
Biomedical Signal Processing and Control 86 (2023) 105160

A
1

Contents lists available at ScienceDirect

Biomedical Signal Processing and Control

journal homepage: www.elsevier.com/locate/bspc

Subject-independent trajectory prediction using pre-movement EEG during
grasp and lift task✩

Anant Jain a, Lalan Kumar a,b,c,∗

a Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
b Bharti School of Telecommunication, Indian Institute of Technology Delhi, New Delhi 110016, India
c Yardi School of Artificial Intelligence, Indian Institute of Technology Delhi, New Delhi 110016, India

A R T I C L E I N F O

Keywords:
Brain–computer interface (BCI)
Electroencephalography (EEG)
Deep learning
Pre-movement
Inter-subject decoding
Subject-independent BCI

A B S T R A C T

Electroencephalogram (EEG) based motor trajectory decoding for efficient control of brain–computer interface
(BCI) systems has been an active area of research. The systems include prosthesis, rehabilitation and
human-power augmenting devices. In this work, three-dimensional (3D) hand kinematics is estimated using
pre-movement EEG signals during grasp and lift motion. Twelve subjects’ data from the publicly available
database WAY-EEG-GAL is utilized for this purpose. Multi-layer perceptron (MLP) and convolutional neural
network-long short-term memory (CNN-LSTM) based deep learning frameworks are proposed that utilize the
motor-neural information encoded in the EEG data preceding the actual movement execution. Frequency band
features are analyzed for hand kinematics decoding using EEG data filtered in seven distinct ranges. The best
performing frequency band features is taken for further analysis with different EEG window sizes and lag
windows. Additionally, inter-subject hand trajectory decoding analysis is performed using leave-one-subject-
out (LOSO) approach. The Pearson correlation coefficient along with hand trajectory are taken to evaluate
decoding performance for the proposed neural decoders. This study explores the feasibility of inter-subject 3D
hand trajectory decoding using EEG signals during reach and grasp task. The proposed CNN-LSTM decoder
is able to achieve the grand correlation in three axes upto 0.730 and 0.627 in intra-subject and inter-subject
settings, respectively, thus providing viable information regarding decoding hand position from pre-movement
EEG signals for practical BCI applications.
1. Introduction

1.1. Background

Brain–computer interface (BCI) or brain–machine interface (BMI)
utilizes brain activation for controlling external devices without em-
bracing the peripheral nerves and muscles [1]. BCI is an emerging
technology that demonstrate encouraging potential to ameliorate the
quality of life for patients with motor impairments [2–4] and to interact
with the healthy subjects [5,6]. With the advancement in neuroscience
and machine learning algorithms, BCI systems have been utilized to
assist, augment, or restore the brain’s motor functionality [7]. The BCI
system is confected of subsequent processes which commonly consist of
neural signal acquisition, signal processing, feature extraction, human
intention detection and user feedback signal generation. The neural
activity can be recorded either by invasive or non-invasive recording
systems. Although the invasive approach can result in more accurate
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and precise brain activity recognition, the sensors are surgically placed
under the scalp for acquiring the neural signals [8,9]. However, non-
invasive BCI utilizes neural activity by placing sensors over the scalp.
Various non-invasive techniques utilized in BCI system include mag-
netoencephalography (MEG) [10], electroencephalogram (EEG) [11],
functional near-infrared spectroscopy (fNIRS) [12,13] and functional
magnetic resonance imaging (fMRI) [14,15].

EEG based BCI system has become popular because of high temporal
resolution, portability and low-economy [16]. It has been utilized for
various application such as emotion recognition [17,18], wearable
exoskeleton [19–22], prosthesis [23–27], robot control [28]. It has
been additionally utilized for motor imagery/execution classification
for upper limb movement [29–32] and standing-sitting task [33]. EEG
based BCI has been also employed to classify grasping movements [34],
reach-and-grasp actions [35] and grasping objects [36,37]. Although
classification based approach has been employed substantially, con-
tinuous kinematic estimation-based approach would yield enhanced
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Fig. 1. Flowchart of proposed kinematics decoding framework for Grasp-and-Lift task.
performance and efficient control of assistive devices such as neural
prosthesis, exosuit, or exoskeleton.

1.2. Related work

Multichannel EEG-based kinematics decoding for 2-D hand trajec-
tory was investigated in [38] using multi-variable linear regression
(mLR) neural decoder. A Kalman filter based mLR decoder was em-
ployed in particular for hand trajectory decoding with the reported
mean correlation value of 0.60 ± 0.07 between the measured and pre-
dicted trajectory. Decoding of 3D hand trajectory using band-power
EEG features and mLR as neural decoder was studied in [39]. Using
scalp EEG signals, reconstruction of upper limb trajectories in 3D
space was reported in [40] with mLR model as neural decoder. The
mean Pearson’s correlation coefficient between predicted and measured
trajectories for hand, elbow and shoulder ranged in 0.24–0.49, 0.41–
0.48 and 0.18–0.40, respectively. It is to be noted that mLR decoding
technique is based on the linear relationship between input (EEG
signals) and output variables (kinematics parameters). It is sensitive
to data quality and outliers. The limitation of the mLR decoder can
be overcome by utilizing the deep learning based decoding framework.
Deep learning based decoders extract non-linear features from the input
variables and are efficient to handle the outliers. Deep learning based
neural decoders have been utilized in literature for kinematics parame-
ter decoding [41–44] using scalp EEG signals. In [41], a deep learning
architecture based on convolutional neural network - bidirectional
long short-term memory (CNN-biLSTM) was utilized for arm trajectory
decoding from EEG signals to control robotic arm. The mean correlation
coefficient of 0.47 and 0.08 was reported therein for intra-subject and
inter-subject, respectively. Hand motion was reconstructed for center-
out movements using EEG and EMG signals in [42]. The predictor
model was formed using mLR based EEG component and multi-layer
perceptron (MLP) based EMG component for reconstruction of hand
motion. The mean correlation value upto 0.753 was reported for the
hand motion reconstruction. 3D hand trajectory was decoded for grasp
and lift task using CNN-LSTM based neural decoder in [43]. Visual
stimulus was considered as reference point therein for EEG signal.
However, such visual stimulation limits the BCI system for day-to-day
applications. A deep learning based neural decoder PreMovNet, that
utilized movement-onset as reference point, was introduced in [44]
for 3D hand trajectory estimation. The EEG data until movement-
onset was utilized for hand kinematics estimation, thus not making it
pre-movement in true sense.
2

