H)\).

Over the past forty years (see [1] and references therein), Vizing’s conjecture has been shown to hold on certain restricted classes of graphs, and furthermore, upper and lower bounds on the inequality have been gradually tightened. Additionally, as numerous direct attempts on the conjecture have failed, research approaches have expanded to include explorations of similar inequalities for total, paired, and fractional domination [6]. However, the most significant breakthrough occurred in 2000, when Clark and Suen [4] demonstrated that \(\gamma(G)\gamma(H) \leq 2\gamma(G \square H)\). This “Vizing-like” inequality immediately suggested similar inequalities for total [8] and paired [9] domination (2008 and 2010, respectively). In 2011, we [3] improved the inequalities from [8,9] for total and paired domination by applying techniques similar to those of Clark and Suen, and also specific properties of binary matrices. In this paper, we explore integer domination (or \([k]\)-domination), and again generate an improved inequality with this combined technique.

A multiset is a set in which elements are allowed to appear more than once, e.g. \([1, 2, 2]\). All graphs and multisets in this paper are finite. A \([k]\)-dominating multiset \(D_k\) of a graph \(G\) is a multiset of vertices of \(V(G)\) such that, for each \(v \in V(G)\),
the number of vertices of \(N_G[u] \) contained in \(D_k \) (counted with multiplicity) is at least \(k \). A \(\gamma(k) \)-set of \(G \) is a minimum \([k]\)-dominating multiset, and the size of a minimum \([k]\)-dominating multiset is denoted by \(\gamma(k)(G) \). Additionally, note that a \([1]\)-dominating multiset is equivalent to the standard dominating set.

The notion of a \([k]\)-dominating multiset is equivalent to the more familiar notion of a \([k]\)-dominating function. The study of \([k]\)-dominating functions was first introduced by Domke, Hedetniemi, Laskar, and Fricke [5] (see also [7], pg. 90), and further explored by Brešar, Henning and Klavžar in [2]. The authors of [10] investigate integer domination in terms of graphs with specific packing numbers, and the authors of [2] prove the following “Vizing”-like inequality:

Theorem 1 ([2]). Given graphs \(G \) and \(H \), \(\gamma(k)(G)\gamma(k)(H) \leq k(k + 1)\gamma(k)(G\square H) \).

Observe that for \(k = 1 \), Theorem 1 is equivalent to the bound proven by Clark and Suen. In this paper, we improve this upper bound from \(O(k^2) \) to \(O(k) \), and prove the following theorem:

Theorem 2. Given graphs \(G \) and \(H \), \(\gamma(k)(G)\gamma(k)(H) \leq 2k\gamma(k)(G\square H) \).

Again, for \(k = 1 \), Theorem 2 is equivalent to the bound proven by Clark and Suen.

In Section 2, we explain the basic notation and concepts required for the proof, and in Section 3 we present the actual proof.

2. Preliminaries

In this section, we introduce the necessary concepts and definitions used throughout the paper.

Given a universal set \(U \), a set \(A \) is said to be a multiset of \(U \) if its elements are only those present in \(U \). We denote the number of occurrences of a particular element \(x \) in \(A \) by \(|A|_x \). The union of multisets is denoted by \(\uplus \). Let \(A \) and \(B \) be multisets of \(U \), then \(A \uplus B \) is a multiset of \(U \) such that for each \(x \) in \(U \), \(|A \uplus B|_x = |A|_x + |B|_x \). Similarly, \(A \cap B \) is a multiset of \(U \) satisfying \(|A \cap B|_x = \min(|A|_x, |B|_x) \). The union of a multiset \(A \) with itself \(t \) times is denoted by \(\uplus^t A \). A multiset \(B \) is a submultiset of \(A \) if for each \(x \), \(|B|_x \leq |A|_x \). The cardinality of a multiset \(A \) is the summation over the number of occurrences of each element in it, i.e., \(|A| = \sum_{x \in U} |A|_x \). Finally, for multiset \(A \) and a set \(S \) subset of \(U \), \(|A|_S \) is defined as \(\sum_{x \in S} |A|_x \).

