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A B S T R A C T

Airwriting Recognition refers to the problem of identification of letters written in space with movement of
the finger. It can be seen as a special case of dynamic gesture recognition wherein the set of gestures are
letters in a particular language. Surface Electromyography (sEMG) is a non-invasive approach used to capture
electrical signals generated as a result of contraction and relaxation of the muscles. sEMG has been widely
adopted for gesture recognition applications. Unlike static gestures, dynamic gestures are user-friendly and
can be used as a method for input with applications in Human Computer Interaction. There has been limited
work in recognition of dynamic gestures such as airwriting, using sEMG signals and forms the core of the
current work. In this work, a multi-loss minimization framework for sEMG based airwriting recognition is
proposed. The proposed framework aims at learning a feature embedding vector that minimizes the triplet loss,
while simultaneously learning the parameters of a classifier head to recognize corresponding alphabets. The
proposed method is validated on a dataset recorded in the lab comprising of sEMG signals from 50 participants
writing English uppercase alphabets. The effect of different variations of triplet loss, triplet mining strategies
and feature embedding dimension is also presented. The best-achieved accuracy was 81.26% and 65.62% in
user-dependent and independent scenarios respectively by using semihard positive and hard negative triplet
mining. The code for our implementation will be made available at https://github.com/ayushayt/TripCEAiR
1. Introduction

1.1. Background

The ability to communicate is one of the most important of all
life skills that humans possess. The rapid emergence of digital devices
has led to a proportional increment in Human Computer Interaction
(HCI). However, the medium of user input to HCI systems is limited
to traditional methods such as touchscreen, keyboard, and mouse.
Therefore, there is a growing demand of alternate HCI input modalities
to reduce the need for such additional devices. In this regard, airwriting
recognition seems to be a viable solution. Airwriting is referred to as
the task of writing in space with the movement of the finger [1,2].
The unrestricted nature of free space writing provides the user with
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a seamless method to provide input for HCI applications. Additionally,
since the gesture vocabulary is same as that of letters in a language, a
user is not required to learn any new gestures for using such a system.
Airwriting Recognition has been tackled by using different methods,
such as wrist-worn Inertial Measurement Unit [3,4], smartphone [5],
wearable glove [6], Wii remote [7], finger ring [8], and computer
vision based methods [9]. In this work, a surface Electromyography
(sEMG) based airwriting recognition framework is proposed. sEMG is a
physiological signal recorded by placing electrodes on the skin over the
target muscle [10]. Due to its user-friendly and non-invasive nature,
sEMG has been widely used for tasks such as sign language recogni-
tion [11], user authentication [12], human machine interaction [13],
and prosthetic control [14].
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Fig. 1. Block diagram depicting the proposed method. Encoder and classifier blocks
are represented by 𝐸(⋅) and 𝐶(⋅) respectively. The model parameters are optimized by
minimizing 𝐿𝑡𝑟𝑖𝑝 and 𝐿𝐶𝐸 simultaneously in an end-to-end manner. The dashed lines
indicate that the encoders have shared weights. 𝑥𝑎, 𝑥𝑝, and 𝑥𝑛 denote the anchor,
positive, and negative samples respectively.

1.2. Related work

Gesture recognition using sEMG signals has been used for several
applications such as sign language recognition [15], user authentica-
tion [16], robot control [17], and rehabilitation [18]. The literature on
sEMG based hand gesture recognition can be divided into either static
or dynamic gesture recognition. The focus of static gesture recognition
is to identify the gestures formed by specified hand shape with no tem-
poral dimension. Several attempts including handcrafted features with
machine learning [13], and deep learning [19] have been proposed
for development of static gesture recognition systems. Additionally,
several time-domain features [20,21], frequency-domain features [22]
and image representations [23–25] of sEMG signals have also been
utilized for solving the task of static gesture recognition. In case of
dynamic gesture recognition, the task is to identify gestures formed by
motion of the hand in space. This adds a temporal dimension to the
gestures and thus it becomes essential to simultaneously consider the
shape, position and movement of the hand for accurate prediction of
the gesture. A CNN-based model trained on time-frequency images was
proposed in [26] for identification of 5 dynamic hand gestures. In [27],
the authors proposed a multi-stream residual network for 6-class dy-
namic hand gesture recognition system using sEMG signals. A specific
use case of dynamic gesture recognition is the task of handwriting
recognition, where the vocabulary of dynamic gestures is the alphabets
in a language. A dynamic time warping based approach for handwriting
recognition was proposed in [28], and further improvised in [29].
A CNN–LSTM based framework for classifying 36 different gestures,
which included 26 uppercase English alphabets and digits 0–9 was
proposed in [30]. Unlike handwriting, the task of airwriting recognition
is aimed at identifying characters written in free space, without any
visual and haptic feedback during the process of writing. In literature,
various airwriting recognition systems have been proposed by using
inertial sensors [3,4,31] and computer vision based techniques [32,33].
However, there has been limited work in recognition of airwriting by
using sEMG signals. To the best of the author’s knowledge, an airwriting
recognition based on sEMG signals was first proposed in [34]. Different
time-domain features were utilized to construct sEMG envelopes along
with time-frequency images to form input to several deep learning
based models for the task of airwriting recognition on a dataset col-
lected in the lab (SurfMyoAiR). Motivated by this, the current study
explores a multi-loss minimization approach for airwriting recognition
2

from sEMG signals obtained from a user’s forearm muscles.
1.3. Objectives and contributions

