Graph Realization:
Maximum Degree in Vertex Neighborhoods

Amotz Barnoy (CUNY)
Keerti Choudhary (Tel Aviv University)
David Peleg (Weizmann Institute of Sciences)
Dror Rawitz (Bar Ilan University)
What is Graph Realization?

Given certain properties for a graph, example: Degrees, Max-Flow, Minimum-Cuts, Distances, Connectivity, etc. find if graph realizing the given property.
Classical Work: Degree Sequence Realizability

Given a sequence $D = (d_1, d_2, \ldots, d_n)$ of n integers.

Find if there is a graph G with degree-sequence D.

<table>
<thead>
<tr>
<th>Well Known Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erdős and Gallai (1960):</td>
</tr>
<tr>
<td>(Characterisation)</td>
</tr>
<tr>
<td>Havel and Hakimi (1955, 1962):</td>
</tr>
<tr>
<td>(Finding a realization)</td>
</tr>
</tbody>
</table>
Maximum-Neighborhood-Degree (MaxNDeg)

Input: \(\sigma = (d^n_{\ell}, \cdots, d^n_1) \) with
- \(d_{\ell} > \cdots > d_1 \geq 1 \),
- \(n_i \geq 1 \)

\(\sigma = (4^5, 3^2, 2^1) \)

Find corresponding \(G \) (if exists)
Necessary conditions

\[\sigma = (d_{n_\ell}^{n_\ell}, \ldots, d_1^{n_1}) \]

1. \(n_\ell \geq d_\ell + 1 \),
2. If \(d_1 = 1 \), then \(n_1 \) is even

Are these sufficient?
Sub-structure Property

\[\sigma = (d_{n_\ell}^{n_\ell}, \ldots, d_{n_i}^{n_i}, \ldots, d_{n_1}^{n_1}) \]

is MaxNDeg-realizable

\[\hat{\sigma} = (d_{n_\ell}^{n_\ell}, \ldots, d_{n_i}^{n_i}) \]

is MaxNDeg-realizable.

Proof Idea:

- Let \(G = (V, E) \) be a realization of \(\sigma \), and \(W_i \) be vertices of degree at least \(d_i \)
- Induced subgraph \(G[W_i] \) is realization of \(\hat{\sigma} \)
A Constructive Sufficiency Proof
(Based on substructure property)

Valid list in a graph:
$L = (a_1, \ldots, a_t)$ satisfying
• $\deg(a_i) \leq i$, and
• No edges within L

Oracle

A realization G_i of $(d_{n_1}^{d_\ell}, \ldots, d_{n_i}^{d_\ell})$
containing valid list of size $(d_i - 2)$

Realization G_{i-1} of $(d_{n_1}^{d_\ell}, \ldots, d_{n_i}^{d_\ell}, d_{i-1}^{d_\ell})$
containing valid list of size $(d_{i-1} - 2)$

BASE CASE: Compute
a realization G_ℓ of $d_\ell^{n_\ell}$
containing a valid list
of size $d_\ell - 2$.
A Constructive Sufficiency Proof
(Based on substructure property)

A realization G_i of $(d_{i}^{n_{i}}, \cdots, d_{i}^{n_{i}})$ containing valid list of size $(d_i - 2)$

Oracle

Realization G_{i-1} of $(d_{i-1}^{n_{i}}, \cdots, d_{i-1}^{n_{i}}, d_{i-1}^{n_{i-1}})$ containing valid list of size $(d_{i-1} - 2)$

Why $n_{\ell} \geq d_{\ell} + 1$?

BASE CASE: Compute a realization G_{ℓ} of $d_{\ell}^{n_{\ell}}$ containing a valid list of size $d_{\ell} - 2$.

$$G_i \leftarrow n_{i-1} \text{ nodes}$$
A Constructive Sufficiency Proof
(Based on substructure property)

A realization G_i of $(d_i^{n_\ell}, \ldots, d_i^{n_i})$ containing valid list of size $(d_i - 2)$

Oracle

Realization G_{i-1} of $(d_i^{n_\ell}, \ldots, d_i^{n_i}, d_{i-1}^{n_{i-1}})$ containing valid list of size $(d_{i-1} - 2)$

Why If $d_1 = 1$, implies n_1 is even?

BASE CASE: Compute a realization G_{ℓ} of $d_\ell^{n_\ell}$ containing a valid list of size $d_\ell - 2$.

G_i

L
Characterisation of MaxNDeg profiles

<table>
<thead>
<tr>
<th>Our Results</th>
</tr>
</thead>
</table>
| **Connected graphs** | $d_\ell \leq n_\ell - 1$
 | If $d_1 = 1$, then $\sigma = (1^2)$ |
| **General graphs** | $d_\ell \leq n_\ell - 1$
 | If $d_1 = 1$, then n_1 is even |
What about Exclusive neighbourhood!

Can we characterize the profiles that are exclusive-MaxNDeg realizable?

\[\sigma = (4^4, 3^3, 2^1) \]

The previous two conditions are NOT sufficient and necessary for exclusive MaxNDeg realization.
Characterisation of Exclusive-MaxNDeg profiles

<table>
<thead>
<tr>
<th></th>
<th>Our Results</th>
</tr>
</thead>
</table>
| **Connected graphs** | $d_\ell \leq \min\{n_\ell, n - 1\}$
| | $d_1 \geq 2 \text{ or } \sigma = (d^d, 1^1) \text{ or } \sigma = (1^2)$
| | $\sigma \neq (d_\ell^{d_\ell+1}, 2^1)$ |
| **General graphs** | $\sigma_1 :$ connected Exclusive-MaxNDeg realization.
| | $\sigma_2 = (1^{2\alpha}) \text{ or } \sigma_2 = (d^d, 1^{2\alpha+1})$, for $d \geq 2, \alpha \geq 0$. |
Number of Realizable MaxNDeg Profiles??

Number of non-increasing sequences of length n with values $[1, n-1]$ is $\Theta(4^n/\sqrt{n})$.

Number of realizable MaxNDeg profiles for n-vertex graphs is $\Theta(2^n)$.
Future Work

- Generating a random graph realization of a given profile \((d_{\ell}^{n_{\ell}}, \cdots, d_1^{n_1})\)

- Complete characterization of Minimum-Neighborhood-Degree profiles