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Abstract7

In this paper, we study two classic optimization problems: minimum geometric dominating8

set and set cover. In the dominating-set problem, for a given set of objects in the plane as9

input, the objective is to choose a minimum number of input objects such that every input10

object is dominated by the chosen set of objects. Here, one object is dominated by another if11

both of them have a nonempty intersection region. For the second problem, for a given set of12

points and objects in a plane, the objective is to choose a minimum number of objects to13

cover all the points. This is a special version of the set-cover problem.14

Both problems have been well studied subject to various restrictions on the input objects.15

These problems are APX-hard for object sets consisting of axis-parallel rectangles, ellipses,16

α-fat objects of constant description complexity, and convex polygons. On the other hand,17

PTASs (polynomial time approximation schemes) are known for object sets consisting of18

disks or unit squares. Surprisingly, a PTAS was unknown even for arbitrary squares. For19

both problems obtaining a PTAS remains open for a large class of objects.20

For the dominating-set problem, we prove that a popular local-search algorithm leads21

to an (1 + ε) approximation for object sets consisting of homothetic set of convex objects22

(which includes arbitrary squares, k-regular polygons, translated and scaled copies of a convex23

set, etc.) in nO(1/ε2) time. On the other hand, the same technique leads to a PTAS for24

geometric covering problem when the objects are convex pseudodisks (which includes disks,25

unit height rectangles, homothetic convex objects, etc.). As a consequence, we obtain an26

easy to implement approximation algorithm for both problems for a large class of objects,27

significantly improving the best known approximation guarantees.28

1 Introduction29

1.1 Problems Studied30

We consider two fundamental combinatorial optimization problems in a geometric context,31

dominating-set and set-cover. Let P be a subset of the real plane R2, and let S be a collection32
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of subsets of P, called objects. A subset S ′ ⊆ S is a dominating-set if every element of S33

has a nonempty intersection with at least one element of S ′. A subset S ′′ ⊆ S is a cover34

if every point of P lies within at least one element of S ′′. The dominating-set and set-cover35

problems involve computing a minimum cardinality dominating-set and set-cover, respectively.36

Both problems have a wealth of theoretical results and practical applications. Geometric set-cover37

problem has many application in real world for example wireless sensor networks, optimizing38

number of stops in an existing transportation network, job scheduling [2, 7, 17].39

1.2 Local Search40

It is well known that both of these problems are NP-hard in the most general setting, and hence41

researchers have focused on approximation algorithms. In this paper, we analyze an approach42

based on local search. Local search is a popular heuristic algorithm. This is an iterative algorithm43

which starts with a feasible solution and improves the solution after each iteration until a locally44

optimal solution is reached. One big advantage of local search is that it is very easy to implement45

and easy to parallelize [8]. As mentioned by Cohen-Addad and Mathieu [8], it is interesting to46

analyze such algorithms even when alternative, theoretically optimal polynomial-time algorithms47

are known.48

1.3 Our Results49

Our results on the dominating-set problem apply under the assumption that the input consists50

of homothets of a convex body in the plane, that is, the elements of S are equal to each other51

up to translation and positive uniform scaling. This includes a large class of natural object52

sets, such as collections of squares of arbitrary size, collections of regular k-gons of arbitrary53

size, and collections of circular disks of arbitrary radii. First, we show that the standard local54

search algorithm leads to a polynomial time approximation scheme (PTAS) for computing a55

minimum dominating-set of homothetic convex objects. For the analysis, we use a separator-based56

technique, which was introduced independently by Chan and Har-Peled [4] and Mustafa and57

Ray [29]. The main part of this proof technique is to show the existence of a planar graph58

satisfying a locality condition (to be defined in Section 2.1). Gibson et al. [16] used the same59

paradigm where the objects were arbitrary disks. Inspired by their work, we ask whether we can60

generalize their framework to more general objects. Our result on the dominating-set problem61

can be viewed as a non-trivial generalization of their result. To show the planarity, first, we62

decompose (or shrink) a set of homothetic convex objects (which are returned by the optimum63

algorithm and the local search algorithm) into a set of interior disjoint objects so that each input64

object has a “trace” in this new set of objects. This decomposition is motivated from the idea of65

core decomposition introduced by Mustafa et al. [28], and this technique could be of independent66

interest. Next, we consider the nearest-site Voronoi diagram for this set of disjoint objects with67

respect to the well-known convex distance function. The decomposition ensures that each site68

has a nonempty cell in the Voronoi diagram. Finally, we show that the dual of this Voronoi69

diagram satisfies the locality condition. Note that if homothets of a centrally symmetric convex70

object are given, then one can avoid the disjoint decomposition, and the analysis is much simpler.71
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Our results on the set-cover problem apply under the assumption that the input consists of72

a collection of convex pseudodisks in the plane. A set of objects is said to be a collection of73

pseudodisks, if the boundaries of every pair of them intersect at most twice. Note that this74

generalizes collections of homothets. We use a similar technique as the previous one. First, we75

show that we can decompose (or shrink) a set of pseudodisks (which are returned by the optimum76

algorithm and the local search algorithm) into a set of interior disjoint objects so that each77

input point has a “trace” in this new set of objects. We consider a graph G in which each vertex78

corresponds to a shrunken object, and two vertices are joined by an edge if the corresponding79

objects share an edge in their boundary. Since the shrunken objects are interior disjoint with80

each other, the graph G is planar. We prove that the graph G satisfies the locality condition.81