In this work, a multi-loss minimization framework for sEMG based
airwriting recognition is proposed. The central idea behind the ap-
proach is to simultaneously learn feature embeddings from sEMG sig-
nals and identify the character corresponding to the given input signal.
An encoder block is used to extract embeddings from the input sEMG
signal, the parameters of which are learnt by minimizing the triplet
loss. The intuition behind triplet loss is to attract the embeddings of
an anchor sample close to the embeddings of another sample from the
same class (positive sample), while repelling it away from that of a
different class (negative sample). These embedding vectors are simul-
taneously fed to a classifier head, the parameters of which are learnt by
minimizing the cross entropy loss for classifying the embeddings into
one of the 26 classes (corresponding to English uppercase alphabets).
The entire model is trained in an end-to-end manner by minimizing
the sum of triplet and cross entropy losses. The performance of the
proposed algorithm is evaluated by performing both user-independent
and user-dependent 5-fold validation on a dataset comprising of sEMG
recordings from 50 participants while writing uppercase English al-
phabets, collected in the lab. The evaluation is performed by taking
three different variants of the triplet loss. Additionally, the variation
of recognition accuracies with respect to feature embedding dimension
and the choice of triplet mining strategies has been comprehensively
explored.

2. Methodology

The proposed TripCEAiR framework, depicted in Fig. 1 comprises
of two sub-networks: an encoder and a classifier head. The encoder
network is used to obtain the feature embeddings by minimizing the
triplet loss. The embeddings are subsequently used as input to the
classifier network, the parameters of which are learnt by cross-entropy
loss minimization. The model is trained in an end-to-end fashion to
learn the parameters of both the encoder and the classifier.

2.1. Proposed framework

The input to the model is a multivariate time series comprising
of processed sEMG signals recorded while writing English uppercase
alphabets. The sEMG signals are obtained from 5 different locations on
the forearm, thereby resulting in a total of five time series per sample.
A batch of size 𝑁 is represented as {𝑥𝑗 , 𝑦𝑗}𝑗=1,2,..𝑁 , where 𝑥𝑗 ∈  is the
input multivariate time series, and 𝑦𝑗 ∈ {𝐴,… , 𝑍} is the corresponding
alphabet label. The encoder network represented by 𝐸(.) ∶  → R|𝐸|,
is used to map the input 𝑥𝑗 to an embedding vector 𝑧𝑗 . The parameters
of the encoder network denoted by 𝜃𝐸 , are learnt by minimizing the
triplet loss (𝐿𝑡𝑟𝑖𝑝) over the embedding vectors after normalizing them to
a unit hypersphere (represented by 𝑧𝑗). Minimizing the triplet loss aims
at bringing the anchor embedding close to the corresponding positive
embedding, while simultaneously pushing it away from the negative
embedding. In particular, three different variations of triplet loss are
utilized for learning the encoder parameters.

2.1.1. N-pair based triplet loss
A modification of the standard N-pair loss [35] is utilized for

learning the feature embeddings. The loss aims at pulling the positive
and anchor close to each other while repelling the anchor and negative
embeddings by using dot product as a measure of similarity between
the embedding vectors. Mathematically, it is given as,

𝐿𝑡𝑟𝑖𝑝−𝑁𝑃 =
∑

𝑇 (𝑧𝑎)
−𝑙𝑜𝑔

𝑒𝑥𝑝( 𝑧𝑎⋅𝑧𝑝𝜏 )

𝑒𝑥𝑝( 𝑧𝑎⋅𝑧𝑝𝜏 ) + 𝑒𝑥𝑝( 𝑧𝑎⋅𝑧𝑛𝜏 )
(1)

where 𝑇 (𝑧𝑎) denotes the set of all possible triplets in a batch, 𝜏 is a
scalar parameter (referred to as temperature) and 𝑧1 ⋅ 𝑧2 represents the
inner product between embedding vectors 𝑧 and 𝑧 .
1 2
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Table 1
Details of the proposed 1DCNN-BiLSTM based encoder.