1.3. Objectives and contributions

In this work, 3D hand kinematics is estimated using WAY-EEG-
GAL dataset where EEG segment is chosen 50 ms to 350 ms prior
to the movement, thus making it pre-movement in true sense. MLP
and CNN-LSTM based deep learning frameworks are proposed for the
trajectory decoding. The performance of the proposed decoding models
are compared with state-of-the-art mLR model. As EEG signal has
motion trajectory encoded approximately 300 ms before the actual
movement, EEG data with various lags from movement-onset has been
explored in this work. Frequency band analysis is performed first to
find the optimum frequency band for decoding. The best performing
frequency band features are taken for further analysis. The ablation
study is performed for analyzing the significance of LSTM layer of
the CNN-LSTM decoding model. Subject-independent capability of the
decoding models have been explored to ensure the generalizability of
the proposed trajectory prediction framework.

The organization of the article is as follows. The data acquisition
and pre-processing steps are included in Section 2. The description
related to frequency band features, neural decoders, training and eval-
uation of the decoding models is presented in Section 3. Performance
evaluation for hand kinematics decoding is detailed in Section 4. Sec-
tion 5 includes an extensive discussion of the results and Section 6
provides the conclusions about the research work.

2. Experimental setup

2.1. Data acquisition

In this analysis, open source WAY-EEG-GAL (Wearable interfaces for
hAnd function recovery- EEG - grasp and lift) database [45] is utilized
for hand kinematics decoding. 32-channel EEG recordings were col-
lected in synchronization with hand movement at sampling frequency
of 500 Hz as shown in Fig. 2(a). The kinematic data was obtained
from a position sensor (P4) placed on the wrist of the participant. A
sampling frequency of 500 Hz was utilized to record the kinematic
data. The force and position sensors utilized in the experiment is shown
in Fig. 2(b), with 𝑥-axis corresponding to lift force and 𝑧-axis to grip
force. In particular, the database included recordings of twelve healthy
subjects for right hand grasp and lift movement. In each trial, the
subject’s task to be executed was to reach and grasp a small object, lift
it few centimeters up and hold it steady for a couple of seconds. The
trial ended with replace and release the object to its original position,
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Fig. 2. (a) 32-channel EEG acquisition system (b) Force and position sensors.

then bring the hand back to the resting position. The movement-onset
to reach for grasping the object and putting it down was cued by an
LED. Each participant executed 294 trials of grasp and lift task with
variation in object’s weight, contact surface, or both.

A LED mounted setup was put above the object, which could be
switched on and off. Each trial commenced with turning on of the
LED. The participant reached, grasped, lifted and held the object until
the LED was activated. The LED was deactivated automatically after
a couple of seconds, and then the participant put down and placed
the object to its initial position. The trial ended with the participant
bringing the arm back to its beginning position.

2.2. Data pre-processing

Scalp EEG data was initially band-pass filtered in the frequency
range of 0.1–40 Hz using FIR filter to expunge baseline drifts. Re-
referencing of EEG signals was performed using average re-referencing
method. Further, eye movement artifacts and muscle artifacts were
eradicated by utilizing the independent component analysis (ICA) tech-
nique. Denoised EEG data was downsampled to the sampling frequency
of 100 Hz to reduce the computation cost. The EEG signals preprocess-
ing was executed using the EEGLAB toolbox [46]. A total of 21 EEG
channels were utilized from motor cortex region and occipital lobe for
the neural decoding, namely F3, Fz, F4, FC5, FC1, FC2, FC6, C3, Cz, C4,
CP5, CP1, CP2, CP6, P7, P3, Pz, P4, O1, Oz, and O2. Each of the EEG
channel data was normalized using z-score normalization technique,
given as

𝐸𝑛[𝑡] =
𝑒𝑛[𝑡] − 𝜇𝑒𝑛

𝜎𝑒𝑛
(1)

where, 𝑒𝑛[𝑡] and 𝐸𝑛[𝑡] are the 𝑛th channel pre-processed and standard-
ized voltage, respectively, at time 𝑡. The mean and standard deviation
of 𝑒𝑛 are denoted by 𝜇𝑒𝑛 and 𝜎𝑒𝑛 , respectively.