Given ε > 0, a (1 + ε)-approximation algorithm for the dominating-set (resp., set-cover) problem82

returns a dominating-set (resp., set-cover) whose cardinality is larger than the optimum by a83

factor of at most (1 + ε). Our results are given below.84

Theorem 1. Given a set S of n convex homothets in R2 and ε > 0, there exists a (1 + ε)85

approximation algorithm for dominated set based on local search that runs in time nO(1/ε2).86

Theorem 2. Given a set S of n convex pseudodisks in R2 and ε > 0, there exists a (1 + ε)87

approximation algorithm for set-cover based on local search that runs in time nO(1/ε2).88

1.4 Related Works89

Our work is motivated by recent progress on approximability of various fundamental geometric90

optimization problems like finding maximum independent sets [1], minimum hitting set of91

geometric intersection graphs [29], and minimum geometric set covers [28].92

Dominating-Set: The minimum dominating-set problem is NP-complete for general graphs [15].93

From the result of Raz and Safra [30], it follows that it is NP-hard even to obtain a (c log ∆)-94

approximate dominating-set for general graphs, where ∆ is the maximum degree of a node in95

the graph and c (> 0) is any constant (see [24]).96

Researchers have studied the problem for different graph classes like planar graphs, intersection97

graphs, bounded arboricity graphs, etc. Recently, Har-Peled and Quanrud [18] proved that98

local search produces a PTAS for graphs with polynomially bounded expansion. Gibson and99

Pirwani [16] gave a PTAS for the intersection graphs of arbitrary disks. Unless P = NP [9](*), it100

is not possible to compute a ((1− ε) lnn)-approximate dominating-set in polynomial time for n101

homothetic polygons [13, 20, 31]. Erlebach and van Leeuwen [11] proved that the problem is102

APX-hard for the intersection graphs of axis-parallel rectangles, ellipses, α-fat objects of constant103

description complexity, and of convex polygons with r-corners (r ≥ 4), i.e., there is no PTAS for104

these unless P = NP .105

Effort has been devoted to related problems involving various objects such as squares, regular106

polygons, etc.. Marx [26] proved that the problem is W [1]-hard for unit squares, which implies107

that no efficient-polynomial-time-approximation-scheme (EPTAS) is possible unless FPT = W [1]108

(*)Originally the assumption was NP * DTIME(nO(log logn)). This assumption was improved to P 6= NP

recently by Dinur and Steurer [9].
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[27]. The best known approximation factor for homothetic 2k-regular polygons is O(k) due109

to Erlebach and van Leeuwen [11], where k > 0. They also obtained an O(k2)-approximation110

algorithm for homothetic (2k + 1)-regular polygons. Even worse, for the homothetic convex111

polygons where each polygons has k-corners, the best known result is O(k4)-approximation.112

Currently, there is no PTAS even for arbitrary squares. We consider the problem for a set of113

homothetic convex objects.114

Set-Cover: The set-cover problem is known to be NP-complete [21]. The geometric variant115

has received a great amount of attention due to its wide applications (for example the recent116

breakthrough of Bansal and Pruhs [2]). Unfortunately, the geometric version of the problem also117

remains NP-complete even when the objects are unit disks or unit squares [3, 19].118

Erlebach and van Leeuwen [12] obtained a PTAS for the geometric set-cover problem when the119

objects are unit squares. Recently, Chan and Grant [3] showed that the problem is APX-hard120

when the objects are axis-aligned rectangles. They extended the results to several other classes121

of objects including axis-aligned ellipses in R2, axis-aligned slabs, downward shadows of line122

segments, unit balls in R3, axis-aligned cubes in R3. A QPTAS was developed by Mustafa et.123

al. [28] for the problem when the objects are pseudodisks. The current state of the art lacks a124

PTAS when the objects are pseudodisks which includes a large class of objects: arbitrary squares,125

arbitrary regular polygons, homothetic convex objects.126

In the weighted setting, Varadarajan introduced the idea of quasi-uniform sampling to obtain127

an O(log φ(OPT ))-approximation guarantees in the weighted setting for a large class of objects128

for which such guarantees were known in the unweighted case [32]. Here φ(OPT ) is the union129

complexity of the objects in the optimum set OPT . Very recently, Li and Jin proposed a PTAS130

for the weighted version of the problem when the objects are unit disks [25].131

In [17], the authors described a PTAS for the problem of computing a minimum cover of given132

points by a set of weighted fat objects, by allowing them to expand by some δ-fraction. A133

multi-cover variant of the problem (where each point is covered by at least k sets) under geometric134

settings was studied in [5].135

1.5 Organization136

In Section 2, we present a general algorithm based on the local search technique. For the sake of137

completeness, we present a high-level view of the analysis technique of local search which was138

introduced by Chan & Har-Peled [4] and Mustafa & Ray [29]. In Section 3, we prove two results139

for a set of pseudodisks which are common tools for analyzing both dominating-set and geometric140

set-cover problem. Thereafter, in Section 4 and Section 5 we prove the locality condition for the141

dominating-set prolem when the objects are homothets of a convex polygon and of a centrally142

symmetric convex polygon, respectively. In Section 6, we prove the locality condition for the143

geometric set-cover problem when the objects are convex pseudodisks.144
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1.6 Notation and Preliminaries145