Layer Kernel size # of filters Layer parameters

BatchNorm – – –
Conv1D 10 128 Stride = 1, Activation = ReLU, Zero padding
MaxPool1D 3 Strides = 3, No Padding
Conv1D 10 128 Stride = 1, Activation = ReLU, Zero padding
MaxPool1D 3 Strides = 3, No Padding
Conv1D 10 256 Stride = 1, Activation = ReLU, Zero padding
MaxPool1D 3 Strides = 3, No Padding
Conv1D 10 256 Stride = 1, Activation = ReLU, Zero padding
MaxPool1D 3 Strides = 3, No Padding
BiLSTM – – Hidden states = 512, Activation = tanh
Dense – – Neurons = |𝐸|, Activation = ReLU

2.1.2. Margin based triplet loss with 𝐿2 norm
The intuition behind this loss is to minimize the distance between

he anchor and positive embeddings while maximizing the distance
etween the anchor and negative embeddings. Therefore, the objective
s to learn embeddings such that, ‖𝑧𝑎 − 𝑧𝑛‖22 ≥ ‖𝑧𝑎 − 𝑧𝑝‖22 + 𝛼. Here,
⋅ ‖22 denotes the square of 𝐿2 norm and 𝛼 is referred to as the margin
arameter. To achieve this objective, the loss function is defined as,

𝑡𝑟𝑖𝑝−𝐿2 =

{

0, if 𝑑𝑎𝑝 + 𝛼 ≤ 𝑑𝑎𝑛
𝑑𝑎𝑝 − 𝑑𝑎𝑛 + 𝛼, otherwise

(2)

In the equation above, 𝑑𝑎𝑝 = ‖𝑧𝑎 − 𝑧𝑝‖22, and 𝑑𝑎𝑛 = ‖𝑧𝑎 − 𝑧𝑛‖22.
y minimizing this loss function, the distance between embeddings of
nchor and positive pairs is minimized only when it is greater than
he distance between the corresponding anchor and negative pair by a
actor 𝛼. For triplets where this margin is not violated, the loss is set
o 0. More specifically, the current study uses a smooth version of the
forementioned loss, given by:

𝑡𝑟𝑖𝑝−𝐿2 =
∑

𝑇 (𝑧𝑎)
𝑙𝑜𝑔[1 + 𝑒𝑥𝑝{𝑑𝑎𝑝 − 𝑑𝑎𝑛 + 𝛼}] (3)

here, 𝑇 (𝑧𝑎) represents the set of all possible triplets within a batch.

.1.3. Margin based triplet loss with cosine similarity
Similar to the margin based loss with 𝐿2 norm, the intuition behind

his loss is to maximize the similarity between anchor and positive
mbeddings, while minimizing the similarity between anchor and neg-
tive embeddings. The similarity is measured using cosine distance as
he metric. In particular, the embeddings are learnt such that 𝑧𝑎 ⋅ 𝑧𝑝 ≥
𝑧𝑎 ⋅ 𝑧𝑛 + 𝛼. This objective is achieved by defining the loss function as,

𝑡𝑟𝑖𝑝−𝐶𝐷 =

{

0, if 𝑠𝑎𝑛 + 𝛼 ≤ 𝑠𝑎𝑝
𝑠𝑎𝑛 − 𝑠𝑎𝑝 + 𝛼, otherwise

(4)

where, 𝑠𝑎𝑝 = 𝑧𝑎 ⋅ 𝑧𝑝, and 𝑠𝑎𝑛 = 𝑧𝑎 ⋅ 𝑧𝑛. The intuition behind this loss
is similar to that of the margin based loss with 𝐿2 norm, where the
difference lies in the measure of similarity. With 𝑇 (𝑧𝑎) representing
the set of triplets in the batch, the smoothed loss function used in the
current study is defined as,

𝐿𝑡𝑟𝑖𝑝−𝐶𝐷 =
∑

𝑇 (𝑧𝑎)
𝑙𝑜𝑔[1 + 𝑒𝑥𝑝{𝑠𝑎𝑛 − 𝑠𝑎𝑝 + 𝛼}] (5)

The embeddings obtained as output of the encoder block (𝑧𝑗) are
simultaneously fed to a classifier network, 𝐶(⋅) which is a mapping from
the embedding space to the set of alphabets. The output of the classifier
is a 26 dimensional vector given by 𝑦̂ = 𝐶(𝑧) = 𝜎(𝜃𝑇𝐶𝑧). Here, 𝜃𝐶 are
the classifier parameters, which are learnt by minimizing the cross-
entropy loss (𝐿𝐶𝐸) and 𝜎(⋅) denotes the softmax activation function.
The parameters of both encoder and classifier networks are learnt in an
end-to-end fashion by minimizing the sum of the two individual losses.
Therefore, the final loss to be minimized is the linear combination of
the two losses
3

𝐿 = 𝐿𝑡𝑟𝑖𝑝 + 𝐿𝐶𝐸 (6)
It is to be noted that the triplet loss does not add any additional
parameters and hence, during inference, size of the model is same as
that of a model trained by only minimizing the cross entropy loss.

2.2. Triplet mining strategies

Given a batch of 𝑁 training samples with the input multivariate
time series denoted by 𝑥 and the corresponding label 𝑦𝑥, the embedding
vector is computed as 𝑧 = 𝐸(𝑥). For an anchor sample 𝑥𝑎 (with
embedding 𝑧𝑎), the corresponding positive and negative are denoted
s 𝑥𝑝 and 𝑥𝑛 (with embeddings 𝑧𝑝 and 𝑧𝑛) respectively. In this work,
everal positive and negative mining strategies for forming the triplets
re explored [36,37]. These different strategies are detailed in the
ollowing subsections.

