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A B S T R A C T

The parameterization of open and closed anatomical surfaces is of fundamental importance in many biomedical
applications. Spherical harmonics, a set of basis functions defined on the unit sphere, are widely used for
anatomical shape description. However, establishing a one-to-one correspondence between the object surface
and the entire unit sphere may induce a large geometric distortion in case the shape of the surface is too
different from a perfect sphere. In this work, we propose adaptive area-preserving parameterization methods
for simply-connected open and closed surfaces with the target of the parameterization being a spherical cap.
Our methods optimize the shape of the parameter domain along with the mapping from the object surface to
the parameter domain. The object surface will be globally mapped to an optimal spherical cap region of the
unit sphere in an area-preserving manner while also exhibiting low conformal distortion. We further develop a
set of spherical harmonics-like basis functions defined over the adaptive spherical cap domain, which we call
the adaptive harmonics. Experimental results show that the proposed parameterization methods outperform
the existing methods for both open and closed anatomical surfaces in terms of area and angle distortion.
Surface description of the object surfaces can be effectively achieved using a novel combination of the adaptive
parameterization and the adaptive harmonics. Our work provides a novel way of mapping anatomical surfaces
with improved accuracy and greater flexibility. More broadly, the idea of using an adaptive parameter domain
allows easy handling of a wide range of biomedical shapes.
1. Introduction

Surface parameterization is the process of mapping a complicated
surface to a simple parameter domain, which plays an important role in
biomedical visualization [1–3] and shape morphometry [4–7]. In many
situations, the parameterization is desired to be with low geometric
distortion. However, by a classical result of differential geometry [8],
it is in general impossible to achieve an isometric (distance preserving)
parameterization. We can only achieve an angle-preserving (conformal)
map, an area-preserving (authalic) map, or a balance between area and
angle preservation. Over the past several decades, numerous parameter-
ization algorithms have been developed [9,10]. In particular, there has
been a vast number of works on conformal parameterization algorithms
for mapping genus-0 closed surfaces onto the unit sphere [11–18] and
simply-connected open surfaces onto a planar domain such as the unit
disk [19–21], a rectangle [22], a prescribed non-convex template [23],
or other free-boundary domains [24–26]. However, while conformal
mappings preserve angles and hence the local geometry of surfaces,
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the area distortion they produce may be highly undesirable. For in-
stance, highly squeezed regions under a conformal parameterization
may lead to inaccuracies in the surface harmonics representations.
Therefore, some recent works have focused on the computation of
area-preserving parameterizations for genus-0 closed surfaces [27–29]
and simply-connected open surfaces [30–32] or parameterizations that
minimize some form of isometric distortions [33–36]. Furthermore,
area-preserving parameterizations have been found useful for biomedi-
cal visualization [37–39] as particular regions of biomedical structures
will less likely to be shrunk under area-preserving mappings. More
recently, a few works have considered the parameterization of biomed-
ical surfaces onto other target domains. For instance, Nadeem et al.
developed a method called LMap [40] that flattens a local selected
region-of-interest instead of the entire surface. Also, Giri et al. pro-
posed two area-preserving parameterization methods for open and
closed anatomical surfaces with the target parameter domain being
a hemisphere [41]. However, the above-mentioned parameterization
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methods only focus on reducing the geometric distortion with a target
parameter domain determined a priori. It is natural to ask whether
one can parameterize the surface globally onto an adaptive parameter
domain, where the overall shape of the parameter domain is also a
variable that we can optimize throughout the parameterization process.

In this work, we propose two adaptive area-preserving parame-
terization methods for simply-connected open and closed anatomi-
cal surfaces. More specifically, we consider parameterizing any given
simply-connected surface onto an adaptive spherical cap S2𝑍≥𝑍∗ =
{(𝑋, 𝑌 ,𝑍) ∈ R3 ∶ 𝑋2 + 𝑌 2 +𝑍2 = 1 and 𝑍 ≥ 𝑍∗} in an area-preserving
manner, where the lower bound 𝑍∗ is automatically determined. We
also develop a set of spherical harmonics (SH)-like basis functions
defined over the adaptive spherical cap domain exactly, which we call
the adaptive harmonics (AH). The novel combination of the adaptive
surface parameterization and AH enables efficient anatomical shape
description and reconstruction. When compared to the existing param-
eterization methods with fixed target shape, our methods are more
flexible as the extra degree of freedom in the shape of the spherical cap
allows us to further reduce the geometric distortion of the parameteri-
zation. Also, when compared to the existing parameterization methods
with optimized target shape, our adaptive spherical cap domains are
more standardized and hence are easier to utilize for various appli-
cations. Overall, the proposed parameterization methods achieve an
optimal balance between flexibility and canonicity.

The rest of the paper is organized as follows. In Section 2, we
introduce the theory of conformal geometry, quasi-conformal geometry
and optimal mass transport. In Section 3, we describe our proposed
framework for the adaptive area-preserving parameterization of open
and closed surfaces and the formulation of AH. Experimental results
on various anatomical surfaces are presented in Section 4. In Section 5,
we conclude the paper and discuss possible future directions.

2. Background

2.1. Conformal and quasi-conformal geometry

In this section, we first introduce some important concepts in con-
formal and quasi-conformal geometry related to our work. Readers are
referred to [42,43] for details.

Mathematically, conformal maps are mappings that locally preserve
angles. Let 𝑓 ∶ C → C be a holomorphic function with 𝑓 ′ ≠ 0
everywhere and write 𝑓 (𝑥, 𝑦) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦), where 𝑢, 𝑣 are real-
valued functions and 𝑖 is the imaginary number with 𝑖2 = −1. 𝑓 is
conformal if it satisfies the Cauchy–Riemann equation
𝜕𝑢
𝜕𝑥

= 𝜕𝑣
𝜕𝑦

and 𝜕𝑣
𝜕𝑥

= − 𝜕𝑢
𝜕𝑦

. (1)

More generally, conformal maps between two surfaces can be de-
fined using their local charts. Two well-known examples of conformal
maps are the stereographic projection and the inverse stereographic
projection, which establish a one-to-one correspondence between the
unit sphere and the extended complex plane. Denote the Cartesian
coordinates of a point on the sphere and the corresponding point on the
plane by (𝑋, 𝑌 ,𝑍) and (𝑥, 𝑦) respectively. The stereographic projection
𝜑 ∶ S2 → C is given by

(𝑥, 𝑦) = 𝜑(𝑋, 𝑌 ,𝑍) =
( 𝑋
1 −𝑍

, 𝑌
1 −𝑍

)

, (2)

nd the inverse stereographic projection 𝜑−1 ∶ C → S2 is given by

𝑋, 𝑌 ,𝑍) = 𝜑−1(𝑥, 𝑦) =
(

2𝑥
1 + 𝑥2 + 𝑦2

,
2𝑦

1 + 𝑥2 + 𝑦2
,
−1 + 𝑥2 + 𝑦2

1 + 𝑥2 + 𝑦2

)