Throughout the paper, we use capital letters to denote objects and caligraphic font to denote sets146

of objects. We make the general-position assumption that if two objects of the input set have a147

nonempty intersection, then their interiors intersect. No three object boundaries intersect in a148

common point. We denote the set {1, 2, . . . , n} as [n]. By a geometric object (or object, in short)149

R, we refer to a simply connected compact region in R2 with nonempty interior. In other words,150

the object R is a closed region bounded by a closed Jordan curve ∂R. The int(R) is defined as151

all the points in R which do not appear in the boundary ∂R. Given two objects U and V , we152

say that U has an interior overlap with V if int(U) ∩ int(V ) 6= ∅, and given a set of objects V,153

we say that U has an interior overlap with V if U has an interior overlap with any V ∈ V.154

For a set of objects R, we define the cover-free region of any object Ri ∈ R as CF(Ri,R) =155 ⋂
Rj∈R
Rj 6=Ri

Ri \Rj . Note that CF(Ri,R) ∩Rj = ∅ for all Ri, Rj(i 6= j) ∈ R. When the underlying set156

of objects R is obvious, we use the term CF(Ri) instead of CF(Ri,R). A collection of geometric157

objects R is said to form a family of pseudodisks if the boundary of any two objects cross each158

other at most twice. A collection of geometric objects R is said to be cover-free if no object159

R ∈ R is covered by the union of the objects in R \ R, in other words, CF(R,R) 6= ∅ for all160

objects in R. Two objects are homothetic to each other if one object can be obtained from the161

other by scaling and translating.162

Consider the convex distance function with respect to a convex object C with a fixed interior163

point as center as follows.164

Definition 1. Given p1, p2 ∈ R2, convex distance function induced by C, denoted by δC(p1, p2),165

is the smallest α ≥ 0 such that p1, p2 ∈ αC while the center of C is at p1.166

It was first introduced by Minkowski in 1911 [22, 6]. Note that this function satisfies the following167

properties.168

Property 1. (i) The function δC is symmetric (i.e., δC(p1, p2) = δC(p2, p1)) if and only if C169

is centrally symmetric.170

(ii) Let p1 and p3 be any two points in R2 and let p2 be any point on the line segment p1p3,171

then δC(p1, p3) = δC(p1, p2) + δC(p2, p3).172

(iii) The distance function δC follows the triangular inequality, i.e., and δC(p1, p3) ≤ δC(p1, p2)+173

δC(p2, p3), where p1, p2 and p3 are any three points in R2.174

2 Local-Search Algorithm175

We use a standard local search algorithm [29] as given in Algorithm 1.176

A subset of objects A ⊆ S is referred to b-locally optimal if one cannot obtain a smaller feasible177

solution by removing a subset X ⊆ A of size at most b from A and replacing that with a subset178

of size at most |X | − 1 from S \ A. Our algorithm computes a b-locally optimal set of objects179
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Algorithm 1: Local-Search(S , b)

Input: A set of n objects S in R2 and a parameter b

1 Initialize A to an arbitrary subset of S which is a feasible solution;

2 while ∃ X ⊆ A of size at most b, and X ′ ⊆ S of size at most |X | − 1 such that (A \ X ) ∪ X ′ is a

feasible solution do

3 set A ← (A \ X ) ∪ X ′;

4 Report A;

for b =
α

ε2
, where α > 0 is a suitably large constant. Observe that at the end of the while-loop,180

the set A is b-locally optimal, and the set A is cover-free.181

Since the size of A is decreased by at least one after each update in Line 3, the number of182

iterations of the while-loop is at most n, and each iteration takes O(nb) time as it needs to183

check every subset of size at most b. So, this while-loop needs O(nb+1) time. Thus, total time184

complexity of the above algorithm is O(nb+1).185

2.1 Analysis of Approximation186

We will be analyzing the algorithm’s performance with respect to both problems. When there is187

a difference, we will indicate the specific context within which the analysis is being performed188

(set-cover or dominating-set). Let O be the optimal solution and A be the solution returned by189

our local search algorithm. Note that both O and A ensure the following.190

Claim 1. For any object A ∈ A (resp., O ∈ O), CF(A,A) (resp., CF(O,O)) is nonempty. In191

other words, A (resp., O) is cover-free.192

We can assume that no object S ∈ S is properly contained in any other object of S . We can193

ensure this by an initial pass over the input objects in which we remove any object of the input194

that is contained within another object. Thus, we can assume that there is no object S ∈ S \ A195

which completely contains any object of A. Similarly, we can assume that no object in O is196

completely contained in any object from S \ O. Let A′ = A \ O, O′ = O \ A.197

In the context of the dominating-set problem, let S ′ ⊂ S be the set containing all objects of S198

which are not dominated by any object in A∩O. Note that there does not exist an object O ∈ O′199

which covers CF(A1,A′) ∪CF(A2,A′), A1, A2 ∈ A′, otherwise local search would replace A1 and200

A2 by O. Similarly, there does not exist an object A ∈ A′ which covers CF(O1,O′)∪CF(O2,O′),201

O1, O2 ∈ A′ otherwise it would contradict the optimality of O.202

Now we are going to eliminate the same number of objects from both A′ and O′ to ensure that203

for any A ∈ A′, CF(A,A′) is not properly contained in any object in O′. Let O ∈ O′ be an204

object that properly contains CF(A,A′) for an object A ∈ A′. Let S ′′ be the the set containing205

all objects of S ′ which are not dominated by O. Note that both the sets A′ \ A and O′ \ O206

dominates S ′′. We reset S ′ ← S ′′. We remove A and O from A′ and O′, respectively by207

updating A′ ← A′ \ A and O′ ← O′ \ O. We repeat this until there does not exist any object208