In order to remove kinematics measurement noise, low-pass filtering
with cutoff frequency 2 Hz was performed. The frequency band 0–
2 Hz is found to contain more than 99% of the raw kinematic data
power [38,40]. Further, the min–max normalization was performed on
the filtered kinematics data to scale it in range of [0, 1] as,

𝑃 [𝑡] =
𝑝[𝑡] − 𝑝𝑚𝑖𝑛
𝑝𝑚𝑎𝑥 − 𝑝𝑚𝑖𝑛

(2)

where, 𝑃 [𝑡] is normalized position coordinate value, 𝑝[𝑡] is measured
position coordinate value, and 𝑝𝑚𝑖𝑛 − 𝑝𝑚𝑎𝑥 are minimum-maximum
position coordinates. The min–max normalization was performed for
each position coordinate. Lastly, the normalized data was downsampled
to 100 Hz.
3

3. Methodology

In this Section, the description of the EEG-based 3D hand kinematics
decoding framework is presented. Fig. 1 illustrates the flow chart of the
proposed hand kinematics decoding framework.

3.1. Frequency bands

The EEG frequency band (FB) was segregated into groups as FB1
(delta, 0.5–3 Hz), FB2 (theta, 4–8 Hz), FB3 (alpha, 9–12 Hz), FB4 (beta,
13–30 Hz), FB5 (gamma, > 30 Hz), FB6 (delta and theta, 0.5–8 Hz), and
FB7 (delta, theta and alpha, 0.5–12 Hz). For hand kinematics decoding,
the EEG data was filtered in each band group using a zero-phased
4th order Hamming-windowed FIR filter. All the selected 21 EEG
channels were utilized for frequency band analysis. The filtered EEG
data with appropriate delay (pre-movement) was utilized for the hand
trajectory estimation. Three neural decoders: multi-linear regression
(mLR), multi-layer perceptron (MLP) and CNN-LSTM model are utilized
for hand kinematics decoding.

3.2. Data preparation

From each trial, the hand kinematics data was selected from the
hand movement-onset until the participant put the hand back to its
resting position. The movement-onset event corresponding to each
trial was provided in the database. The cortical activation on the
motor-cortex region was observed prior to the actual movement of
the hand [43]. We assimilated the neural information corresponding
to the motor activity by consolidating the EEG data prior to the hand
movement. Various EEG lags and window sizes are explored for hand
kinematics decoding. For example, EEG segment with lag of 50 ms and
window size of 100 ms corresponds to −150 to −50 ms data, where
0 ms is at the movement-onset. For each kinematic segment, an input
matrix of dimension 𝐷 × (𝐿 ∗ 𝑁) is generated where 𝐷, 𝐿, and 𝑁 are
data segment, size of time lag window and total selected EEG channels,
respectively.

3.3. Multi-variable linear regression (mLR) model

Multi-variable linear regression (mLR) based kinematic decoding
has been utilized for kinematics parameter estimation [38–40]. The
mLR model utilizes multiple EEG inputs to decode hand position. The
mLR model has input–output mapping given by:

𝑚𝐿𝑅𝑥[𝑡] =𝛼𝑥 +
𝑁
∑

𝑛=1

𝑙2
∑

𝑙=𝑙1

𝛽(𝑛𝑙)𝑥 𝐸𝑛[𝑡 − 𝑙] (3)

𝑚𝐿𝑅𝑦[𝑡] =𝛼𝑦 +
𝑁
∑

𝑛=1

𝑙2
∑

𝑙=𝑙1

𝛽(𝑛𝑙)𝑦 𝐸𝑛[𝑡 − 𝑙] (4)

𝑚𝐿𝑅𝑧[𝑡] =𝛼𝑧 +
𝑁
∑

𝑛=1

𝑙2
∑

𝑙=𝑙1

𝛽(𝑛𝑙)𝑧 𝐸𝑛[𝑡 − 𝑙] (5)

where, 𝑚𝐿𝑅𝑥[𝑡], 𝑚𝐿𝑅𝑦[𝑡], and 𝑚𝐿𝑅𝑧[𝑡] are the position of the hand in
x, y, 𝑧-directions, respectively, at time 𝑡. 𝐸𝑛[𝑡− 𝑙] is the normalized EEG
signal at time lag 𝑙. The number of time lags is in range from 𝑙1 to 𝑙2
with regression coefficients, 𝛼 and 𝛽.

3.4. Multi-layer perceptron (MLP) model

The multi-layer perceptron (MLP) based neural decoder model con-
sists a total of six layers. It includes batch normalization layer (B1),
dense layers (D1, D2, D3 and D4), and output layer. D1, D2 and D3
consist of 128 neurons each, and D4 consists of 16 neurons. ReLU
activation is utilized with each of the dense layer. The output layer
consists of three neurons, each corresponding to the x, y, and 𝑧-
directions of the hand position with input vector of size 𝐿 ∗ 𝑁 . The
model architecture of the MLP model is shown in Table 1.
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Table 1
Model architecture of MLP model with 250 ms EEG
time lag input.
MLP model

Layer (type) Output shape

Batch normalization (B1) (None, 525)

Dense (D1) (None, 128)

Dense (D2) (None, 128)

Dense (D3) (None, 128)

Dense (D4) (None, 16)
Dense/output layer (None, 3)

Table 2
Model architecture of CNN-LSTM model with 250 ms EEG
time lag input.
CNN-LSTM model

Layer (type) Output shape

Batch Normalization (None, 25, 21)

Conv1D (C1) (None, 25, 256)

MaxPooling1D (M1) (None, 5, 256)