. (3)

Quasi-conformal maps are a generalization of conformal maps. A
map 𝑓 ∶ C → C is said to be quasi-conformal if it satisfies the Beltrami
equation
𝜕𝑓

= 𝜇(𝑧)
𝜕𝑓

, (4)
2

𝜕𝑧 𝜕𝑧
here 𝜕𝑓
𝜕𝑧 = 1

2

(

𝜕𝑓
𝜕𝑥 + 𝑖 𝜕𝑓𝜕𝑦

)

, 𝜕𝑓
𝜕𝑧 = 1

2

(

𝜕𝑓
𝜕𝑥 − 𝑖 𝜕𝑓𝜕𝑦

)

, and 𝜇 is a complex-
valued function (called the Beltrami coefficient) with ‖𝜇‖∞ < 1. Here,
|𝜇| captures the conformal distortion of 𝑓 in the sense that |𝜇| = 0 if and
only if 𝑓 is conformal. Analogous to conformal maps, quasi-conformal
maps can be defined between surfaces with the aid of the local charts.

2.2. Optimal mass transport and area-preserving map

The theory of optimal mass transport (OMT) has been studied for
over two centuries [44,45], and recently it has been shown to be closely
related to the computation of area-preserving mappings [27,46]. Let
 and  be two metric spaces with measures 𝜎, 𝜏 respectively, and
assume that  and  have equal total measures, i.e. ∫ 𝜎 = ∫ 𝜏. The
transportation cost of moving 𝐱 ∈  to 𝐲 ∈  is denoted by 𝑐(𝐱, 𝐲).
A map 𝑇 ∶  →  is an optimal mass transport map if it satisfies
𝜏(𝐵) = 𝜎(𝑇 −1(𝐵)) for all 𝐵 ⊂  and minimizes the total transportation
ost

(𝑇 ) = ∫
𝑐(𝐱, 𝑇 (𝐱))𝜎(𝐱)𝑑𝐱. (5)

By considering  as a surface and  as a target parameter domain,
he OMT map 𝑇 can be viewed as a parameterization mapping. In [47],
antorovich introduced a relaxation of the Monge problem (5) and
roved the existence and uniqueness of the OMT map. In [48], Brenier
howed that the OMT map is the gradient map of a convex function.

The discrete OMT mapping 𝑇 ∶  →  can be obtained using the
pproach in [27], which is based on the Monge–Brenier theory [48]
nd the variational principle in [46]. More specifically, let 𝐲1,… , 𝐲𝑛 ∈

and 𝜏 be a discrete measure with delta masses at all 𝐲𝑖, i.e. 𝜏 =
𝑛
𝑖=1 𝜏𝑖𝛿(𝐲 − 𝐲𝑖), and define the height vector 𝐡 = (ℎ1,… , ℎ𝑛) ∈ R𝑛.
onsider the energy 𝑢𝐡(𝐱) = max1≤𝑖≤𝑛(⟨𝐱, 𝐲𝑖⟩ + ℎ𝑖), where ⟨⋅, ⋅⟩ denotes
he inner product. It can be shown that 𝑢𝐡 is a convex function and
s associated with a convex polyhedron with supporting hyperplanes
iven by ⟨𝐱, 𝐲𝑖⟩ + ℎ𝑖 = 0. Moreover, the energy

(𝐡) = ∫𝛺
𝑢𝐡(𝐱)𝜎(𝐱)𝑑𝐱 −

𝑛
∑

𝑖=1
𝜏𝑖ℎ𝑖, (6)

here 𝛺 = supp 𝜎 = {𝐱 ∈  ∶ 𝜎(𝐱) > 0}, is a convex energy. By
inimizing 𝐸, the gradient map ∇𝑢𝐡 gives the desired OMT mapping.

n practice, the computation of ∇𝑢𝐡 can be further simplified as the
omputation of the power diagram, i.e. the Voronoi diagram with the
ower distance Pow(𝐱, 𝐲𝑖) = 1

2‖𝐱 − 𝐲𝑖‖2 − 1
2ℎ𝑖. One can then use gra-

dient descent to iteratively update 𝐡 and compute the power diagram
until the energy 𝐸(𝐡) is minimized. More details of the computational
procedure can be found in [27].

A map 𝑇 ∶  →  is said to be an area-preserving map if its Jacobian
𝐽𝑇 satisfies | det 𝐽𝑇 | = 1. By setting the source measure 𝜎 and the target
measure 𝜏 based on the local area of the surface and the target domain,
one can obtain an area-preserving parameterization by solving an OMT
problem.

3. Proposed methods

In this section, we describe our proposed methods for the adaptive
area-preserving parameterization of open and closed surfaces, as well
as the formulation of AH. The proposed parameterization methods are
based on our recent work [41], with a novel optimization step added
for achieving the adaptive parameterization. The main features of our
proposed methods are highlighted below:

(i) Unlike other prior parameterization methods, the shape of the
adaptive spherical cap parameter domain is automatically deter-
mined by our proposed methods.

(ii) The parameterization of the open/closed surface onto the adap-
tive spherical cap domain is area-preserving.

(iii) The parameterization also achieves a minimal conformal distor-

tion.
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Fig. 1. An illustration of the proposed adaptive area-preserving parameterization methods for open and closed anatomical surfaces. Given any simply-connected anatomical surface
(see (a)), we first compute an initial flattening map onto the plane (see (b)). In case the surface is a closed surface, an extra step of puncturing a quadrilateral region [41] is applied
beforehand. Next, we search for an optimal scaling factor and an OMT map simultaneously by solving an optimization problem (see (c)). Finally, we apply the inverse stereographic
projection to obtain an adaptive area-preserving parameterization onto a spherical cap region (see (d)). The tooth surface shown here is adopted from MorphoSource [49,50].
(iv) The parameterization can be naturally combined with AH for
effective shape description.

An illustration of the proposed adaptive area-preserving parameteriza-
tion methods is given in Fig. 1. The detail of each step is provided in
the following subsections.

3.1. Adaptive area-preserving parameterization of simply-connected open
surfaces

Let 𝑜 be a simply-connected open surface (see Fig. 1(a)). The goal
is to compute an area-preserving map of 𝑜 onto an optimal spherical
cap domain S2𝑍≥𝑍∗ with a hollow bottom part.

3.1.1. Initial flattening map
The first step of the proposed algorithm is to flatten 𝑜 onto a

planar domain so as to simplify the subsequent computations. Since the
boundary of an open spherical cap is a circle, it is natural to consider
flattening 𝑜 onto a planar disk domain as the initial map. Here, we
use the disk conformal mapping method [19] to compute a flattening
map 𝑔 ∶ 𝑜 → D onto the unit disk (see Fig. 1(b)). An advantage of the
mapping method is that the mapping is bijective and conformal, and
hence the resulting map is good enough for the next steps. Also, the
computation is highly efficient.