O ∈ O′ that properly contains an object A ∈ A′.209

Similarly, if there exists an object A ∈ A′ that properly contains CF(O,O′) for an object O ∈ O′,210

6



we update A′ ← A′ \ A and O′ ← O′ \ O. Let S ′′ be the the set containing all objects of S ′
211

which are not dominated by A. We reset S ′ ← S ′′. We repeat this until there does not exist212

any object A ∈ A′ that properly contains CF(O,O′) for an object O ∈ O′. This ensures the213

following.214

Claim 2. For any object A ∈ A′ (resp., O ∈ O′), CF(A,A′) (resp., CF(O,O′)) is not properly215

contained in any object in O′ (resp., A′).216

Observe that |O \ O′| = |A \ A′|. Finally, we will show that |A′| ≤ (1 + ε)|O′| which implies that217

|A| ≤ (1 + ε)|O|.218

In the context of geometric covering, we do the similar process as discussed above to ensure219

Claim 2. Here, let P ′ be the set containing all points of P which are covered by object in A′ ∩O′.220

Henceforth, A′,O′,P ′ and S ′ will be denoted as A,O,P and S , respectively, satisfying both221

Claim 1 and 2.222

In Sections 4.3 and 6, we prove locality conditions for the dominating-set and set-cover problems,223

respectively. These conditions are presented in Lemmas 1 and 2, respectively.224

Lemma 1 (Locality Condition for Dominating-Set). There exists a planar graph G = (A∪O, E)225

such that for all S ∈ S , if S is dominated by at least one object of A and at least one object of226

O, then there exists A ∈ A and O ∈ O both of which dominate S and (A,O) ∈ E.227

Lemma 2 (Locality Condition for Set-Cover). There exists a planar graph G = (A ∪O, E) such228

that for all points p ∈ P, if p is covered by at least one object of A and at least one object of O,229

then there exists A ∈ A and O ∈ O both of which cover p and (A,O) ∈ E.230

Once we have established both of these locality condition lemmas, the analysis of the algorithm231

is same as in [29]. For the sake of completeness, we provide the following analysis. As the graph232

G is planar, the following planar separator theorem can be used.233

Theorem 3 (Frederickson [14]). For any planar graph G = (V, E) with n vertices and a parameter234

1 ≤ r ≤ n, there is a set X ⊆ V of size at most
c1n√
r

, such that V \X can be partitioned into dn/re235

sets V1,V2, . . .Vdn/re satisfying (i) |Vi| ≤ c2r, (ii) N(Vi) ∩ Vj = ∅ for i 6= j, and |N(Vi) ∩ X | ≤236

c3

√
r, where c1, c2, c3 > 0 are constants, and N(V ′) = {U ∈ V \ V ′ | ∃V ∈ V ′ with (U, V ) ∈ E}.237

We apply Theorem 3 to the graphs described in Lemmas 1 and 2, setting r = b/c2, where c2 is

the constant of Theorem 3. Here, n = |A|+ |O| and r = c4/ε
2, for some constant c4. So, |Vi| ≤ b.

Let Ai = A ∩ Vi and Oi = O ∩ Vi. Note that we must have

|Ai| ≤ |Oi|+ |N(Vi) ∩ X |, (1)

otherwise our local search would continue to replace Ai by Oi ∪N(Vi) , resulting in a better
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solution. For a suitable constant c5, we now have

|A|≤|X |+
∑
i

|Ai| (Each element of Q either belongs to Ai or X )

≤|X |+
∑
i

|Oi|+
∑
i

|N(Vi) ∩ X | (Follows from Equation 1)

≤|O|+ |X |+
∑
i

|N(Vi) ∩ X | (Oi are disjoint subsets of O)

≤|O|+ c5(|A|+ |O|)√
b

(
∑
i

|N(Vi) ∩ X | ≤ dn/re(c3
√
r) and |X | ≤ c1(|A|+ |O|)/

√
r )

|A|≤1 + c5/
√
b

1− c5/
√
b
|O| (By rearranging)

|A|≤(1 + ε)|O| (b is large enough constant times
1

ε2
).

238

3 Tools for Constructing Disjoint Objects239

In this section, we present two tools (or Lemmata) which are essential for analyzing our main240

results. An important step in our analysis (and particularly in the construction of the planar241

graph of Section 2.1) involves replacing a collection of overlapping objects that cover a given242

region with a collection of non-overlapping objects that cover the same region. This leads to the243

notion of a decomposition. The decomposition, we define here, is inspired by the idea of core244

decomposition introduced by Mustafa et al. [28].245

Definition 2. Given a set of convex objects R = {R1, . . . , Rn}, a set R̃ = {R̃1, . . . , R̃n} of246

convex objects is called a sub-decomposition if for each i ∈ [n], R̃i ⊆ Ri. Such a set R̃ is247

called a decomposition if the same region is covered, that is,
⋃
i∈[n]

R̃i =
⋃
i∈[n]

Ri. We refer R̃i248

as the trace of Ri, i ∈ [n]. Further, if the elements of R̃ have pairwise disjoint interiors, the249

decomposition/sub-decomposition is said to be disjoint.250

First, we prove the following lemma which is a reminiscent of [28, Lem 3.3]. Edelsbrunner [10]251

introduced a very similar decomposition in the context of Euclidean disks.252

Lemma 3. For a cover-free set of convex pseudodisks R = {R1, . . . , Rn}, there exist a disjoint253

decomposition R̃ = {R̃1, . . . , R̃n} such that CF(Rj ,R) ⊆ R̃j, for all j ∈ [n].254