.2.1. Easy positive mining
The sample 𝑥𝐸𝑃 within a batch, the embedding of which is closest

o that of the anchor and belongs to the same class is referred to as an
asy positive. Mathematically easy positive samples are identified as,

𝐸𝑃 = argmin
𝑥∶𝑦𝑥=𝑦𝑥𝑎

‖𝑧𝑎 − 𝑧‖2 (7)

asy positive mining pulls only the embeddings of two closest positives
owards each other. This helps in reducing overclustering and improves
eneralization of embeddings.

.2.2. Hard positive mining
Hard positives (𝑥𝐻𝑃 ) are the samples belonging to the same class as

he anchor within the batch that have least similarity with the anchor
mbeddings.

𝐻𝑃 = argmax
𝑥∶𝑦𝑥=𝑦𝑥𝑎

‖𝑧𝑎 − 𝑧‖2 (8)

uch a positive mining strategy leads to tight clustering of similar
lasses in the embedding space. This leads to a decrease in variance
nd may converge to local minima.

.2.3. Semihard positive mining
Semihard positive mining aims to select the positive sample from

he batch such that, in the embedding space, it is closer from the
nchor than the selected negative sample (based on the negative mining
trategy). Mathematically, it is represented as,

𝑆𝐻𝑃 = argmax
𝑦𝑥=𝑦𝑥𝑎

𝑥∶‖𝑧𝑎−𝑧‖2<‖𝑧𝑎−𝑧𝑛‖2

‖𝑧𝑎 − 𝑧‖2 (9)

uch a mining strategy mitigates the issues of convergence to local
inima and possibility of a collapsed model as in case of hard positive
ining, while still ensuring tight clustering of the samples belonging to

he same class [37].

.2.4. Negative mining
Analogous to the positive mining easy, hard, and semihard negatives

orrespond to samples selected from the batch that belong to a different
lass from the anchor. Mathematically, it is defined as,

𝐸𝑁 = argmax
𝑥∶𝑦𝑥≠𝑦𝑥𝑎

‖𝑧𝑎 − 𝑧‖2 (10)

𝐻𝑁 = argmin
𝑥∶𝑦𝑥≠𝑦𝑥𝑎

‖𝑧𝑎 − 𝑧‖2 (11)

𝑆𝐻𝑁 = argmin
𝑦𝑥≠𝑦𝑥𝑎

𝑥∶‖𝑧𝑎−𝑧‖2>‖𝑧𝑎−𝑧𝑝‖2

‖𝑧𝑎 − 𝑧‖2 (12)

heoretically, easy negatives correspond to the most dissimilar sample
ithin the batch. Hard negative is the sample with the closest embed-
ing to that of the anchor but has a different class label. Similarly,
emihard negative chooses a negative from the batch in a way that the
mbeddings of anchor and the negative are farther than the embeddings
f the anchor with the selected positive (based on the positive mining
trategy).
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Fig. 2. Depiction of the sEMG signal recording setup, the electrode placement locations, and the visual stimulus presented to the participant.
Source: The figures have been adapted from [34].
Table 2
Recognition accuracies for the user-independent airwriting recognition task by using
different triplet mining strategies and feature embedding dimension. Entries in blue
denote best achieved accuracy for each embedding dimension and the best overall
accuracy is depicted in bold.

Loss Mining strategy Embedding dimension

Positive Negative 32 64 128 256 512

𝐿𝐶𝐸 – – 0.6325 0.6345 0.6322 0.6278 0.6340

Easy Easy 0.6277 0.6417 0.6367 0.6409 0.6361
Easy Hard 0.6294 0.6376 0.6412 0.6490 0.6457
Easy Semihard 0.6394 0.6456 0.6492 0.6433 0.6462
Easy All 0.6339 0.6378 0.6445 0.6447 0.6411
Hard Easy 0.6298 0.6292 0.6358 0.6294 0.6302
Hard Hard 0.6083 0.6172 0.6195 0.6221 0.6188
Hard Semihard 0.6372 0.6465 0.6356 0.6432 0.6488
Hard All 0.6228 0.6164 0.6266 0.6301 0.6259
Semihard Easy 0.6306 0.6340 0.6363 0.6243 0.6295
Semihard Hard 0.6462 0.6483 0.6546 0.6562 0.6553
All Easy 0.6272 0.6348 0.6287 0.6354 0.6347
All Hard 0.6095 0.6365 0.6383 0.6331 0.6375