3.1.2. Optimization on the plane
Once we have obtained the initial flattening map 𝑔, we consider

solving an optimization problem on the plane which yields an adaptive
spherical cap parameterization with area preserved. This is achieved by
searching for an optimal scaling factor for the planar disk domain and
an OMT map onto it simultaneously.

Here, our key observation is that by changing the radius 𝑟 of the
disk, we can associate the disk with a unique spherical cap shape via
the inverse stereographic projection 𝜑−1 by Eq. (3). For any given 𝑟, we
can always solve for an OMT mapping ℎ𝑟 ∶ 𝑟D → 𝑟D from a disk with
radius 𝑟 to itself. Similar to our recent work [41], the source measure
𝜎 and the target measure 𝜏𝑟 are carefully set in the computation of the
OMT map as detailed below to ensure that the final parameterization
𝑓 is area-preserving.

As for the source measure, since the planar domain will be projected
onto a spherical cap by 𝜑−1, it is necessary to take the conformal factor
of the inverse stereographic projection into consideration [51]. Hence,
we set the source measure 𝜎 to be

𝜎 =
4 𝑑𝑥 𝑑𝑦

(1 + 𝑥2 + 𝑦2)2
, (7)

where (𝑥, 𝑦) are the Cartesian coordinates of the plane. As for the target
measure, since an area-preserving map is desired, the target measure at
every vertex 𝑣𝑖 should be set based on the local vertex area of it. It may
be noted that since the final spherical cap is a subset of the unit sphere
S2, in general, the total area of it is different from the total area of the
3

input surface. Therefore, for any given radius 𝑟 of the disk, we set the
target measure 𝜏𝑟 at every vertex as follows [51]:

𝜏𝑟(𝑣𝑖) =
∑𝑘

𝑖=1 4𝑟𝑔(𝑣𝑖)∕(1 + 𝑟2|𝑔(𝑣𝑖)|
2)

∑𝑘
𝑖=1 𝑣𝑖

𝑣𝑖 , (8)

where 𝑣𝑖 and 𝑔(𝑣𝑖) are respectively the vertex area of 𝑣𝑖 and 𝑔(𝑣𝑖).
More specifically, they are defined as the sum of the area of all triangles
in the one-ring neighborhood divided by 3:

𝑣𝑖 =
1
3

∑

𝑇∈ (𝑣𝑖)
Area(𝑇 ), 𝑔(𝑣𝑖) =

1
3

∑

𝑇 ′∈ (𝑔(𝑣𝑖))
Area(𝑇 ′). (9)

Here the normalization factor
∑𝑘

𝑖=1 4𝑟𝑔(𝑣𝑖 )∕(1+𝑟
2
|𝑔(𝑣𝑖)|2)

∑𝑘
𝑖=1 𝑣𝑖

corrects the
overall area difference of the input surface and the spherical cap. We
then follow the approach in [27] and minimize the energy 𝐸 in Eq. (6)
with the source measure 𝜎 and target measure 𝜏𝑟 in Eq. (7) and (8) to
obtain the OMT mapping ℎ𝑟.

Note that the above OMT mapping procedure works for any given
disk of radius 𝑟. With this extra degree of freedom, we can now
search for an optimal 𝑟 such that the corresponding area-preserving
parameterization is the least geometrically distorted. Since a mapping
is isometric if and only if it is both area-preserving and conformal, it is
natural to consider using the conformal distortion as the criterion for
the search of the optimal 𝑟. More specifically, we solve the following
optimization problem:

𝑟∗ = argmin
𝑟 ∫ |𝜇(ℎ𝑟◦𝑟𝑔)−1 (𝑧)|

2𝑑𝑧, (10)

where 𝜇(ℎ𝑟◦𝑟𝑔)−1 is the Beltrami coefficient of the mapping (ℎ𝑟◦𝑟𝑔)−1.
Recall that by quasi-conformal theory, |𝜇| captures the deviation of
a mapping from being conformal. Therefore, by minimizing the inte-
gral in Eq. (10), we obtain an optimal disk radius 𝑟∗ such that the
associated OMT map ℎ𝑟∗◦𝑟∗𝑔 is as conformal as possible. We remark
that since the target measure 𝜏𝑟 changes continuously with 𝑟, the OMT
map ℎ𝑟 and the Beltrami coefficient 𝜇(ℎ𝑟◦𝑟𝑔)−1 (𝑧) also change continu-
ously with 𝑟 and hence the integral in Eq. (10) is continuous. Also,
note that |𝜇(ℎ𝑟◦𝑟𝑔)−1 (𝑧)| < 1 for all 𝑧, which implies that the integral
is bounded. Therefore, the existence of a minimizer 𝑟∗ for Eq. (10)
is theoretically guaranteed. In practice, since the optimization prob-
lem (10) only involves a single parameter 𝑟, it can be easily solved using
one-dimensional optimization solvers in standard computing software.

3.1.3. Inverse stereographic projection
Finally, we apply the inverse stereographic projection 𝜑−1 in Eq. (3)

to map the planar OMT mapping result onto a spherical cap. The overall
adaptive spherical cap parameterization is given by

𝑓 = 𝜑−1◦ℎ𝑟∗◦𝑟
∗𝑔, (11)

Note that if 0 < 𝑟∗ < 1, 𝑓 maps the object surface 𝑜 to a spherical
cap which is smaller than a hemisphere. If 𝑟∗ > 1, 𝑓 maps 𝑜 to a
spherical cap larger than a hemisphere. The lower bound of the 𝑍-value
of the adaptive spherical cap is given by

𝑍∗ =
1 − (𝑟∗)2

. (12)

1 + (𝑟∗)2
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We remark that the effect of 𝜑−1 on the area distortion has already
een taken into account in the previous OMT mapping step, and hence
is an area-preserving map. Also, since 𝜑−1 is conformal, this projec-

ion step does not affect the conformality of the previously optimized
ap ℎ𝑟∗◦𝑟∗𝑔.

.2. Adaptive area-preserving parameterization of genus-0 closed surfaces

Let 𝑐 be a genus-0 closed surface. We compute an area-preserving
ap of 𝑐 onto an optimal spherical cap domain S2𝑍≥𝑍∗ with the bottom
art filled.