Proof. The proof is constructive. The algorithm to construct a disjoint decomposition R̃ =255

{R̃1, . . . , R̃n} of R = {R1, . . . , Rn} is as follows. This is an n-phase algorithm. After the ith256

phase, the following invariants are maintained, for all i ∈ [n].257

Invariant 1. The objects in R̃i = {R̃i1, . . . , R̃in} form a decomposition of R = {R1, . . . , Rn} such258

that (i) CF(Rj) ⊆ R̃ij for all j ∈ [n], and (ii) int(R̃it) ∩ int(R̃iq) = ∅ where t 6= q and 1 ≤ t ≤ i,259

1 ≤ q ≤ n.260

Invariant 2. The objects in R̃i = {R̃i1, . . . , R̃in} form a collection of convex pseudodisks.261
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We initialize R̃0 = R. This satisfies both invariants. At the beginning of the ith phase,262

we set X = R̃i−1
i . Let Riπ = {R̃i−1

π(1), . . . , R̃
i−1
π(`)}, 0 ≤ ` < n be the set of objects in R̃i−1

263

that intersect int(R̃i−1
i ). In other words, int(R̃i−1

i ) ∩ int(R̃i−1
π(j)) 6= ∅ for any π(j) ∈ Π, where264

Π = {π(1), . . . , π(`)}.265

Consider any object R̃i−1
π(j) ∈ R

i
π. As R̃i−1

π(j) and X are pseudodisks, their respective boundaries266

intersect in two points. Let p1 and p2 be these two intersection points. By convexity, the line267

segment p1p2 is contained in both R̃i−1
π(j) and X. Let C1 (respectively, C2) be the part of the268

boundary of R̃i−1
π(j) (respectively, X) that lie inside X (respectively, R̃i−1

π(j)). We replace both C1269

and C2 by the line segment p1p2. In this way, we obtain new convex objects R̃iπ(j) ⊆ R̃
i−1
π(j) and270

Xj ⊆ X that have interiors that are pairwise disjoint with each other, and R̃iπ(j)∪Xj = R̃i−1
π(j)∪X.271

See Figure 1 for illustration.272

X

R̃i−1
π(j)

p1

p2 R̃iπ(j)

Xj

Figure 1: Illustration of Lemma 3.

For all π(j) ∈ Π, we construct the corresponding R̃iπ(j) as above. At the end of this phase, we273

assign R̃ii =
⋂
j∈Π

Xj . Note that R̃ii is also convex as it is intersection of some convex objects. We274

set R̃ij = R̃i−1
j for all j(6= i) ∈ [n] \Π. As a result, we obtain a collection of convex objects R̃i.275

Observe that, for any point p that is contained in the union of Riπ, either there exists a j such276

that this point lies within R̃iπ(j), and so is covered by this set, or it lies within Xj for all j, and277

hence it lies within their common intersection, which is X. So, R̃i is a decomposition of R̃i−1.278

Thus, after the ith phase, we find a decomposition R̃i such that int(R̃ii) ∩ int(R̃ij) = ∅ for all279

j( 6= i) ∈ {1, . . . , n}. On the other hand, we have int(R̃i−1
t ) ∩ int(R̃i−1

q ) = ∅ where t 6= q and280

1 ≤ t ≤ i − 1, 1 ≤ q ≤ n. Combining these, we obtain int(R̃it) ∩ int(R̃iq) = ∅ where t 6= q and281

1 ≤ t ≤ i, 1 ≤ q ≤ n.282

Since the union of objects in R̃i is same as the union of the objects in R̃i−1, and the objects in283

R̃i−1 are cover-free, so each object R̃ij has its cover-free region CF(Rj) which is not covered by284

others, for all j ∈ [n]. Thus, Invariant 1 is maintained. Now, we prove that Invariant 2 is also285

maintained. We prove the objects in R̃i form pseudodisks by showing the following claim.286

Claim 3. R̃i is a collection of convex pseudodisks.287

Proof. It suffices to show that for any two objects R̃i−1
`1

and R̃i−1
`2

in R i−1, their boundaries288

∂R̃i`1 and ∂R̃i`2 can cross each other at most twice.289

Recall the definition of X from the above construction. For any R ∈ Riπ, let I(R) be the interval290
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X

R̃l2
i−1

R̃l1
i−1

(a) Case 1

X

R̃l2
i−1

R̃l1
i−1

(b) Case 2

X

R̃l2
i−1

R̃l1
i−1

(c) Case 3

Before Phase i

R̃l2
i

R̃l1
i

X`1 ∩X`2

(a) Case 1

R̃l2
i

R̃l1
i

X`1 ∩X`2

(b) Case 2

R̃l2
i

R̃l1
i

X`1 ∩X`2

(c) Case 3

After Phase i

Figure 2: Illustration of Claim 3.
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R ∩ ∂X on the boundary of X. Due to the Invariant 1, no pseudodisk in R̃i−1 is completely291

contained in another pseudodisk, so the intervals are well defined.292

There are three possible cases:293

• Case 1: I(R̃i−1
`1

) ∩ I(R̃i−1
`2

) = ∅,294

• Case 2: I(R̃i−1
`1

) ⊆ I(R̃i−1
`2

),295

• Case 3: I(R̃i−1
`1

) ∩ I(R̃i−1
`2

) 6= ∅ and I(R̃i−1
`1

) * I(R̃i−1
`2

).296

In both Case 1 and Case 2 (see Figure 2(a) and (b)), ∂R̃i`1 and ∂R̃i`2 do not have any new297

crossing which ∂R̃i−1
`1

and ∂R̃i−1
`2

did not have. In fact they may lost intersections lying in X. As298

∂R̃i−1
`1

and ∂R̃i−1
`2

may cross each other at most twice, so does ∂R̃i`1 and ∂R̃i`2 . In Case 3 (see299