𝐿𝑡𝑟𝑖𝑝−𝑁𝑃 + 𝐿𝐶𝐸

All All 0.6423 0.6342 0.6394 0.6422 0.6466

Easy Easy 0.6048 0.6226 0.6286 0.6263 0.6175
Easy Hard 0.6393 0.6355 0.6323 0.6307 0.6314
Easy Semihard 0.6358 0.6388 0.6354 0.6355 0.6295
Easy All 0.6233 0.6280 0.6313 0.6387 0.6405
Hard Easy 0.6066 0.6155 0.6251 0.6223 0.6202
Hard Hard 0.6248 0.6176 0.6219 0.6272 0.6246
Hard Semihard 0.6282 0.6336 0.6317 0.6369 0.6332
Hard All 0.6267 0.6308 0.6356 0.6376 0.6327
Semihard Easy 0.6022 0.6158 0.6227 0.6245 0.6151
Semihard Hard 0.6305 0.6351 0.6328 0.6244 0.6372
All Easy 0.6092 0.6302 0.6255 0.6287 0.6262
All Hard 0.6307 0.6225 0.6310 0.6412 0.6279

𝐿𝑡𝑟𝑖𝑝−𝐶𝐷 + 𝐿𝐶𝐸

All All 0.6308 0.6403 0.6420 0.6417 0.6355

Easy Easy 0.6236 0.6222 0.6328 0.6298 0.6251
Easy Hard 0.6241 0.6328 0.6333 0.6415 0.6393
Easy Semihard 0.6412 0.6392 0.6388 0.6286 0.6261
Easy All 0.6410 0.6399 0.6391 0.6431 0.6397
Hard Easy 0.6158 0.6272 0.6217 0.6261 0.6210
Hard Hard 0.6126 0.6285 0.6198 0.6314 0.6273
Hard Semihard 0.6327 0.6431 0.6364 0.6362 0.6412
Hard All 0.6211 0.6358 0.6347 0.6359 0.6377
Semihard Easy 0.6125 0.6193 0.6252 0.6145 0.6169
Semihard Hard 0.6424 0.6394 0.6495 0.6402 0.6367
All Easy 0.6262 0.6179 0.6307 0.6218 0.6275
All Hard 0.6112 0.6395 0.6356 0.6273 0.6332

𝐿𝑡𝑟𝑖𝑝−𝐿2 + 𝐿𝐶𝐸

All All 0.6292 0.6420 0.6437 0.6412 0.6419

2.3. Model architecture

For the encoder block, an architecture based on a combination
of Convolutional Neural Network (CNN) and Bidirectional Long Short
Term Memory (BiLSTM) is used. The intuition behind selecting this par-
ticular architecture is that the convolutional layers extract the spatial
features from the processed sEMG signals. The BiLSTM layer then aims
at learning the temporal dimension from these spatial features. The
details of the encoder architecture are presented in Table 1. First, Batch
4

Table 3
Recognition accuracies for the user-dependent airwriting recognition task by using
different triplet mining strategies and feature embedding dimension. Entries in blue
denote best achieved accuracy for each embedding dimension and the best overall
accuracy is depicted in bold.

Loss Mining strategy Embedding dimension

Positive Negative 32 64 128 256 512

𝐿𝐶𝐸 – – 0.7549 0.7712 0.7748 0.7725 0.7701

Easy Easy 0.7583 0.7664 0.7823 0.7764 0.7815
Easy Hard 0.7725 0.7792 0.7840 0.7898 0.7924
Easy Semihard 0.7867 0.7999 0.7955 0.7898 0.7904
Easy All 0.7781 0.7761 0.7729 0.7900 0.7856
Hard Easy 0.7484 0.7677 0.7665 0.7772 0.7718
Hard Hard 0.7533 0.7445 0.7684 0.7677 0.7645
Hard Semihard 0.7836 0.7843 0.7906 0.7852 0.7992
Hard All 0.7608 0.7829 0.7879 0.7778 0.7744
Semihard Easy 0.7555 0.7611 0.7677 0.7705 0.7745
Semihard Hard 0.7861 0.8035 0.8053 0.8126 0.8089
All Easy 0.7545 0.7575 0.7641 0.7811 0.7797
All Hard 0.7709 0.7701 0.7819 0.7540 0.7533

𝐿𝑡𝑟𝑖𝑝−𝑁𝑃 + 𝐿𝐶𝐸

All All 0.7826 0.7879 0.7938 0.7847 0.7872

Easy Easy 0.7379 0.7505 0.7548 0.7606 0.7620
Easy Hard 0.7518 0.7688 0.7742 0.7746 0.7657
Easy Semihard 0.7606 0.7715 0.7675 0.7782 0.7547
Easy All 0.7557 0.7667 0.7795 0.7882 0.7815
Hard Easy 0.7334 0.7571 0.7628 0.7509 0.7335
Hard Hard 0.7558 0.7500 0.7749 0.7645 0.7717
Hard Semihard 0.7565 0.7751 0.7655 0.7766 0.7718
Hard All 0.7606 0.7698 0.7724 0.7794 0.7668
Semihard Easy 0.7482 0.7413 0.7545 0.7513 0.7325
Semihard Hard 0.7843 0.7678 0.7821 0.7788 0.7712
All Easy 0.7428 0.7552 0.7603 0.7680 0.7660
All Hard 0.7610 0.7484 0.7489 0.7675 0.7685