.2.1. Initial flattening map
Similar to the open surface case, our strategy is to reduce the

apping problem to a problem on the plane. As the input surface is
losed, it is necessary to puncture certain part of it in order to flatten it
nto the plane. In the discrete case, we treat 𝑐 as a triangular mesh and
ence it is natural to consider puncturing a minimal set of triangular
aces. Here, we follow the approach in [41] to puncture a quadrilateral
egion at the bottom part of the surface. More specifically, we first
otate the surface mesh to align it with the 𝑍-axis so that the major
egion of interest is with larger 𝑍-values and the less important part is
ith smaller 𝑍-values, and then find a pair of triangles 𝑇1, 𝑇2 sharing
common edge at the bottom part of it such that the quadrilateral

ormed by the four vertices of the triangles is as regular as possible.
tarting from the pair of triangles closest to the center of the bottom
art of the surface mesh, we first compute the length of the diagonals
nd the edges of the quadrilateral. Then, we consider the ratio of the
aximum side length to the minimum side length, and the ratio of the

ength of the longer diagonal to that of the shorter diagonal. If both
atios are sufficiently close to 1, then the quadrilateral is considered to
e regular. If the ratios are much greater than 1, we search for the next
air of triangles and repeat the above procedure. By puncturing 𝑇1 and
2, the surface becomes a topological disk and hence can be flattened
n the plane.

As described in [41], the disk conformal map [19] may induce a
arge area distortion for this punctured surface as the punctured quadri-
ateral region is very small relative to the entire surface. Therefore, we
ollow the approach in [41] and combine the stretch energy minimiza-
ion (SEM) method [32] and the quasi-conformal composition [15] for
btaining the initial flattening map. The procedure is outlined below.

We first apply the SEM method to map 𝑐⧵{𝑇1, 𝑇2} onto the unit disk
, with the four vertices of the punctured quadrilateral region mapped
nto the unit circle. Denote the SEM map as �̃� and the associated
eltrami coefficient as 𝜇�̃� . To reduce the conformal distortion of �̃�, we
pply the quasi-conformal composition [15] and reconstruct a quasi-
onformal map 𝑔 ∶ 𝑐 ⧵ {𝑇1, 𝑇2} → C with the Beltrami coefficient
𝜇�̃� , where 𝜆 ∈ [0, 1] is a scaling factor for controlling the conformal
istortion. Also, note that by ensuring ‖𝜇𝑔‖∞ = ‖𝜆𝜇�̃�‖∞ < 1 under
he rescaling, the resulting map 𝑔 is bijective by quasi-conformal the-
ry [15]. In practice, we set 𝜆 = 0.2 to achieve an initial map 𝑔 with
oderate distortion in both area and angle.

.2.2. Optimization on the plane
With the initial flattening map 𝑔 computed, we can now simply

ollow the procedure in the open surface case to optimize both the size
f the disk and the mapping by solving the minimization problem in
q. (10). Denote the optimal radius by 𝑟∗ and the OMT map as ℎ𝑟∗ .

.2.3. Inverse stereographic projection
Finally, we apply the inverse stereographic projection 𝜑−1 to map

he planar mapping result onto a spherical cap, thereby obtaining the
verall adaptive area-preserving parameterization 𝑓 = 𝜑−1◦ℎ𝑟∗◦𝑟∗𝑔
ith the punctured quadrilateral region filled. We remark that only

he four vertices of the quadrilateral are mapped to the bottom circle
2 + 𝑌 2 = 1 − (𝑍∗)2. All other vertices of  are mapped to S2 .
4

𝑐 𝑍>𝑍∗
3.3. Adaptive Harmonics (AH)

In [52], Huang et al. extended the concept of spherical harmonics
(SH) and developed a set of hemispherical harmonics (HSH) basis func-
tions over the unit hemisphere, which have been found useful for brain
source localization [53,54] and surface description [41]. More recently,
Giri et al. [55,56] developed an extension of HSH called the head
harmonics (H2) specifically as per the human head dimension. Here,
we develop AH, a more general set of SH-like basis functions defined
over the adaptive spherical cap region S2𝑍≥𝑍∗ , by further extending
he formulation of SH and HSH. The resulting AH will be utilized for
fficient anatomical shape description and reconstruction.

For any order 𝑛 ≥ 0 and degree 𝑚 ∈ [−𝑛, 𝑛], the associated Legendre
olynomial (ALP) 𝑃𝑚

𝑛 is defined as

𝑚
𝑛 (𝑥) =

(−1)𝑚

2𝑛𝑛!
(1 − 𝑥2)𝑚∕2 d𝑛+𝑚

d𝑥𝑛+𝑚
(𝑥2 − 1)𝑛. (13)

t is easy to see that for any fixed degree 𝑚, the ALPs of different
rders are all orthogonal over 𝑥 ∈ [−1, 1] (see [57] for details). As
escribed in [58], for any 𝑞1, 𝑞2 with 𝑞1 ≠ 0, the shifted ALPs 𝑃𝑚

𝑛 (𝑥) =
𝑚
𝑛 (𝑞1𝑥 + 𝑞2) are then orthogonal over the interval

[

−1−𝑞2
𝑞1

, 1−𝑞2𝑞1

]

. Now,
note that the adaptive spherical cap region S2𝑍≥𝑍∗ can be expressed as
{(𝜃, 𝜙) ∶ 𝜃 ∈ [0, 𝜃∗], 𝜙 ∈ [−𝜋, 𝜋]}, where 𝜃 is the elevation angle and
𝜙 is the azimuth angle. The upper limit of the elevation angle can be
written as 𝜃∗ = cos−1𝑍∗. For the shifted ALPs 𝑃𝑚

𝑛 to be orthogonal over
the interval [𝑍∗, 1], we have
{

𝑞1𝑍∗ + 𝑞2 = −1,
𝑞1 + 𝑞2 = 1,

(14)

which gives
(

𝑞1
𝑞2

)

=
(

𝑍∗ 1
1 1

)−1 (−1
1

)

= 1
𝑍∗ − 1

(

2
𝑍∗ + 1

)

. (15)

The orthogonality relation of the shifted ALPs for the above 𝑞1, 𝑞2 is
then given by

∫

1

0
𝑃𝑚
𝑛 (𝑥)𝑃𝑚

𝑛′ (𝑥)𝑑𝑥 =
2 (𝑛 + 𝑚)!

𝑞1 (2𝑛 + 1) (𝑛 − 𝑚)!
𝛿𝑛𝑛′ , (16)

here 𝛿𝑛𝑛′ is the Kronecker delta function. Now, the shifted ALPs can
e utilized for constructing the AH basis functions over the adaptive
pherical cap S2𝑍≥𝑍∗ . The real-valued AH functions 𝐴𝑚

𝑛 ∶ [0, cos−1𝑍∗] ×
−𝜋, 𝜋] → R for 𝑛 ≥ 0 and 𝑚 ∈ [−𝑛, 𝑛] are defined as follows:

𝑚
𝑛 (𝜃, 𝜙) =

⎧

⎪

⎨

⎪

⎩

(−1)|𝑚|
√

2𝐾𝑚
𝑛 sin(|𝑚|𝜙)𝑃 |𝑚|

𝑛 (cos 𝜃) ∶ 𝑚 < 0,

(−1)|𝑚|
√

2𝐾𝑚
𝑛 cos(𝑚𝜙)𝑃𝑚

𝑛 (cos 𝜃) ∶ 𝑚 > 0,

𝐾0
𝑛𝑃

0
𝑛 (cos 𝜃) ∶ 𝑚 = 0,

(17)

here 𝐾𝑚
𝑛 is a normalization constant with

̃𝑚
𝑛 =

√

𝑞1(2𝑛 + 1)(𝑛 − |𝑚|)!
4𝜋(𝑛 + |𝑚|)!