Figure 2(c)), ∂R̃i−1
`1

and ∂R̃i−1
`2

crosses each other once in X and once outside X. The outside300

crossing remains same for ∂R̃i`1 and ∂R̃i`2 , and they cross each other once along new part of their301

boundaries, i.e., along the boundary of X`1 ∩X`2 . Thus, the claim follows.302

303

After completion of the nth phase, we assign R̃ = R̃n. The proof of the lemma follows from the304

Invariant 1.305

Now, we prove the following important lemma which we use as a tool for obtaining disjoint306

sub-decompositions. The previous lemma is used to obtain disjoint decomposition when the307

objects are pseudodisks. When the set of objects does not satisfy the pseudodisk property, but308

they are shrunken from a set of of pseudodisks, we apply the following tool to obtain a disjoint309

sub-decomposition.310

Lemma 4. Given two sets U and V of distinct convex objects such that their union forms a311

collection of pseudodisks, let U0 and V0 be any disjoint sub-decompositions of U and V, respectively.312

Let Ui and Vj be any two convex pseudodisks from U and V, respectively, and U0
i and V 0

j be313

two corresponding convex objects from U0 and V0, respectively, such that CF(U0
i ,U0 ∪ V0) 6= ∅,314

CF(V 0
j ,U0 ∪ V0) 6= ∅ and int(U0

i ) ∩ int(V 0
j ) 6= ∅. Then we can find U0

ij ⊆ U0
i and V 0

ji ⊆ V 0
j such315

that the following properties are satisfied.316

(i) U0
ij and V 0

ji are convex, have nonempty disjoint interiors, and their intersection consists of317

a separating line segment, which we denote by E0
ij.318

(ii) U0
i \ U0

ij is completely contained in Vj.319

(iii) V 0
j \ V 0

ji is completely contained in Ui.320

Proof. Given two convex objects U and V , define a petal of U with respect to V to be a connected321

component of U \ V . Since U0
i and V 0

j need not be pseudodisks, there may be multiple petals322

of U0
i with respect to V 0

j . Let us assume that there are k such petals, which we denote by323

11



Ui

Vj

U0
i

V 0
i

Figure 3: Petals: tiled regions are Petals of U0
i ; NCpetals are marked with red.

Petalt(U
0
i ), for 1 ≤ t ≤ k. Thus, U0

i \ V 0
j =

k⋃
t=1

Petalt(U
0
i ). Similarly, we define Petal(V 0

j ) to be324

the set of petals of V 0
j with respect to U0

i , and we let k′ denote their number. Observe that each325

petal is bounded by two boundary arcs, one from ∂U0
i and the other from ∂V 0

j (see Figure 3).326

Also observe that consecutive petals are defined by consecutive intersection points between the327

boundaries of the two objects.328

Since V 0
j ⊆ Vj , we have U0

i \ Vj ⊆ U0
i \ V 0

j . Define NCpetal(U0
i ) to be the subset of petals of U0

i329

(with respect to V 0
j ) that are not entirely covered by Vj , that is, NCpetal(U0

i ) = {Petalt(U
0
i ) ∈330

{U0
i \ V 0

j }|Petalt(U
0
i )∩ {U0

i \ Vj} 6= ∅}. Similarly, we define NCpetal(V 0
j ). Because CF(U0

i ,U0 ∪331

V0) 6= ∅, NCpetal(U0
i ) contains at least one element, and the same holds for NCpetal(V 0

j ) (see332

Figure 3).333

Consider only the uncovered petals (that is, NCpetal(U0
i )∪NCpetal(V 0

j )). Let us label the petals334

of NCpetal(U0
i ) with the letter “u” and label the petals of NCpetal(V 0

j ) with the letter “v”. Let335

R0
ij = U0

i ∩ V 0
j . If you consider the cyclic order of these petals around ∂R0

ij , the alternating336

pattern “u. . . v. . . u. . . v” cannot occur in the cyclic sequence as shown in the following argument337

(see Figure 4).338

Suppose to the contrary that the alternating pattern “u. . . v. . . u. . . v” occurs in the cyclic339

sequence. Then there must exist points u1, u2 (from the first and third “u” petals in the340

sequence) that lie in U0
i \ V 0

j . Similarly, there exist points v1, v2 (from the second and341

fourth “v” petals) that lie in V 0
j \ U0

i . Because of the alternation, the line segments u1u2342

and v1v2 intersect in R0
ij . However, the existence of these two line segments violates the343

hypothesis that Ui and Vj are pseudodisks.344

Since the alternation pattern “u. . . v. . . u. . . v” cannot arise in the cyclic sequence, it follows the345
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j
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i

Vj

Ui

v1

v2

u1

u2

∈ NCpetal(V 0

j )∈ NCpetal(U0

i )