Dropout (None, 5, 256)

Conv1D (C2) (None, 5, 128)

MaxPooling1D (M2) (None, 1, 128)

LSTM (None, 128)

Dense (D1) (None, 128)
Dense(D2)/output layer (None, 3)

3.5. CNN-LSTM model

In this Section, a CNN-LSTM based neural decoder is detailed for
hand position decoding during grasp and lift task. The neural decoder
comprises a total of nine layers including batch normalization layer,
convolution layers (𝐶1 and 𝐶2), max-pooling layers (𝑀1 and 𝑀2),
dropout layer, LSTM layer (𝐿1), and dense layers (𝐷1 and 𝐷2). The
𝐶1 and 𝐶2 layers have a kernel size of 7 and 5 with 256 and 128
filters, respectively. Zero padding is also utilized for both 𝐶1 and 𝐶2
ayers that results in same input and output size. ReLu activation unit
s used in each convolution layer. Max-pooling layers, 𝑀1 and 𝑀2, have

window size of 5 and 3, respectively. Dropout layer has a dropout rate
of 0.25. LSTM layer, 𝐿1, consists of 128 cells, along with the ReLU
activation function. Dense layers, 𝐷1 and 𝐷2, have 128 and 3 neurons,
respectively. Three neurons at the output layer yields the predicted
hand position in the x, y, and 𝑧-directions. ReLU activation is used for
convolution layers (𝐶1 and 𝐶2), LSTM layer (𝐿1) and dense layers (𝐷1
and 𝐷2). The input dimension to the model is (𝐿 × 𝑁) corresponding
to 3D hand position output. The model architecture of the CNN-LSTM
decoding model is shown in Table 2.

3.6. Training and evaluation

For training and performance evaluation of neural decoders, the
data-set is divided into distinct training, validation, and test data. The
training data is utilized for training the decoders, while the valida-
tion data is used for tuning model hyper-parameters and avoiding
over-fitting of the decoders. The test data is utilized to evaluate perfor-
mance of the trained neural decoders. The adaptive moment estimation
(Adam) optimization algorithm [47] with loss function as mean squared
error is adapted to train neural decoders based on deep learning archi-
tectures. The early stopping technique with patience of five epochs on
validation data is utilized to avoid over-fitting of the decoding models.
For subject-dependent analysis, a total of 294 trials are taken from
each participant of the WAY-EEG-GAL data-set. The total trials for each
4

participant are separated into three discrete subsets: (a) 234 trials data (
samples as training data; (b) 30 trials data samples as validation data;
and (c) 30 trials data samples as test data.

For inter-subject analysis, the data from eleven participants is taken
for training–validation and the total trials of remaining one participant
are taken as testing data to evaluate the trained model. The inter-
subject decoding analysis approach utilized is leave-one-subject-out
(LOSO) technique. The training data is further divided into two subsets:
(a) training subset and (b) validation subset. Training subset consists of
264 trials from each of eleven participants’ data while the validation
subset include remaining 30 trials from each of the selected eleven
participants. Test set includes all 294 trials of the one left out subject to
evaluate the decoding performance of the model. Pearson’s correlation
coefficient (PCC) between the predicted hand kinematics and measured
kinematics data is taken as performance metric to evaluate the decod-
ing performance of the neural decoders. The parameters of the decoding
models are obtained by parameter optimization with different sets of
parameters. The optimum performing parameters are selected for MLP
and CNN-LSTM decoding models. In particular, the training step is
computationally rigorous, while the estimation with trained model is
brisk. Therefore, the trained decoding model can be utilized to control
external devices such as exoskeletons/exosuits or prosthesis.

4. Performance evaluation

Pearson correlation coefficient (PCC) is considered as performance
metric to evaluate the efficiency of the neural decoders for hand
kinematics decoding. In particular, PCC is computed with various EEG
window size. PCC is a linear correlation coefficient whose value ranges
from −1 to +1. PCC value of −1, 0 and +1 represent a strong negative,
zero and strong positive correlation, respectively. Pearson correlation
coefficient between measured (𝑃𝑥) and estimated (𝑃𝑦) hand kinematic
parameters with a total samples of 𝑇 is defined as

𝛱(𝑃𝑥, 𝑃𝑦) =
1

𝑇 − 1

𝑇
∑

𝑖=1

(

𝑃 𝑖
𝑥 − 𝜇𝑃𝑥

𝜎𝑃𝑥

)(

𝑃 𝑖
𝑦 − 𝜇𝑃𝑦

𝜎𝑃𝑦

)

(6)

here, 𝜇𝑞 and 𝜎𝑞 are the mean and standard deviation of 𝑞, respectively,
ith 𝑞 ∈ {𝑃𝑥, 𝑃𝑦}.

Additionally, the hand trajectory estimation in x, y, and 𝑧-directions
re plotted along with the measured trajectory for comparative analy-
is.