Now consider a graph \(G \). Let \(P^G = \{p_1, p_2, \ldots, p_t\} \) be a multiset whose elements are subsets of \(V(G) \). Then \(P^G \) is called a \(k \)-partition of \(V(G) \) if each vertex \(x \) in \(G \) is present in exactly \(k \) of the sets \(p_1, \ldots, p_t \). We will now see that any \(\gamma(k) \)-set of \(G \) (and a specific assignment of vertices to dominators), naturally induces a \(k \)-partition on \(V(G) \). Let \(\{u_1, \ldots, u_{\gamma(k)}\} \) be a minimum \([k]\)-dominating multiset of \(G \). To each dominator \(u_i \), we associate a subset \(P^G_i \) of \(V(G) \) as follows. Recall that for each vertex \(x \) in \(G \) there exists at least \(k \) dominators (say \(u_{i_1}, \ldots, u_{i_k} \) in \(N_G[x] \)). Therefore, by only including \(x \) in the sets \(P^G_{i_1}, \ldots, P^G_{i_k} \), the multiset \(\{P^G_{i_1}, \ldots, P^G_{i_k}\} \) is a \(k \)-partition of \(V(G) \). Additionally, note that for each \(i \), the set \(P^G_i \) is a subset of \(N_G[u_i] \).

Given a graph \(G \), we will now define the concept of domination among multisets of \(V(G) \). Given a vertex \(x \), a vertex \(y \) is said to be a dominator of \(x \) if \(y \in N_G[x] \). Let \(A, B \) be multisets of \(V(G) \). We say that \(A \) dominates \(B \) if for each \(x \in B \), \(|A|_{N_G[x]} \geq |B|_x \). In other words, the number of dominators of \(x \) in \(A \) (when counted with multiplicity) is at least the number of occurrences of \(x \) in \(B \). It is important to note that a multiset \(D \) is a \([k]\)-dominating set for \(G \) if and only if \(D \) dominates \(\uplus^k V(G) \).

Example 1. Consider the following graph \(G \), and let \(A = \{1, 2, 3, 4, 5, 5\} \) be a minimum 2-dominating multiset of \(G \). Assuming that vertex 1 is assigned to be dominated by vertices 1 and 2 (denoted as \(1 \rightarrow \{1, 2\} \)), vertex 2 \(\rightarrow \{2, 3\} \), vertex 3 \(\rightarrow \{2, 3\} \), vertex 4 \(\rightarrow \{3, 4\} \) and vertex 5 \(\rightarrow \{5, 5\} \).

\[
\Phi_C(A) = \left\{ g \in V(G) \mid \text{ with } |\Phi_C(A)|_g = \sum_{h \in V(G)} |A|_{gh} \right\}
\]

Similarly \(\Phi_H(A) \) can be defined.

We end this section by stating a proposition whose proof is a straightforward application of the definitions stated above.
Proposition 1. Given graphs G, H

1. Let A_1, B_1, A_2, B_2 be multisets of $V(G)$. If A_1 dominates B_1, and A_2 dominates B_2, then $A_1 \cup A_2$ dominates $B_1 \cup B_2$.

2. Let A be a multiset of $V(G \sqcup H)$. Then $|\Phi_G(A)| = |\Phi_H(A)| = |A|$.

3. Main proof

We now start with the details of our proof. Let $\{u_1, \ldots, u_{\gamma_k(G)}\}$ and $\{v_1, \ldots, v_{\gamma_k(H)}\}$ be minimum $\{k\}$-dominating multisets of G, H, respectively, and let $I = \{1, \ldots, \gamma_k(G)\}$ and $J = \{1, \ldots, \gamma_k(H)\}$ be the corresponding sets of indices. Additionally, let $P_G = \{P_{i_1}^G, \ldots, P_{i_{\gamma_k(G)}}^G\}$ and $P_H = \{P_{i_1}^H, \ldots, P_{i_{\gamma_k(H)}}^H\}$ be the induced k-partitions of $V(G)$ and $V(H)$, respectively. Finally, let B be a minimum $\{k\}$-dominating multiset for graph $G \sqcup H$.

Proposition 2. Let $T \subseteq I$, $A = \cup_{i \in T} P_i^G$, and $C = \cup_{i \in T} P_i^H$. Then A dominates C. Furthermore, for any other multiset B of $(V(G), \Gamma)$, if B dominates C, then $|B| \geq |T|$.

Proof. We first prove A dominates C. Since $P_G^C \subseteq N_G[u_i]$, u_i dominates P_G^C. Therefore, $\cup_{i \in T} P_i^G$ dominates $\cup_{i \in T} P_i^C$, i.e. A dominates C. Now let multiset $W = \cup_{i \in T} \{u_i\}$. Since B is any multiset dominating C, by Proposition 1.1 we have $B \cup W$ dominates $(\cup_{i \in T} P_i^G) \cup (\cup_{i \in T} P_i^H)$. Now as $B \cup W$ dominates $\cup_{i \in T} P_i^G$, we have a $\{k\}$-dominating multiset for graph G. Finally, as $A \cup W = \{u_1, \ldots, u_{\gamma_k(H)}\}$ is a $\{k\}$-set of G, $|B \cup W| \geq |A \cup W|$. Therefore, $|B| \geq |A| = |T|$.