. (18)

Fig. 2 and Fig. 3 show the AH basis functions up to the second order
ith 𝑍∗ > 0 and 𝑍∗ < 0 respectively.

The AH basis functions provide an effective way for the repre-
sentation of different shapes. More specifically, given any open or
closed anatomical surface with 𝑘 vertices, we can first compute the
adaptive area-preserving parameterization 𝑓 onto an optimal spher-
ical cap. Each point 𝑣 = (𝑋, 𝑌 ,𝑍) on the object surface is associ-

ated with a unique pair (𝜃, 𝜙) =

(

cos−1 𝑍𝑓
√

𝑋2
𝑓+𝑌

2
𝑓 +𝑍

2
𝑓

, tan−1 𝑌𝑓
𝑋𝑓

)

, where

(𝑋𝑓 , 𝑌𝑓 , 𝑍𝑓 ) = 𝑓 (𝑋, 𝑌 ,𝑍). Analogous to the SH [59] and HSH [52]
hape description, the object surface can be expressed as a weighted
um of the AH basis functions as

(𝜃, 𝜙) =
∞
∑

𝑛
∑

𝐶𝑚
𝑛 𝐴

𝑚
𝑛 (𝜃, 𝜙). (19)
𝑛=0 𝑚=−𝑛
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Fig. 2. The AH basis functions up to the second order, with 𝑍∗ > 0. (a) 𝑛 = 0. (b)–(d) 𝑛 = 1. (e)–(i) 𝑛 = 2 for less than a hemisphere (𝜃 = 𝜋∕4). The distance between each surface
point and origin indicates the magnitude of 𝐴𝑚

𝑛 , and the color represents the actual value of 𝐴𝑚
𝑛 .
Fig. 3. The AH basis functions up to the second order, with 𝑍∗ < 0. (a) 𝑛 = 0. (b)–(d) 𝑛 = 1. (e)–(i) 𝑛 = 2 for more than a hemisphere (𝜃 = 3𝜋∕4). The distance between each
surface point and origin indicates the magnitude of 𝐴𝑚

𝑛 , and the color represents the actual value of 𝐴𝑚
𝑛 .
In practice, for any prescribed maximum order 𝑁 , we can approxi-
mate 𝑣(𝜃, 𝜙) using the AH basis functions up to order 𝑁 :

𝑁
∑

𝑛
∑

5

𝑣(𝜃, 𝜙) ≈
𝑛=0 𝑚=−𝑛

𝐶𝑚
𝑛 𝐴

𝑚
𝑛 (𝜃, 𝜙). (20)
The above can be further rewritten as a matrix equation 𝐕 =

𝐀𝐂 where 𝐕 is a 𝑘 × 3 matrix of the coordinates of all 𝑘 vertices,

𝐀 is a 𝑘 × (𝑁 + 1)2 matrix of the AH basis functions, and 𝐂 =
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(𝐶0
0 , 𝐶

−1
1 , 𝐶0

1 ,… , 𝐶𝑁
𝑁 )𝑇 is the AH coefficient matrix which can be esti-

mated using the Moore–Penrose pseudo-inverse

𝐂 = (𝐀𝑇𝐀)−1𝐀𝑇𝐕. (21)

. Experiments

The proposed algorithms are implemented in MATLAB. The op-
imization problem (10) is solved using the MATLAB built-in one-
imensional minimizer fminbnd. We test our proposed algorithms
sing 60 anatomical surfaces from various online datasets, which will
e described in detail below. All experiments are performed on a PC
ith an Intel i7-6700K quad-core CPU and 16 GB RAM.

.1. Adaptive area-preserving parameterization

To demonstrate the flexibility of our proposed parameterization
lgorithms, we test them using various open and closed anatomical
urfaces with different geometry. To assess the quality of the param-
terizations, we evaluate the area distortion of the parameterization 𝑓
or any triangular face 𝑇 of the input surface  as follows:

𝑑area(𝑇 ) = log𝑒
Area(𝑓 (𝑇 ))∕

(
∑

𝑇 ′∈ Area(𝑓 (𝑇 ′))
)

Area(𝑇 )∕
(
∑

𝑇 ′∈ Area(𝑇 ′)
) , (22)

where  is the set of all triangular faces of . Note that the two
summation terms are used for normalizing the total area of  and that
of the resulting parameter domain so that the measure is nondimen-
sionalized. For an ideal area-preserving parameterization, we should
have 𝑑area ≡ 0. We also consider the angle distortion of 𝑓 , defined by
the difference between any angle of any triangular face of  and the
corresponding angle (in radian) in the resulting parameter domain:

𝑑angle([𝑣𝑖, 𝑣𝑗 , 𝑣𝑘]) = ∠[𝑓 (𝑣𝑖), 𝑓 (𝑣𝑗 ), 𝑓 (𝑣𝑘)] − ∠[𝑣𝑖, 𝑣𝑗 , 𝑣𝑘], (23)

where [𝑣𝑖, 𝑣𝑗 , 𝑣𝑘] denotes the angle formed by the three vertices 𝑣𝑖, 𝑣𝑗 , 𝑣𝑘
of . For an ideal conformal parameterization, we should have 𝑑angle ≡
0.

4.1.1. Parameterization of open anatomical surfaces
For simply-connected open anatomical surfaces, we first consider

human scalp surfaces reconstructed from MRI images in the Open
Access Series of Imaging Studies (OASIS) dataset [60] (see [41] for
more details of the reconstruction). As shown in Fig. 4(a)–(b), our
method is capable of parameterizing surfaces with significantly differ-
ent geometry. For the smaller portion of a human scalp in Fig. 4(a), the
adaptive area-preserving parameterization gives a spherical cap domain
less than a hemisphere. For the larger portion of a human scalp in
Fig. 4(b), the parameterization gives a spherical cap domain greater
than a hemisphere. In both cases, it can be observed from the distortion
histograms that the parameterizations are highly area-preserving. In
the next example, we consider a mammalian tooth from the biological
data archive MorphoSource [49,50] (see Fig. 4(c)). Again, it can be
observed that the adaptive parameterization is highly area-preserving.
Finally, we consider a human face model freely available at the CG-
Trader repository [61] under the Royalty Free License (see Fig. 4(d)).
While the face model consists of prominent features such as eyes and
ears with relatively complicated geometry, our method successfully
parameterizes the model onto an adaptive spherical cap domain with
the area of the features well-preserved.