.1. Intra-subject decoding analysis

.1.1. Frequency band analysis
The 3D hand position trajectory decoding is performed on seven

Bs (as detailed in Section 3.1) with EEG lags for twelve participants
rom WAY-EEG-GAL database. Three neural decoders are utilized for
his purpose. Frequency band analysis is performed to find out the EEG
requency band that result in best trajectory decoding performance. The
ean PCC values for distinct FBs and EEG time windows are presented

n Table 3 for x, 𝑦 and 𝑧-directions. In 𝑥 and 𝑦-directions, the frequency
band features in FB1 frequency band with 250 ms EEG window pro-
vides best PCC values for CNN-LSTM based neural decoder. However,
in 𝑧-direction, CNN-LSTM based neural decoder with frequency band
features in FB7 frequency band and EEG window of 350 ms gives
best PCC value. It may be observed that MLP and CNN-LSTM based
deep learning decoders perform significantly better than the traditional
mLR neural decoder. The proposed neural decoder shows relatively
low performance in 𝑧-direction. The noisy performance may be due
to transitory hand movement in 𝑧-direction during the grasp and lift
task. The best overall PCC (0.791, 0.799, and 0.600 for x, y, and 𝑧-
irections) was achieved with CNN-LSTM model for EEG interval in
250 ms to 0 ms. Additionally, it may be observed that the performance
f decoding models are significantly higher in lower frequency bands

FB1). Hence, FB1 frequency band is taken for further analysis.
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Table 3
Frequency band analysis of neural decoders ((a) mLR, (b) MLP, and (c) CNN-LSTM) with EEG lag 0 ms and window size of 150 ms, 200 ms, 250 ms, 300 ms and 350 ms.

Frequency band Direction −150 to 0 −200 to 0 −250 to 0 −300 to 0 −350 to 0

(a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c)

FB1
(0.5–3 Hz)

x 0.507 0.734 0.764 0.497 0.731 0.762 0.501 0.753 0.791 0.501 0.750 0.771 0.505 0.761 0.771

y 0.518 0.743 0.773 0.509 0.741 0.772 0.512 0.761 0.799 0.511 0.761 0.776 0.516 0.769 0.778

z 0.381 0.578 0.557 0.375 0.591 0.582 0.383 0.606 0.600 0.372 0.616 0.598 0.367 0.621 0.619

FB2
(4–8 Hz)

x 0.021 0.631 0.625 0.033 0.647 0.654 0.045 0.646 0.646 0.069 0.626 0.639 0.089 0.624 0.636

y 0.022 0.654 0.649 0.034 0.667 0.676 0.046 0.663 0.668 0.070 0.643 0.660 0.090 0.639 0.656

z 0.025 0.412 0.375 0.034 0.418 0.382 0.047 0.415 0.377 0.063 0.423 0.377 0.078 0.423 0.400

FB3
(9–12 Hz)

x 0.137 0.500 0.493 0.239 0.496 0.498 0.283 0.518 0.524 0.333 0.502 0.499 0.365 0.503 0.515

y 0.142 0.523 0.515 0.246 0.514 0.521 0.288 0.537 0.544 0.340 0.520 0.520 0.375 0.519 0.485

z 0.094 0.427 0.417 0.172 0.414 0.396 0.207 0.403 0.394 0.213 0.396 0.367 0.216 0.394 0.364

FB4
(13–30 Hz)

x 0.129 0.399 0.403 0.194 0.423 0.444 0.227 0.427 0.465 0.257 0.435 0.489 0.278 0.431 0.511

y 0.135 0.419 0.429 0.201 0.439 0.472 0.235 0.441 0.494 0.264 0.454 0.515 0.288 0.445 0.530

z 0.081 0.376 0.413 0.123 0.375 0.442 0.143 0.375 0.442 0.153 0.376 0.433 0.162 0.367 0.430

FB5
(> 30 Hz)

x 0.090 0.275 0.296 0.106 0.295 0.327 0.123 0.274 0.352 0.152 0.234 0.349 0.178 0.263 0.371

y 0.097 0.291 0.316 0.113 0.311 0.352 0.129 0.290 0.381 0.159 0.248 0.376 0.187 0.278 0.398

z 0.076 0.229 0.262 0.090 0.253 0.276 0.101 0.220 0.278 0.117 0.189 0.266 0.129 0.196 0.269

FB6
(0.5–8 Hz)

x 0.460 0.720 0.740 0.460 0.727 0.754 0.466 0.748 0.768 0.469 0.744 0.775 0.476 0.744 0.766

y 0.471 0.728 0.745 0.472 0.736 0.762 0.477 0.757 0.777 0.480 0.752 0.779 0.487 0.753 0.770

z 0.350 0.571 0.570 0.355 0.586 0.589 0.351 0.611 0.602 0.344 0.606 0.608 0.343 0.622 0.616

FB7
(0.5–12 Hz)

x 0.432 0.715 0.723 0.436 0.721 0.744 0.442 0.727 0.766 0.452 0.738 0.752 0.461 0.730 0.753

y 0.443 0.722 0.731 0.448 0.729 0.752 0.452 0.737 0.770 0.461 0.743 0.761 0.472 0.737 0.757

z 0.332 0.589 0.594 0.335 0.603 0.618 0.334 0.608 0.627 0.329 0.613 0.630 0.329 0.619 0.635

Note: the bold entries represent the highest PCC value obtained using the neural decoders in x, y and z directions.
4.1.2. Trajectory analysis
In this Section, the predicted hand trajectory is compared herein

with actual trajectory in x, 𝑦 and 𝑧-directions. The measured and
predicted hand trajectories in x, 𝑦 and 𝑧-directions are plotted in
Fig. 3(a)–(c) for mLR neural decoder, Fig. 3(d)–(f) for MLP model and
Fig. 3(g)–(i) for CNN-LSTM model. The hand trajectories are plotted
for participant 04 taking FB1 frequency band and EEG window of
200 ms. CNN-LSTM based deep learning neural decoders gives the
lowest trajectory mismatch in all the three directions. The transient
movement in 𝑧-direction leads to poor visual correlation.