𝐿𝑡𝑟𝑖𝑝−𝐶𝐷 + 𝐿𝐶𝐸

All All 0.7650 0.7893 0.7822 0.7772 0.7922

Easy Easy 0.7466 0.7656 0.7673 0.7622 0.7645
Easy Hard 0.7718 0.7689 0.7724 0.7782 0.7723
Easy Semihard 0.7697 0.7743 0.7565 0.7874 0.7658
Easy All 0.7550 0.7725 0.7838 0.7887 0.7908
Hard Easy 0.7512 0.7580 0.7688 0.7665 0.7568
Hard Hard 0.7422 0.7672 0.7659 0.7488 0.7408
Hard Semihard 0.7692 0.7778 0.7769 0.7808 0.7952
Hard All 0.7500 0.7722 0.7810 0.7815 0.7702
Semihard Easy 0.7356 0.7498 0.7572 0.7587 0.7672
Semihard Hard 0.7891 0.7778 0.7929 0.7871 0.7906
All Easy 0.7489 0.7572 0.7608 0.7725 0.7622
All Hard 0.7575 0.7604 0.7652 0.7682 0.7659

𝐿𝑡𝑟𝑖𝑝−𝐿2 + 𝐿𝐶𝐸

All All 0.7682 0.7896 0.7925 0.7892 0.7894

Normalization is applied to the processed signals, which are further
passed through 4 convolutional layers each with a kernel size of 10.
For the first couple of convolution layers, the numbers of kernels is set
to 128, while it is increased to 256 for the last two layers. Maxpooling
with a pool size of 3 is performed after each convolution layer. The
features are then fed to a BiLSTM layer with 512 units. Rectified Linear
Unit (𝑅𝑒𝐿𝑈) activation function is used for all the convolution layers
and hyperbolic tangent (𝑡𝑎𝑛ℎ) for the BiLSTM layer. The output of
the 1DCNN-BiLSTM is subsequently fed to a dense layer comprising of
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Table 4
Alphabet-wise precision, recall and F1-score corresponding to Semihard positive and
Hard negative mining with 𝐿𝑡𝑟𝑖𝑝−𝑁𝑃 +𝐿𝐶𝐸 loss in user-independent, and user-dependent
evaluation settings.

Alphabet User independent User dependent

Precision Recall F1-Score Precision Recall F1-Score

A 0.73 0.74 0.74 0.87 0.84 0.86
B 0.74 0.69 0.72 0.88 0.84 0.86
C 0.69 0.73 0.71 0.77 0.78 0.77
D 0.54 0.51 0.52 0.68 0.67 0.67
E 0.68 0.74 0.71 0.84 0.83 0.83
F 0.65 0.62 0.63 0.79 0.80 0.80
G 0.70 0.66 0.68 0.84 0.82 0.83
H 0.69 0.67 0.68 0.84 0.82 0.83
I 0.59 0.52 0.55 0.81 0.75 0.78
J 0.64 0.59 0.61 0.82 0.82 0.82
K 0.66 0.65 0.65 0.81 0.77 0.79
L 0.64 0.69 0.66 0.81 0.80 0.81
M 0.74 0.76 0.75 0.87 0.90 0.88
N 0.59 0.61 0.60 0.77 0.77 0.77
O 0.67 0.66 0.67 0.79 0.78 0.79
P 0.57 0.56 0.56 0.71 0.70 0.71
Q 0.65 0.63 0.64 0.82 0.83 0.83
R 0.64 0.64 0.64 0.76 0.82 0.79
S 0.73 0.81 0.77 0.85 0.87 0.86
T 0.56 0.55 0.56 0.78 0.78 0.78
U 0.64 0.64 0.64 0.71 0.77 0.74
V 0.64 0.69 0.67 0.79 0.80 0.79
W 0.67 0.72 0.69 0.81 0.82 0.82
X 0.65 0.68 0.66 0.82 0.84 0.83
Y 0.64 0.62 0.63 0.85 0.79 0.82
Z 0.73 0.71 0.72 0.82 0.85 0.84

|𝐸| neurons and activated by ReLU activation function to obtain the
embedding vector. Further, the classifier head is taken to be a single
fully-connected layer having 26 neurons. A dropout of 50% is used in
order to avoid overfitting.