Proposition 3. There exists an $\{k\}$-dominating multiset such that, for any vertex gh, the dominators assigned to it in each strip $(G\text{-strip} \cup H\text{-strip})$ are a subset of D. In other words, for each $i \in I$, $\cup_{j \in J} F(gh, P_i^G \times P_j^H)$ is a subset of D, and for each $j \in J$, $\cup_{i \in I} F(gh, P_i^G \times P_j^H)$ is a subset of D.

Proof. Consider a vertex $gh \in V(G \sqcup H)$. Let d_0, \ldots, d_{k-1} be the k (not necessarily distinct) dominators of gh in D. Let i_1, \ldots, i_k and j_1, \ldots, j_k be indices in I, J, respectively, such that for $1 \leq r, s \leq k$, the block $P_{i_r}^G \times P_{j_s}^H$ contains vertex gh. Define $F(gh, P_{i_r}^G \times P_{j_s}^H)$ as $d_{(r+s)} \mod k$. Recall $F(gh, P_{i_r}^G \times P_{j_s}^H)$ is defined as \emptyset if $gh \notin P_{i_r}^G \times P_{j_s}^H$. Thus for any index $i_r, \cup_{j \in J} F(gh, P_{i_r}^G \times P_{j_s}^H) = \{d_{(r+s)} \mod k : 0 \leq r \leq k\}$. Hence for any index $i \in I$ we have $\cup_{j \in J} F(gh, P_i^G \times P_j^H)$ is equal to $\{d_{(r+s)} \mod k : 0 \leq r \leq k\}$, and empty otherwise. This proves the first part. The proof for the second part similarly follows.

Given $gh \in P_i^G \times P_j^H$, we define $F(gh, P_i^G \times P_j^H)$ in the same way as in proof of Proposition 3. We now define a notion of H-dominated and G-dominated blocks in $P_G \times P_H$ of $V(G \sqcup H)$. A block $P_i^G \times P_j^H$ is said to be H-dominated if for each $h \in P_i^H$, there exists a $g \in P_i^G$ such that $F(gh, P_i^G \times P_j^H)$ belongs in the H-neighborhood of gh. Recall the H-neighborhood of gh consists of neighbors of gh (including itself) in the fiber g of $V(H)$. A G-dominated block is defined similarly.

Let N_i be the number of blocks in strip $P_i^G \times V(H)$ which are H-dominated, and N_j be the number of blocks in strip $V(G) \times P_j^H$ which are G-dominated.

Proposition 4. $\sum_{i \in I} N_i + \sum_{j \in J} N_j \geq \gamma_k(G) \gamma_k(H)$.

Proof. We first show that each block is G-dominated, H-dominated or both. Consider a block $P_i^G \times P_j^H$ which is not G-dominated. Then there exists a vertex g_0 in P_i^G such that for each $h \in P_j^H$, $F(g_0h, P_i^G \times P_j^H)$ does not lie in the G-neighborhood of g_0h. Suppose $P_i^G \times P_j^H$ is also not H-dominated. Then there will exist a vertex h_0 in P_j^H such that for each $g \in P_i^G$, $F(gh_0, P_i^G \times P_j^H)$ does not lie in the H-neighborhood of gh_0. But this means that $F(gh_0h, P_i^G \times P_j^H)$ lies neither in the G-neighborhood nor H-neighborhood of g_0h. This is a contradiction.

Now we give an upper bound on the total number of G-dominated and H-dominated blocks.

Proposition 5. $\sum_{i \in I} N_i + \sum_{j \in J} N_j \leq k \gamma_k(G \sqcup H)$.

\[\sum_{i \in I} N_i + \sum_{j \in J} N_j \leq k \gamma_k(G \sqcup H)\]
Proof. We prove that $\sum_{i \in I} N_i \leq k_{Y}(G \square H)$. The proof for $\sum_{j \in J} N_j \leq k_{Y}(G \square H)$ follows similarly. For $i \in I$, define

$$Y_i = \{p^H \mid p^C \times p^H \text{ is } H\text{-dominated}\}$$

$$S_i = D \cap \{p^H \times V(H)\}.$$

We now divide the proof in three parts.