4.1.3. Significance of LSTM layer
In this Section, ablation study of the CNN-LSTM decoding model is

presented. In particular, the significance of LSTM layer in the proposed
decoding model is analyzed. The decoding performance of the CNN-
LSTM model is compared with a CNN-based model for this purpose. In
this analysis, the LSTM layer of the proposed decoding model is omitted
and all the model parameters remain same as CNN-LSTM model. The
architecture of the CNN model is same as that in Table 2, replacing
LSTM layer with GlobalMaxPooling1D layer. The analysis is performed
for delta frequency band (FB1) with different EEG data windows.
The performance of the proposed deep learning neural decoders is
compared in Fig. 4 for all the three direction.

4.1.4. EEG lags analysis
Utilizing data up to movement onset does not make the model pre-

movement in the true sense. It is to note that all the earlier analyses
utilized EEG segment upto movement-onset. In this analysis, the hand
movement trajectory is decoded using pre-movement EEG data with
distinct window sizes and lags as shown in Table 4. EEG segment upto
250 ms prior to movement-onset is utilized. An increase in decoding
accuracy can be observed with increase in window size of the EEG lags.
The two deep learning based methods (CNN-LSTM and MLP) outper-
form the traditional mLR based approach. The two deep learning based
methods perform almost similar. The best overall correlation achieved
are 0.764, 0.771, and 0.623 in x, y, and 𝑧-directions, respectively for
5

−350 ms to −50 ms EEG lag window using MLP decoder.
4.2. Inter-subject decoding analysis

Subject-independent hand trajectory decoding analysis is presented
in this Section. Leave-one-subject-out (LOSO) approach is adopted to
analyze inter-subject hand trajectory decoding during grasp and lift
task. The decoding performance of each neural decoder and each test
subject is given in Table 5 for different EEG window sizes. The mean
PCC value of all the test subjects is calculated for each EEG window and
direction to evaluate the performance of neural decoders. It is observed
that decoding performance is improved with the increment of EEG
window size. The deep learning based decoding models (CNN-LSTM
and MLP) outperform mLR in decoding hand trajectory in all three
directions. Decoding models with EEG window of 350 ms is optimal to
decode 3D hand trajectory for grasp and lift task. The mean PCC values
for CNN-LSTM decoding model with 350 ms EEG window are 0.690,
0.728, and 0.462 in x, y, and 𝑧-directions, respectively. This analysis
shows that the deep learning based decoding models are able to learn
subject-independent EEG features for hand trajectory decoding.

5. Discussion

The literature makes use of mLR decoding model for continuous
kinematic estimation [38–40]. The Pearson’s correlation coefficient
between predicted and measured trajectories varies between 0.18–0.6
based on type of movement and body part involved. The detail is
presented in Section 1.2. MLP and CNN-LSTM based deep learning
models are utilized in this work for 3D hand trajectory decoding during
grasp-and-lift task. Intra-subject and Inter-subject analysis is presented.

Frequency band analysis is presented first to find the optimum
frequency band. Potential time series (PTS) data is utilized for this
purpose. A detailed comparative analysis is presented for all the fre-
quency bands and combinations. It may be noted from Table 3 that the
delta band (FB1) gives best decoding performance in x and 𝑦-directions.
FB7 frequency band outperforms slightly in 𝑧-direction when compared
with FB1. The proposed PTS based deep learning neural decoders give
decent decoding performance in theta, alpha and beta bands. It is
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Fig. 3. Hand trajectory decoding in x, 𝑦 and 𝑧-directions for participant-04 using mLR decoder in (a)–(c), MLP decoder in (d)–(f), and CNN-LSTM decoder in (g)–(i). −200 ms to
0 ms EEG window is taken in delta band.
Fig. 4. Performance comparison of MLP, CNN and CNN-LSTM models in x, y, and 𝑧-directions with delta band EEG signals.
inline with the fact that low frequency (FB1) EEG signals have major
contribution in decoding hand movements when utilizing PTS data [30,
39,40,44,48,49]. Alpha, beta and low gamma bands have additionally
been tried to decode 3D hand trajectory in [39]. Higher correlation is
6

observed in these bands when bandpower time-series (BTS) is utilized.
Hence, EEG signals in FB1 frequency band is considered for the further
analysis. A higher correlation leads to better trajectory reconstruction
as shown in Fig. 3.
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Table 4
EEG lag analysis of neural decoders ((a) mLR, (b) MLP, and (c) CNN-LSTM) with various
lag window and window sizes.