After demonstrating the effectiveness of our proposed adaptive
area-preserving parameterization algorithm for handling different open
anatomical surfaces, we compare it with the existing area-preserving
parameterization methods including the disk OMT map [27] and the
hemispherical area-preserving parameterization [41] (i.e. with 𝑍∗ = 0).
As shown in Table 1, with the flexibility of the parameter domain, our
adaptive area-preserving method can achieve area distortion compara-
ble to or even smaller than the two other methods while effectively
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reducing the angle distortion.
Table 1
The performance of different methods for parameterizing simply-connected open
surfaces.

Surface mean(|𝑑area|)/mean(|𝑑angle|)

Adaptive Disk Hemispherical

Fig. 4(a) 0.09/0.11 0.09/0.19 0.10/0.11
Fig. 4(b) 0.09/0.11 0.10/0.36 0.09/0.21
Fig. 4(c) 0.09/0.18 0.11/0.31 0.09/0.21
Fig. 4(d) 0.12/0.35 0.15/0.50 0.12/0.43

Table 2
A comparison between our proposed adaptive method and the free-boundary density-
equalizing map (DEM) method [31] and the shape-prescribed DEM method [31] for
the area-preserving parameterization of simply-connected open surfaces.

Surface mean(|𝑑area|)/mean(|𝑑angle|)

Adaptive Free-boundary DEM Shape-prescribed DEM

Fig. 4(a) 0.09/0.11 0.08/0.21 0.06/0.18
Fig. 4(b) 0.09/0.11 0.22/0.39 0.19/0.40
Fig. 4(c) 0.09/0.18 0.19/0.38 0.16/0.33
Fig. 4(d) 0.12/0.35 0.97/0.49 0.90/0.47

In addition to the two prior studies based on OMT in Table 1,
another recent approach for computing area-preserving parameteriza-
tion of simply-connected open surfaces is the density-equalizing map
(DEM) [31]. In particular, multiple area-preserving parameterization
methods based on DEM have been developed in [31], including the
free-boundary DEM method and the shape-prescribed DEM method.
The free-boundary DEM method maps any given open surface onto a
planar domain, with the shape of the domain first approximated based
on the surface boundary curvature and then updated iteratively in a
free-boundary manner. The shape-prescribed DEM enforces the planar
domain to be the unit disk and updates the mapping iteratively by
solving the diffusion equation with a Neumann boundary condition.
In Table 2, we compare our proposed adaptive method with these
two DEM-based methods for the area-preserving parameterization of
simply-connected open surfaces. It can be observed that the perfor-
mance of our method is comparable to that of the two DEM-based
methods for the relatively flat human scalp surface in Fig. 4(a), while
for the more complicated surfaces in Fig. 4(b)–(d) our method performs
significantly better than the two other methods in terms of both the
area and angle distortion. This shows that our method is more ad-
vantageous than the two DEM-based methods for handling different
anatomical surfaces in practice.

4.1.2. Parameterization of closed anatomical surfaces
For genus-0 closed anatomical surfaces, we first consider param-

eterizing a closed lung surface model (Fig. 5(a)) freely available at
the CGTrader repository [61] under the Royalty Free License and an
intracranial volume (ICV) of closed human skull surface (Fig. 5(b))
reconstructed from MRI images in the OASIS dataset [60] using the
FieldTrip toolbox in MATLAB (see [41] for more details of the recon-
struction). Similar to the case of open surfaces, it can be observed
from the distortion histograms that the adaptive parameterizations
are highly area-preserving. Next, we reconstruct a human left ventri-
cle surface using MRI images from the automated cardiac diagnosis
challenge (ACDC) [62] and parameterize it using our algorithm (see
Fig. 5(c)). While the surface is relatively coarse and unsmooth, our
method is capable of parameterizing it onto a smooth spherical cap
region with very low area distortion. Finally, we consider a highly
convoluted human brain cortical surface from [14] (see Fig. 5(d)).
From the parameterization result and the area distortion histogram, it
can be observed that our method works well even for surfaces with
complicated geometry.

For comparison, we consider the spherical area-preserving param-
∗
eterization (i.e. with 𝑍 ≈ −1) and hemispherical area-preserving
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Fig. 4. Adaptive area-preserving parameterization of simply-connected open surfaces obtained by our proposed algorithm. (a) A small portion of a human scalp surface reconstructed
from MRI images in the OASIS dataset [60]. (b) A larger portion of a human scalp surface reconstructed from MRI images in the OASIS dataset [60]. (c) A mammalian tooth
surface from MorphoSource [49,50]. (d) A human face from the CGTrader repository [61]. For each example, the input surface, the adaptive area-preserving parameterization and
the area distortion histogram are shown.
Table 3
The performance of different methods for parameterizing genus-0 closed surfaces.

Surface mean(|𝑑area|)/mean(|𝑑angle|)

Adaptive Spherical Hemispherical

Fig. 5(a) 0.16/0.27 0.28/0.29 0.49/0.46
Fig. 5(b) 0.10/0.13 0.10/0.14 0.66/0.31
Fig. 5(c) 0.20/0.30 0.20/0.31 0.70/0.38
Fig. 5(d) 0.07/0.22 0.10/0.23 0.79/0.40

parameterization (i.e. with 𝑍∗ = 0). From Table 3, it can again be
observed that our proposed method outperforms spherical and hemi-
spherical parameterizations and achieves a significant improvement in
the geometric distortion for handling surfaces with different geometry,
which can be attributed to the flexibility of the adaptive domain.

Recall that for closed surfaces, the initial flattening map involves
a combination of the disk conformal map and the SEM map via a
7

balancing factor 𝜆, which is set to be 0.2. It is natural to ask how the
choice of 𝜆 would affect the parameterization result. Here we compute
the parameterization using different values of 𝜆 and assess the area
distortion 𝑑area. As shown in Fig. 6, a small 𝜆 ≤ 0.1 or a large 𝜆 ≥ 0.5
may sometimes lead to a relatively large distortion in the final result. To
explain this phenomenon, note that in general conformal maps focus on
the preservation of angles without controlling the area, and so a more
conformal initial map will usually contain highly squeezed triangle
elements, thereby making the correction of the area distortion in the
subsequent OMT computation more computationally challenging. Also,
an initial map closer to the SEM map will usually involve a larger dis-
tortion in angle and hence many triangles may be highly irregular and
stretched. In the computation of the power diagram and the subsequent
OMT map, such irregular triangles may lead to large discretization
errors and hence affect the numerical performance of the algorithm. By
contrast, it can be observed that at around 𝜆 = 0.2, the result is robust
to the value of 𝜆. This experiment demonstrates the importance of the
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Fig. 5. Adaptive area-preserving parameterization of genus-0 closed surfaces obtained by our proposed algorithm. (a) A lung surface model from the CGTrader repository [61].
(b) A human skull surface reconstructed from MRI images in the OASIS dataset [60]. (c) A human left ventricle surface reconstructed from MRI images in the ACDC dataset [62].
(d) A human brain cortical surface from [14]. For each example, the input surface, the adaptive area-preserving parameterization and the area distortion histogram are shown.
initial flattening map for the closed surface case and the robustness of
the proposed method.