Claim 1. For each $i \in I$, $\Phi_i(S_i)$ dominates Y_i.

Proof. For any fixed $i \in I$ consider a vertex $h \in Y_i$. Let it have α occurrences in Y_i. This means there are α blocks $p^C \times p^H_{j_1}, \ldots, p^C \times p^H_{j_\alpha}$ which are H-dominated and h belongs in each of $p^H_{j_t}$, $1 \leq t \leq \alpha$. Therefore, for each t, there exists a vertex g_t, $h_t \in p^C \times p^H_{j_t}$ such that $F(g_t, h_t, p^C \times p^H_{j_t})$ belongs in H-neighborhood of g_t, h_t. Let this dominator $F(g_t, h_t, p^C \times p^H_{j_t})$ be g_t, h_t. Then, h_1, \ldots, h_α must lie in $N_h[h]$. We will show that $\{g_1, h_1, \ldots, g_\alpha, h_\alpha\}$ is a subset of D.

Let β be the number of distinct elements in $\{g_1, h_1, \ldots, g_\alpha, h_\alpha\}$ (i.e. when counted without multiplicity). Let L_1, \ldots, L_β be a partition of $[\beta]$ such that for t, t' lying in same L_i, $g_t = g_{t'}$ and for t, t' lying in different L_i's $g_t \neq g_{t'}$. Now from **Proposition 3** we have that $\cup_{i \leq j} F(g_t, h, p^C \times p^H_{j_t})$ is a subset of D. Thus, for each $r, \cup_{i \leq j} g_t, h_t$ is a subset of D. Also for $r \neq s$, the intersection of $\cup_{i \leq j} g_t, h_t$ and $\cup_{i \leq j} g_t, h_t$ is empty. This is because if $g_{t_r} \neq g_{t_s}$ then g_{t_r}, h_{t_r} will belong in different G-fibers. Hence, $\cup_{i \leq j} g_t, h_t$ is a subset of D.

Now note that since $\{g_1, h_1, \ldots, g_\alpha, h_\alpha\}$ is a subset of D and each g_t, h_t lies in strip $p^C \times V(H)$, we have that $\{h_1, \ldots, h_\alpha\}$ is a subset of $\Phi_i(S_i)$. Hence, there exist at least α dominators for vertex h in $\Phi_i(S_i)$ (when counted with multiplicity). This proves $\Phi_i(S_i)$ dominates Y_i. □

Claim 2. For each $i \in I$, $N_i \leq |\Phi_i(S_i)|$.

Proof. Let $T_i = \{j \mid p^C \times p^H_j \text{ is } H\text{-dominated}\}$. Then $Y_i = \cup_{j \in T_i} p^H_j$. Now since $\Phi_i(S_i)$ dominates Y_i from **Proposition 2** we have that $|\Phi_i(S_i)| \geq |T_i| = N_i$. □

Claim 3. The multiset $\cup_{i \leq j} S_i$ is equal to $\cup^B D$.

Proof. Consider any $gh \in D$. Let n_0 be the number of occurrences of gh in D. Now consider any $p^C \in P^C$. If p^C contains g, then $\cup^B (p^C \times V(H))$ will contain k_0 copies of gh, and S_i will contain n_0 copies of gh. If $g \notin P^C$, then S_i will not contain zero copies of gh. Hence there are exactly $k S_i$'s which have n_0 copies of gh, and all the remaining do not contain vertex gh. Additionally, since $\cup_{i \leq j} S_i$ contains k_0 copies of gh we see $\cup_{i \leq j} S_i = \cup^B D$. □

Finally, $\sum_{i \in I} N_i \leq \sum_{i \in I} |\Phi_i(S_i)| = |\cup_{i \leq j} \Phi_i(S_i)| = |\cup_p D| = k_{Y}(H)$. Thus the result follows. □

Finally from **Propositions 4** and 5 we get $k_{Y}(G \square H) \leq 2k_{Y}(G \square H)$.

Acknowledgments

The authors would like to acknowledge the support of NSF-CMMI-0926618, the Rice University VIGRE program (NSF DMS-0739420 and EMSW21-VIGRE), and the Global Initiatives Fund (Brown School of Engineering at Rice University), under the aegis of SURGE (Summer Undergraduate Research Grant for Excellence), a joint program with the IIT Kanpur and the Rice Center for Engineering Leadership. Additionally, the authors acknowledge the support of NSF DSS-0729521, DSS-0240058, and the Defense Advanced Research Projects Agency under Award No. N66001-10-1-4040. We also thank the anonymous referees for their gift of time and comments.

References