EEG lags Decoders x y z

Window size (ms) Lag window (ms)

100

−150 to −50
(a) 0.486 0.497 0.373

(b) 0.735 0.745 0.578

(c) 0.735 0.744 0.553

−200 to −100
(a) 0.466 0.478 0.367

(b) 0.729 0.737 0.585

(c) 0.730 0.734 0.555

−250 to −150
(a) 0.451 0.461 0.357

(b) 0.742 0.751 0.582

(c) 0.734 0.740 0.558

−300 to −200
(a) 0.440 0.451 0.340

(b) 0.726 0.734 0.579

(c) 0.735 0.741 0.555

−350 to −250
(a) 0.445 0.457 0.335

(b) 0.732 0.741 0.581

(c) 0.738 0.745 0.560

150

−200 to −50
(a) 0.489 0.501 0.375

(b) 0.742 0.750 0.596

(c) 0.732 0.741 0.558

−250 to −100
(a) 0.475 0.485 0.364

(b) 0.741 0.750 0.579

(c) 0.735 0.742 0.548

−300 to −150
(a) 0.464 0.475 0.348

(b) 0.744 0.751 0.593

(c) 0.741 0.744 0.554

−350 to −200
(a) 0.468 0.480 0.342

(b) 0.745 0.753 0.596

(c) 0.737 0.741 0.560

200

−250 to −50
(a) 0.490 0.501 0.375

(b) 0.751 0.761 0.599

(c) 0.749 0.753 0.575

−300 to −100
(a) 0.478 0.490 0.359

(b) 0.745 0.753 0.604

(c) 0.737 0.743 0.575

−350 to −150
(a) 0.480 0.492 0.350

(b) 0.751 0.760 0.607

(c) 0.749 0.752 0.565

250

−300 to −50
(a) 0.490 0.501 0.367

(b) 0.758 0.763 0.625

(c) 0.747 0.754 0.568

−350 to −100
(a) 0.489 0.500 0.354

(b) 0.749 0.759 0.624

(c) 0.737 0.742 0.570

300 −350 to −50
(a) 0.498 0.509 0.360

(b) 0.764 0.771 0.623

(c) 0.736 0.742 0.588

Note: the bold entries represent the highest PCC value obtained using the neural
decoders in x, y and z directions.

Significance of LSTM layer in the proposed deep learning neural
decoder is illustrated in Fig. 4. It may be observed that the CNN-LSTM
model has better performance than CNN only model in 𝑥 and 𝑦 direc-
tions. The LSTM layer utilized in the model is able to learn temporal
features of the pre-movement EEG data utilized as the input. Transient
movement in 𝑧-direction adds to the uncertainty of the model.
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3D hand trajectory decoding using different EEG window sizes is
investigated in Section 4.1.4. The pre-movement EEG data, with at-
least 50 ms prior to the movement-onset, has been utilized for hand
trajectory decoding. Best correlation is achieved for −350 ms to −50 ms
window (refer to Table 4). Reasonable accuracy is achieved even for
−350 ms to −100 ms window. This shows the feasibility to decode
hand trajectory using pre-movement scalp EEG signals. The results are
in line with the fact that the motor movement is encoded in EEG signal
around 300 ms prior to the movement [43]. Trajectory estimation using
pre-movement EEG data will be helpful in BCI applications such as
controlling prosthesis and human power-augmentation exosuit.

The performance of the proposed movement decoders is analyzed
for inter-subject variability. Such EEG-based inter-subject study is
sparse in the literature. One of the reasons for the same is low-
performance capability. The low performance is due to the inability
of the model to learn the appropriate features across subjects. Jeong
et al. reported a grand average correlation value of 0.08 for the multi-
direction arm reaching task in the three axes using the CNN-BiLSTM
neural network [41]. The proposed CNN-LSTM model for trajectory de-
coding during the grasp and lift task has decent decoding performance
with a grand mean PCC of 0.627 with a 350 ms EEG window (refer to
Table 5).

6. Conclusions and future work

In this study, deep learning based neural decoders have been pro-
posed for efficient 3D hand kinematics decoding using pre-movement
EEG signals. In particular, MLP and CNN-LSTM based models are pro-
posed. The pre-movement neural information encoded in EEG signals
has been utilized for efficient hand trajectory decoding. Frequency
band analysis for 3D hand kinematics decoding have been investigated.
Various EEG lag windows have been utilized for trajectory intention
detection. Additionally, the feasibility of inter-subject hand trajectory
decoding has been examined. PCC analysis is utilized to establish
the effectiveness of proposed neural decoders. Continuous trajectory
estimation using EEG signals has potential application in real-time BCI
for healthy subjects and amputees. The application includes neuro-
rehabilitation, neuro-prosthetics, and neural-driven exosuits. Subject-
independent BCI systems for real-time control of BCI system remains
an open problem.
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Table 5
Inter-Subject analysis of neural decoders ((a) mLR, (b) MLP, and (c) CNN-LSTM) with window size of 150 ms, 200 ms, 250 ms, 300 ms and 350 ms.

EEG window Decoders Direction SUBJECT AS TEST_DATA (LEAVE ONE SUBJECT OUT)

S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12 Average

−150 to 0

(a)
x 0.431 0.177 0.296 0.401 0.297 0.305 0.248 0.178 0.312 0.389 0.153 0.123 0.123

y 0.434 0.181 0.300 0.413 0.284 0.289 0.246 0.178 0.314 0.399 0.159 0.144 0.144

z 0.309 0.115 0.306 0.334 0.293 0.138 0.257 0.254 0.199 0.224 0.179 0.287 0.287

(b)
x 0.681 0.684 0.685 0.735 0.774 0.779 0.743 0.764 0.768 0.779 0.687 0.651 0.651

y 0.719 0.697 0.705 0.748 0.793 0.795 0.755 0.768 0.787 0.785 0.709 0.688 0.688

z 0.586 0.359 0.702 0.644 0.604 0.526 0.428 0.666 0.461 0.635 0.362 0.429 0.429

(c)
x 0.655 0.703 0.707 0.731 0.775 0.788 0.752 0.767 0.762 0.791 0.696 0.635 0.635