4.2. Anatomical surface remeshing

The proposed adaptive parameterization methods can be applied
to surface remeshing for improving the quality of anatomical sur-
face meshes. More specifically, to improve the mesh quality of any
given anatomical surface , we can first compute the adaptive area-
preserving parameterization 𝑓 ∶  → S2𝑍≥𝑍∗ to map it onto an optimal
spherical cap domain. We can then generate a regular triangle mesh on
the spherical cap and map the new mesh back to the anatomical surface
using the inverse mapping 𝑓−1. As shown in Fig. 7(a), the mesh quality
of the input surface is significantly improved. More specifically, note
that the adaptive parameterization-based remeshing method is advan-
tageous in two aspects. First, as the parameterization is area-preserving
and the triangle elements of the spherical cap mesh are highly uniform,
the triangle elements of the resulting remeshed surface will also be
highly uniform. Second, as the remeshed surface is generated using
8

the inverse mapping 𝑓−1, it is expected that the distance between the
remeshed surface and the original surface is very small.

To quantify the above properties, we first define the face area
deviation of the remeshed surface as

𝑑face = mean𝑇 |Area(𝑇 ) − mean face area| , (24)

where 𝑇 is a triangular face in the remeshed surface. Note that 𝑑face =
0 if and only if all triangle elements in the remeshed surface have
the same face area. We also consider another common mesh quality
measure, the aspect ratio of the remeshed surface, which assesses the
ratio of the longest edge length to the shortest edge length for every
triangle [63]:

𝑑ratio = mean𝑇
𝑙max(𝑇 )
𝑙min(𝑇 )

, (25)

where 𝑙max(𝑇 ) and 𝑙min(𝑇 ) are the maximum and minimum edge length
of every triangle 𝑇 , respectively. It is easy to see that 𝑑ratio ≥ 1 for any
triangle mesh, and the equality holds if and only if all triangular faces of
the remeshed surface are perfectly regular. Another common measure
of mesh quality is the skewness of the remeshed surface, which evaluates
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Fig. 6. The effect of the initial flattening map parameter 𝜆 on the adaptive area-
preserving parameterization of genus-0 closed surfaces. The four surfaces in Fig. 5 are
used in this experiment. Different values of 𝜆 in [0, 1] are used for computing the
adaptive parameterization, and the resulting area distortion 𝑑area is recorded for each
𝜆 and each surface. The inset shows the results with more values of 𝜆 considered at
around 0.2.

the angular deviation of the triangles from a regular triangle [63]:

𝑑skewness = mean𝑇 max
{ 𝜃max(𝑇 ) − 𝜃eq

180◦ − 𝜃eq
,
𝜃eq − 𝜃min(𝑇 )

𝜃eq

}

, (26)

where 𝜃max(𝑇 ) and 𝜃min(𝑇 ) are the maximum and minimum angles (in
degree) in every triangle 𝑇 , and 𝜃eq = 60◦ is the angle in a regular
triangle. It can be observed that 𝑑skewness ∈ [0, 1] for any triangle mesh.
Note that 𝑑skewness = 0 if and only if all triangles of the remeshed
surface are regular, and a large 𝑑skewness indicates that most triangles
are significantly skewed.

As for the distance between the remeshed surface and the original
surface, we define the surface distance as

𝑑surface = mean𝑣‖𝑣 − �̃�‖2, (27)

where 𝑣 is a vertex in the original surface and �̃� is the projection of 𝑣
onto the remeshed surface. A small 𝑑surface indicates that the remeshed
surface resembles the shape of the original surface well.

In Table 4, we compare our parameterization-based remeshing ap-
proach with several other meshing methods, including the Uniform
Mesh Resampling method [64], the Robust Implicit MLS method [65]
and the Screened Poisson method [66], which are available in the open-
source 3D mesh processing software MeshLab [64], and also the Uni-
form Remesher method [67] and the Adaptive Remesher method [67]
available in the open-source software OpenFlipper [68]. It can be
observed that the face area deviation 𝑑face, the aspect ratio 𝑑ratio, the
skewness 𝑑skewness, and the surface distance 𝑑surface achieved by our
method are lower than those by the other methods by 40%, 60%,
30%, and 50% on average, respectively. This demonstrates that the
effectiveness of our method for anatomical surface remeshing.

With the aid of the adaptive parameterization 𝑓 , it is also possible
to generate a highly structured quadrilateral mesh of the given surface.
More specifically, since the spherical cap is a subdomain of the unit
sphere, we can generate a highly structured quadrilateral mesh of the
spherical cap via subdivision and then map the quadrilateral mesh back
to the original surface using the inverse mapping 𝑓−1 (see Fig. 7(b)
for an example). Again, we quantify the quadrilateral mesh quality by
using the above-mentioned measures, namely the face area deviation
𝑑face, the aspect ratio 𝑑ratio, the skewness 𝑑skewness (with 𝜃eq = 90◦ for
quadrilaterals), and the surface distance 𝑑surface, and compare the result
with other quadrilateral mesh generation methods including the 4–8
Subdivision method [69] and the Triangle Pairing method [64] (see
Table 5). It can be observed that our method significantly reduces the
9

Table 4
The performance of our adaptive parameterization-based remeshing method and other
methods. For a fair comparison, the target number of triangles in the remeshed surface
is set to be around 5000 for all methods. For each method, the face area deviation
𝑑face, the aspect ratio 𝑑ratio, the skewness 𝑑skewness, and the surface distance 𝑑surface of
the resulting remeshed surface are recorded.

Method 𝑑face 𝑑ratio 𝑑skewness 𝑑surface

Our proposed method 0.0009 1.5183 0.2986 0.0034
Uniform Mesh Resampling [64] 0.0019 7.9167 0.4677 0.0088
Robust Implicit MLS [65] 0.0020 6.2695 0.4790 0.0072
Screened Poisson [66] 0.0016 6.6151 0.4629 0.0085
Uniform Remesher [67] 0.0012 1.6242 0.3195 0.0045
Adaptive Remesher [67] 0.0031 1.6000 0.5809 0.0032

Table 5
The performance of our adaptive parameterization-based quadrilateral mesh generation
method and other methods. For a fair comparison, the target number of quadrilaterals
in the remeshed surface is set to be around 1500 for all methods. For each method, the
face area deviation 𝑑face, the aspect ratio 𝑑ratio, the skewness 𝑑skewness, and the surface
distance 𝑑surface of the resulting remeshed surface are recorded.