3. Experiments and results

3.1. Dataset description

The recording of sEMG signals was done as per guidelines laid
down in the Helsinki Declaration, and was ethically approved by the
Institute Ethics Committee of the All India Institute of Medical Sciences,
New Delhi. The dataset comprises of sEMG signals recorded from five
forearm muscles (Flexor Carpi Radialis, Pronator teres, Flexor Digito-
rum, Brachioradialis, and Extensor Digitorum) while writing English
uppercase alphabets (10 times). A total of 50 healthy subjects with
mean age of 23.12 years participated in the experiment with written
consent. In order to record the sEMG signals, Noraxon Ultium wireless
sEMG sensor [38] and gel-based, self-adhesive Ag/AgCl disposable dual
electrodes were used. The sEMG signals were recorded at a sampling
rate of 2 kHz. During the processing stage, the recorded signals were
downsampled to 500 Hz and absolute value of the signals was retained.
A user interface operated by the experimenter was used to provide
visual cue to the participant for the alphabet to be written. Random
shuffling of alphabets within a set was done and the participant was
provided adequate rest after 2 repetitions of the alphabet set. The data
collection setup, location of sEMG electrodes on the forearm, and a
sample visual stimulus are presented in Fig. 2.

3.2. Experimental details

The recorded sEMG signals correspond to different letters from
different users, thereby leading to a variation in the length of signals.
To mitigate this, the absolute sEMG signals are interpolated to a length
of 𝐿 samples using cubic interpolation if the signal was shorter and
the extra samples were discarded, otherwise. The length 𝐿 was taken
5

Fig. 3. Effect of temperature parameter on recognition accuracy for sEMG based
airwriting recognition in user dependent and independent scenarios.

Fig. 4. Scatter plot depicting clusters for the different alphabets in the embedding
space.

to be 2000 samples which corresponds to 4 s duration of writing.
Subsequently, z-normalization was performed to each of the processed
signals individually.

In order to check for robustness of the proposed method, experi-
ments were performed in both user-independent and user-dependent
settings. In the user-independent approach, 5-fold validation was per-
formed while ensuring no subject overlap in the training and test sets.
More specifically, in each fold, data corresponding to 40 subjects was
used for training the model and evaluation was performed on the held-
out subjects. Similarly, in the user-dependent setting, 5-fold validation
was performed by splitting the entire data based on the repetition
number during the airwriting data collection process. In each fold, the
model was trained on 8 repetitions of all the subjects, and tested on the
left out 2 repetitions. The training data was further split in an 80 ∶ 20
ratio to form the training and validation sets. A mini-batch training
process with a batch size of 260 was employed and the parameters of
the model were updated using the Adam optimizer. Early stopping with
a patience of 10 epochs while monitoring the validation accuracy was
employed to avoid overfitting of the model.

3.3. Results and discussion

The effect of variation in mean recognition accuracies with different
values of the temperature parameter (𝜏) for the N-pair based triplet
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Fig. 5. Confusion matrices corresponding to Semihard positive and Hard negative mining with 𝐿𝑡𝑟𝑖𝑝−𝑁𝑃 + 𝐿𝐶𝐸 loss in (a) user-independent, and (b) user-dependent evaluation
settings.
loss are presented in Fig. 3. For observing the role of 𝜏, the embedding
dimension is set to 256, along with semihard positive and hard triplet
mining. It is observed that the best accuracy is achieved with 𝜏 = 0.2,
and this value is retained for all subsequent experiments. Similarly,
the optimal values of the margin parameter (𝛼) in case of margin-
based triplet loss is identified. The value is found to be 𝛼 = 0.2 and
𝛼 = 0.1 for margin loss with 𝐿2 norm and cosine similarity, respectively.
Tables 2 and 3 list the performance of the proposed architecture with
the accuracies averaged across the 5 folds. The variation of accuracy
6

with different feature embedding dimension (i.e. |𝐸|), triplet mining
strategies and the three variations of the triplet loss used in the study is
also presented. It is observed from the tables that using the N-pair based
triplet loss yields an improved accuracy compared to the margin based
losses. It is seen that the best accuracy is achieved by using a feature
embedding dimension of 256 along with semihard positive and hard
negative mining. The superior accuracies obtained by using this triplet
mining technique may be attributed to the fact that such a strategy
pushes apart the most dissimilar samples while pulling those samples
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Table 5
Comparison of different model architectures for sEMG based airwriting recognition task.

Architecture 𝐿𝐶𝐸 𝐿𝑡𝑟𝑖𝑝−𝑁𝑃 + 𝐿𝐶𝐸 𝐿𝑡𝑟𝑖𝑝−𝐿2 + 𝐿𝐶𝐸 𝐿𝑡𝑟𝑖𝑝−𝐶𝐷 + 𝐿𝐶𝐸

User dependent

1DCNN 0.6479 0.6522 0.6538 0.6506
Stacked LSTM 0.4651 0.4419 0.4383 0.4400
Stacked BiLSTM 0.4810 0.4545 0.4394 0.4479
1DCNN-LSTM 0.7822 0.8089 0.7823 0.7746
1DCNN-BiLSTM 0.7725 0.8126 0.7871 0.7788

User independent

1DCNN 0.5415 0.5432 0.5482 0.5552
Stacked LSTM 0.3335 0.3221 0.3049 0.3103
Stacked BiLSTM 0.4047 0.3692 0.3475 0.3419
1DCNN-LSTM 0.6385 0.6559 0.6420 0.6375
1DCNN-BiLSTM 0.6278 0.6562 0.6402 0.6244
s
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Table 6
Details of the 1DCNN based encoder.