y 0.697 0.713 0.727 0.738 0.789 0.802 0.761 0.773 0.783 0.795 0.716 0.671 0.671

z 0.536 0.335 0.667 0.592 0.538 0.507 0.400 0.632 0.440 0.594 0.345 0.405 0.405

−200 to 0

(a)
x 0.423 0.211 0.288 0.364 0.301 0.275 0.267 0.170 0.325 0.136 0.099 0.106 0.106

y 0.415 0.213 0.295 0.379 0.291 0.260 0.261 0.171 0.327 0.123 0.106 0.120 0.120

z 0.307 0.198 0.269 0.349 0.289 0.151 0.274 0.235 0.212 0.210 0.186 0.302 0.302

(b)
x 0.669 0.692 0.720 0.723 0.779 0.804 0.755 0.765 0.789 0.745 0.660 0.655 0.655

y 0.708 0.701 0.742 0.733 0.798 0.817 0.765 0.775 0.813 0.750 0.695 0.697 0.697

z 0.575 0.412 0.711 0.645 0.591 0.549 0.432 0.674 0.483 0.603 0.373 0.465 0.465

(c)
x 0.680 0.722 0.723 0.736 0.790 0.801 0.758 0.786 0.778 0.769 0.672 0.657 0.657

y 0.720 0.735 0.741 0.750 0.808 0.818 0.767 0.796 0.802 0.776 0.699 0.693 0.693

z 0.532 0.385 0.656 0.586 0.561 0.512 0.396 0.633 0.441 0.554 0.331 0.439 0.439

−250 to 0

(a)
x 0.418 0.170 0.289 0.360 0.286 0.261 0.262 0.143 0.305 0.099 0.072 0.100 0.100

y 0.406 0.175 0.293 0.374 0.281 0.243 0.246 0.143 0.308 0.084 0.078 0.106 0.106

z 0.295 0.217 0.255 0.356 0.266 0.159 0.286 0.224 0.232 0.187 0.143 0.318 0.318

(b)
x 0.677 0.697 0.712 0.744 0.761 0.794 0.764 0.777 0.771 0.750 0.693 0.644 0.644

y 0.714 0.711 0.734 0.754 0.788 0.805 0.775 0.782 0.796 0.761 0.715 0.690 0.690

z 0.599 0.405 0.712 0.661 0.609 0.547 0.451 0.674 0.486 0.627 0.349 0.484 0.484

(c)
x 0.669 0.716 0.712 0.748 0.793 0.801 0.768 0.789 0.764 0.773 0.676 0.684 0.684

y 0.705 0.724 0.729 0.759 0.812 0.813 0.779 0.797 0.785 0.780 0.703 0.722 0.722

z 0.551 0.385 0.665 0.570 0.538 0.482 0.403 0.632 0.443 0.545 0.298 0.455 0.455

−300 to 0

(a)
x 0.439 0.133 0.262 0.357 0.270 0.346 0.235 0.134 0.275 0.132 0.069 0.091 0.091

y 0.431 0.141 0.265 0.380 0.270 0.340 0.218 0.130 0.276 0.121 0.073 0.094 0.094

z 0.272 0.135 0.211 0.341 0.226 0.171 0.272 0.224 0.250 0.196 0.171 0.317 0.317

(b)
x 0.692 0.679 0.705 0.728 0.763 0.822 0.759 0.765 0.769 0.755 0.660 0.635 0.635

y 0.728 0.697 0.728 0.738 0.788 0.835 0.770 0.774 0.785 0.766 0.682 0.683 0.683

z 0.620 0.368 0.710 0.642 0.576 0.592 0.452 0.687 0.499 0.618 0.369 0.478 0.478

(c)
x 0.708 0.713 0.730 0.734 0.798 0.800 0.776 0.787 0.772 0.779 0.697 0.655 0.655

y 0.743 0.733 0.749 0.745 0.820 0.819 0.791 0.798 0.795 0.788 0.719 0.694 0.694

z 0.574 0.325 0.628 0.532 0.498 0.513 0.397 0.607 0.430 0.525 0.307 0.414 0.414

−350 to 0

(a)
x 0.463 0.143 0.301 0.339 0.272 0.258 0.248 0.137 0.265 0.134 0.076 0.080 0.080

y 0.452 0.155 0.299 0.363 0.273 0.244 0.228 0.136 0.264 0.119 0.075 0.079 0.079

z 0.248 0.160 0.205 0.343 0.207 0.177 0.260 0.200 0.264 0.167 0.149 0.317 0.317

(b)
x 0.686 0.707 0.713 0.716 0.775 0.806 0.754 0.759 0.765 0.767 0.692 0.631 0.631

y 0.728 0.725 0.729 0.727 0.800 0.812 0.765 0.767 0.788 0.776 0.710 0.673 0.673

z 0.611 0.400 0.700 0.636 0.591 0.569 0.459 0.676 0.497 0.617 0.378 0.495 0.495

(c)
x 0.728 0.726 0.737 0.747 0.808 0.810 0.787 0.799 0.776 0.798 0.712 0.690 0.690

y 0.764 0.746 0.753 0.753 0.829 0.829 0.790 0.805 0.799 0.807 0.732 0.728 0.728

z 0.565 0.365 0.620 0.498 0.487 0.506 0.385 0.617 0.434 0.519 0.313 0.462 0.462

Note: the bold entries represent the highest mean PCC value obtained using the neural decoders in x, y and z directions.
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