Method 𝑑face 𝑑ratio 𝑑skewness 𝑑surface

Our proposed method 0.0008 1.8186 0.5939 0.0023
4–8 Subdivision [69] 0.0028 2.3778 0.6419 0.0028
Triangle Pairing [64] 0.0029 2.4272 0.6237 0.0018

face area deviation 𝑑face and the aspect ratio 𝑑ratio by 70% and 25%
respectively and also achieves comparable performance in terms of the
skewness 𝑑skewness and the surface distance 𝑑surface. This shows that our
method is advantageous for quadrilateral mesh generation.

4.3. Anatomical shape description using AH

By combining the proposed adaptive parameterization and the AH
basis functions, we can easily achieve a multilevel representation of
any given anatomical surface. Fig. 8 shows two example anatomical
surfaces and the AH reconstruction results with different maximum
order 𝑁 . It may be observed that even for 𝑁 = 1, i.e. (1 + 1)2 = 4
AH basis functions, the AH reconstructions are capable of capturing
the overall geometry of the object surfaces. As 𝑁 increases, more details
such as the ears of the human face and the gyri and sulci of the cortical
surface can be captured.

4.4. Shape analysis of demented and non-demented cortical surfaces

It is natural to ask whether the proposed adaptive parameterization
and AH method can be utilized for comparing different anatomical
shapes. Here we consider 50 demented and non-demented subjects
from the OASIS dataset [60]. For each subject, we reconstruct the left
and right cortical surfaces from the respective human head MRI scans
in the dataset. We then apply our adaptive parameterization algorithm
and obtain the low-order AH representations for each of them (see
Fig. 9(a)). While it is difficult to compare the demented and non-
demented cortical surfaces directly, one can see that the simplified,
low-order AH representations of them are visually different. For a more
quantitative comparison, note that the AH representation with 𝑁 = 1
gives an ellipsoidal geometry and hence can be used for quantifying
the overall shape of the surface. To achieve this, we first approximate
the AH representation using a matrix equation 𝐲𝑖 ≈ 𝐴𝐱𝑖, where 𝐲𝑖 are
the coordinates of the AH representation, 𝐴 is a 3 × 3 transformation
matrix and 𝐱𝑖 are the coordinates of the unit sphere with ‖𝐱‖2 = 1.
More specifically, we solve the least-square problem

argmin
𝐴

𝑛
∑

𝑖=1
‖𝐲𝑖 − 𝐴𝐱𝑖‖2 (28)

to get the optimal transformation matrix 𝐴. Then, we compute the
singular value decomposition of the matrix 𝐴 and obtain the largest
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Fig. 7. Surface remeshing via adaptive area-preserving parameterization. (a) By parameterizing a human head model with irregular triangulations onto an optimal spherical cap
and generating a new regular mesh on the spherical cap, we can significantly improve the mesh quality of the surface. (b) We generate a highly structured quadrilateral mesh of
a human foot model with the aid of the adaptive parameterization. Here the color indicates the elevation angle 𝜃 of every vertex in the adaptive spherical cap domain.
Fig. 8. Anatomical shape description using the proposed adaptive parameterization and the AH basis functions. (a) A human face from the CGTrader repository [61] and the AH
reconstructions with different maximum order 𝑁 . (b) A highly convoluted brain cortical surface from the OASIS dataset [60] and the AH reconstructions with different maximum
order 𝑁 .
and smallest singular values 𝜎1 and 𝜎3. We can then assess the aspect
ratio of the AH representation as 𝜎1

𝜎3
. As shown in the box plot in

Fig. 9(b), the AH aspect ratios for the 50 demented and non-demented
subjects are highly different. More specifically, the AH aspect ratios
for both the left and right cortical surfaces of the demented subjects
are higher than those of the non-demented ones on average and are
also more concentrated. We further apply the two-sample 𝑡-test and
found that the difference between the AH aspect ratio for the demented
and the non-demented cortical surfaces is statistically significant for
both the left brains (𝑝 = 5.1 × 10−5) and the right brains (𝑝 = 1.4 ×
10−6). This demonstrates the clinical utility of the proposed adaptive
parameterization and AH method for anatomical shape description and
analysis.
10
5. Discussion and conclusion

Surface parameterization plays an important role for many bio-
logical and medical shape analysis problems. However, because of
the large shape variation in different anatomical structures, finding a
suitable parameterization with low geometric distortion is challeng-
ing. Moreover, in many cases it is hard to determine an optimal
parameter domain a priori. In this work, we have overcome these
challenges by proposing two novel methods for parameterizing simply-
connected open and closed anatomical surfaces. Unlike most prior
methods, our methods treat the shape of the parameter domain as a
variable in finding an optimal parameterization and simultaneously
optimize both the parameter domain and the mapping, resulting in
an adaptive area-preserving parameterization onto an automatically
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Fig. 9. Shape analysis of demented cortical surfaces using the proposed adaptive parameterization and AH method. (a) Examples of demented and non-demented cortical surfaces
from the OASIS dataset [60], with their low-order AH representations obtained from the proposed parameterization algorithm. (b) The aspect ratio of the low-order AH representation
(𝑁 = 1) for the left and right cortical surfaces for the 50 demented and non-demented subjects.
determined spherical cap region on the unit sphere. Experimental
results demonstrate the effectiveness of the proposed parameterization
methods in comparison to the existing methods for both open and
closed anatomical surfaces, including human scalp, tooth, face, lung,
skull, ventricle and brain cortical surfaces. More specifically, when
compared to other existing area-preserving parameterization methods
based on optimal mass transport (OMT) [27,41] and density-equalizing
map (DEM) [31] with different target parameter domains such as
sphere, hemisphere and disk, the proposed adaptive parameterization
methods achieve an improvement in both the area and angle distortion
for various anatomical structures.

As our methods are area-preserving and also with minimal confor-
mal distortion, they are advantageous for many biomedical applications
including anatomical surface remeshing, shape description and shape
analysis. In particular, our experiments show that the surface remesh-
ing results obtained via our methods are with better quality when
compared to other existing triangle and quadrilateral mesh genera-
tion methods. Also, the surface description of the object surfaces can
be effectively achieved using a novel combination of the adaptive
parameterization and AH.

In the future, we plan to extend our method for parameterizing onto
other adaptive domains such as a flexible ellipsoidal shape to handle
more complicated geometries with singular points and different shape
indexes [70]. We also plan to apply the proposed parameterization
methods and the AH basis functions for detecting shape anomaly in
other anatomical datasets [71,72] and perform more detailed com-
parisons with other parameterization-based medical shape analysis
approaches, thereby aiding disease prognosis and diagnosis.
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