Figure 4: Illustration of Lemma 4.

cyclic order of uncovered petals around ∂R0
ij consists of a sequence of petals from NCpetal(U0

i )346

followed by a sequence from NCpetal(V 0
j ). As a result, we can find a line segment p1p2 lying347

in int(R0
ij) whose two endpoints are on ∂R0

ij such that all the uncoverd petals of U0
i (formally348

NCpetal(U0
i )) lie on one side of this line segment and the uncoverd petals of V 0

j (formally349

NCpetal(V 0
j )) lie on the other side. In other words, extension of this line segment p1p2 partitions350

the plane into two half-spaces H0
i and H0

j where H0
i contains all the petals of NCpetal(U0

i ) and351

H0
j contains all the petals of NCpetal(V 0

j ). We define U0
ij = H0

i ∩ U0
i and V 0

ji = H0
j ∩ V 0

j . The352

line segment p1p2 plays the role of the separating line segment E0
ij . Claim (i) follows because p1353

and p2 lie on the boundary of both U0
i and V 0

j . Claim (ii) follows because U0
i \ U0

ij consists a354

portion of R0
ij (which clearly lies in Vj) together with a subset of petals of U0

i that are all covered355

by Vj . Claim (iii) is symmetrical. Hence U0
ij , V

0
ij satisfy the lemma.356

4 Dominating-Set for Homothetic Convex Objects357

Let C be a convex object in the plane. We fix an arbitrary interior point of C as the center c(C).358

We are given a set S of n homothetic (i.e., translated and uniformly scaled) copies of C, and our359

objective is to show that the local-search algorithm given in Section 2 produces a PTAS for the360

minimum dominating-set for S . Recall that A is the set of objects returned by the local-search361

algorithm, and O is a minimum dominating-set. Without loss of generality, we assume that both362

Claim 1 and 2 are satisfied.363

In this section, we show mainly the existence of a planar graph satisfying the locality condition364

mentioned in Lemma 1. Here is an overview of the proof. First, we find a disjoint sub-365

decomposition Ã ∪ Õ of A ∪O (in Lemma 5). Next, we consider a nearest-site Voronoi diagram366

for the sites in Ã ∪ Õ with respect to a distance function. Then we show (in Lemma 9) that the367

dual of this Voronoi diagram satisfies the locality condition mentioned in Lemma 1.368
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4.1 Decomposing into Interior Disjoint Convex Sites369

Using Lemmas 3 and 4 as tools, now we prove the following which is one of the important370

observations of our work.371

Lemma 5. Let A be the output of the local-search algorithm for dominating-set on a set S of372

homothetic convex objects, and let O be the optimum dominating-set. Then there exists a disjoint373

sub-decomposition Ã ∪ Õ which satisfies the following: for any input object S ∈ S either374

(i) there exist Ã ∈ Ã and Õ ∈ Õ such that S ∩ Ã 6= ∅ and S ∩ Õ 6= ∅, or375

(ii) there exist A ∈ A and O ∈ O such that S ∩A ∩O 6= ∅, and their traces Ã and Õ share an376

edge on their boundary.377

Remainder of this section is devoted to the proof of this lemma. As a continuation from378

Section 2.1, we would like to remind the reader that duplicate objects have been pruned from A379

and O.380

LetA = {A1, . . . , A`} andO = {O1, . . . , Ot}. Our algorithm to obtain a disjoint sub-decomposition381

Ã ∪ Õ = {Ã1, . . . Ã`} ∪ {Õ1, . . . Õt} for A ∪O satisfying the lemma statement is as follows.382

Step 1: Obtaining decompositions individually: Note that the objects in A (resp., O)383

are cover-free (follows from Claim 1). So, we apply Lemma 3 on the set A (resp., O) of384

objects, to compute the disjoint decomposition of A (resp., O). Let A0 = {A0
1, . . . , A

0
`} (resp.,385

O0 = {O0
1, . . . , O

0
t } ) be the disjoint decomposition of A (resp., O). Now, following claim is386

obvious.387

Claim 4. Any point p ∈ R2 is contained in the interior of at most two objects of A0 ∪ O0.388

Lemma 3 ensures that CF(Ai,A) ⊆ A0
i 6= ∅ and CF(Oj ,O) ⊆ O0

j 6= ∅ for all i ∈ [`], j ∈ [t]. By389

Claim 2, no object A0
i can be properly contained in any single object from O0, but it may be390

completely covered by the union of two or more objects from O0. We can remedy this as follows.391

Replace each object of A0 and O0 with an infinitesimally shrunken version of itself. By our392

assumption of general position, the resulting sets of shrunken objects still form dominating-sets.393

Furthermore, because the elements of O0 have pairwise disjoint interiors, no single object of A0
394

can be contained in the union of two or more of the shrunken objects in O0. Henceforth, A0 and395

O0 refer to the sets of shrunken objects. Thus we have the following.396

Claim 5. (i) CF(A0
i ,A0 ∪ O0) 6= ∅ for all i ∈ [`],397

(ii) CF(O0
j ,A0 ∪ O0) 6= ∅ for all j ∈ [t],398

(iii) For each object S ∈ S, there exist an object A0
i ∈ A0 (resp., O0

j ∈ O0) such that S ∩A0
i 6= ∅399

(resp., S ∩O0
j 6= ∅).400

Step 2: Obtaining disjoint sub-decomposition: Now, consider A0
i ∈ A0 for all i ∈ [`].401