Layer Kernel size # of filters Layer parameters

BatchNorm – – –
Conv1D 10 128 Stride = 1, Activation = ReLU,

Zero padding
MaxPool1D 3 Strides = 3, No Padding
Conv1D 10 128 Stride = 1, Activation = ReLU,

Zero padding
MaxPool1D 3 Strides = 3, No Padding
Conv1D 10 256 Stride = 1, Activation = ReLU,

Zero padding
MaxPool1D 3 Strides = 3, No Padding
Conv1D 10 256 Stride = 1, Activation = ReLU,

Zero padding
MaxPool1D 3 Strides = 3, No Padding
GlobalAvgPool1D – – –
Dense – – Neurons = |𝐸|, Activation =

ReLU

Table 7
Details of the Stacked LSTM-based encoder.

Layer Kernel size # of filters Layer parameters

BatchNorm – – –
LSTM – – Hidden states = 512, Activation = tanh
LSTM – – Hidden states = 512, Activation = tanh
Dense – – Neurons = |𝐸|, Activation = ReLU

Table 8
Details of the Stacked Bidirectional LSTM-based encoder.

Layer Kernel size # of filters Layer parameters

BatchNorm – – –
BiLSTM – – Hidden states = 512, Activation = tanh
BiLSTM – – Hidden states = 512, Activation = tanh
Dense – – Neurons = |𝐸|, Activation = ReLU

Table 9
Details of the 1DCNN-LSTM based encoder.

Layer Kernel size # of filters Layer parameters

BatchNorm – – –
Conv1D 10 128 Stride = 1, Activation = ReLU, Zero padding
MaxPool1D 3 Strides = 3, No Padding
Conv1D 10 128 Stride = 1, Activation = ReLU, Zero padding
MaxPool1D 3 Strides = 3, No Padding
Conv1D 10 256 Stride = 1, Activation = ReLU, Zero padding
MaxPool1D 3 Strides = 3, No Padding
Conv1D 10 256 Stride = 1, Activation = ReLU, Zero padding
MaxPool1D 3 Strides = 3, No Padding
LSTM – – Hidden states = 512, Activation = tanh
Dense – – Neurons = |𝐸|, Activation = ReLU

that are closer to the anchor than the hardest negative. The feature
embedding vectors, which are the output of the encoder block (denoted
by 𝑧) are visualized by reducing to 2 dimensions by using Uniform

anifold Approximation and Projection (UMAP). The plot depicting
7

this visualization is presented in Fig. 4. The plot reveals tight clusters
corresponding to each of the 26 uppercase English alphabets, with
imilar-looking alphabets (such as D & P) close to each other in the em-
edding space. The same is also observed from the confusion matrices
resented in Fig. 5. It can be seen that similar-looking alphabets which
re close to each other in the embedding space lead to the highest
isclassification. Additionally, the precision, recall and F1-scores for

ndividual alphabets is presented in Table 4. Overall, on combining
he N-pair based triplet loss, an absolute improvement of 2.84% and
.01% is observed in case of user independent and dependent sce-
arios respectively. Furthermore, the performance of the airwriting
ecognition system by using different model architectures including
DCNN, Stacked Long Short Term Memory (LSTM), Bidirectional LSTM
nd 1DCNN-LSTM/BiLSTM is also presented in Table 5. The different
ncoder architectures used for this comparison are detailed in Tables 6–

in Appendix. It is observed that the proposed 1DCNN-BiLSTM
utperforms the other model architectures. This is attributed to the fact
hat in this architecture, the CNN layers act as a feature extractor and
ax pooling layer takes the average of the feature within a sliding
indow. The BiLSTM layer then learns the temporal characteristics

rom the extracted features. Hence, this combination of CNN-BiLSTM
s able to better capture the nuances of the sEMG signal corresponding
o different alphabets leading to superior performance.

. Conclusion

In this paper, a multi-loss framework by combining triplet and cross
ntropy losses (TripCEAiR) for sEMG based airwriting recognition is
roposed. Additionally, the effect of different triplet mining strategies
nd feature embedding dimension is comprehensively explored. It is
een that the proposed method outperforms the approach wherein
odel parameters are learnt by minimizing only the cross-entropy loss.
n accuracy of 81.26% and 65.62% was obtained in the user-dependent
nd user-independent scenarios respectively by using semihard positive
nd hard negative mining and the N-pair based triplet loss. This implies
n absolute improvement of 4.01% and 2.84% in the user-dependent
nd independent settings over the case when only cross-entropy loss
s minimized. The improvement in recognition accuracies indicate the
sability of the proposed framework in developing an sEMG based
irwriting recognition system for HCI applications. Future work may
e focused on exploring the robustness of the proposed sEMG based
irwriting recognition system in adverse scenarios such as the presence
f excessive noise and imperfect sensor placement.
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