Lemma 3 ensures that A0
i does not have any interior overlap with A0

k, for any k ∈ [`]\ i. Similarly,402

O0
j (j ∈ [t]) does not have any interior overlap with O0

k, for any k ∈ [t] \ j. But, A0
i may403
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have interior overlap with one or more objects of O0. Let L(i) be the subset of indices j ∈ [t]404

such that A0
i has an interior overlap with O0

j . For any j ∈ L(i), Claim 5 implies that both405

CF(A0
i ,A0 ∪O0) 6= ∅ and CF(O0

j ,A0 ∪O0) 6= ∅. By applying Lemma 4 to A0
i and O0

j , we obtain406

two interior-disjoint convex objects A0
ij ⊆ A0

i and O0
ji ⊆ O0

j . Let A1
i =

⋂
j∈L(i)

A0
ij . Similarly,407

let M(j) be the subset of indices i ∈ [l] such that O0
j has an interior overlap with A0

i . Let408

O1
j =

⋂
i∈M(j)

O0
ji which is a convex object and it contains CF(Oj). Let A1 = {A1

1, . . . , A
1
`} and409

O1 = {O1
1, . . . , O

1
t }. Clearly, A1

i ⊆ A0
i and O1

j ⊆ O0
j , and since separating line segments E0

ij have410

eliminated all overlaps between the two decompositions, it follows that A1 ∪ O1 is a disjoint411

sub-decomposition of A∪O. If we concentrate on the arrangements of all E0
ij along the boundary412

of ∂A0
i , then we observe the following.413

Claim 6. Any two separating line segments E0
ij and E0

ij′ do not intersect each other.414

Proof. If E0
ij and E0

ij′ intersect each other then assertions (ii) and (iii) of Lemma 4 imply that415

the corresponding objects O0
j and O0

j′ also intersect, which is not possible because O0 is a disjoint416

decomposition.417

The boundary ∂A1
i is actually obtained by replacing zero or more disjoint arcs of ∂A0

i with418

separating line segments. Since each of these separating line segments are part of different disjoint419

objects in O0, here we would like to remark that the object A1
i is nonempty. For the similar420

reason, each object O1
j ∈ O1 is nonempty. We denote the partial boundary ∆A0

ij (resp., ∆O0
ji ) by421

the portion of the boundary ∂A0
i (resp., ∂O0

j ) which is replaced by the edge E0
ij (see Figure 5(b)422

where partial boundary is marked as dotted).423

Note the following.424

Claim 7. Let A0
i and O0

j be any two objects from A0 and O0, respectively, such that int(A0
i ) ∩425

int(O0
j ) 6= ∅ and E0

ij is not a part of ∂A1
i . Then following properties must be satisfied:426

• there exists an object O0
j′ in O0 such that int(A0

i )∩ int(O0
j′) 6= ∅, E0

ij′ is a part of ∂A1
i , and427

A0
i \A0

ij is completely contained in Oj′.428

• O0
j does not intersect A1

i .429

Proof. Claim 6 implies that that no two separating line segments intersect each other, so the430

fact that E0
ij does not contribute to ∂A1

i implies that there is another object O0
j′ such that the431

partial-boundary ∆A0
ij′ contains the partial boundary ∆A0

ij . Thus, A0
ij′ ⊆ A0

ij which implies432

A0
i \ A0

ij ⊆ A0
i \ A0

ij′ . Since A0
i \ A0

ij′ is completely contained in Oj′ (by Lemma 4), A0
i \ A0

ij is433

also completely contained in Oj′ .434

Since O0
j and O0

j′ are interior disjoint and the partial-boundary ∆A0
ij′ contains the partial435

boundary ∆A0
ij , O

0
j cannot intersect A1

i . Hence, the claim follows.436

By a symmetrical argument, we have the following.437
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(a) After Step 1

p

(b) After Step 2 (Partial bound-

aries are shown dotted and the

separating line segments are

marked in green)

(c) After Step 3

Figure 5: Illustration of different steps: objects in A and O are marked with red and blue,

respectively.

Claim 8. Let A0
i and O0

j be any two objects from A0 and O0, respectively, such that int(A0
i ) ∩438

int(O0
j ) 6= ∅ and E0

ji is not a part of ∂O1
j . Then following properties must be satisfied:439

• there exists an object A0
i′ in A0 such that int(O0

j ) ∩ int(A0
i′) 6= ∅, E0

ji′ is a part of ∂O1
j , and440

O0
j \O0

ji is completely contained in Ai′.441

• A0
i does not intersect O1

j .442

Note that after this step, there might be some point p ∈ A0
i but p /∈ A1

i and there does not exist443

any O1
j such that p ∈ O1

j (see Figure 5(a-b)). Hence, the objects of A1 ∪ O1 fail to cover the444

same region as A0 ∪O0, as needed in the decomposition. To remedy this, we expand some of the445

objects in A1 and O1 in the next step.446

Step 3: Expansion of objects in A1 and O1:447

For each (i, j) ∈ [`]× [t], define χ(i, j) = 1 if E0
ij is a part of ∂A1

i and E0
ji is also a part of ∂O1

j , and448

it is 0 otherwise. Recalling A0
ij and O0

ji from Lemma 4, for each i ∈ [`], define A2
i =

⋂
{j|χ(i,j)=1}

A0
ij ,449

and for each j ∈ [t], define O2
j =

⋂
{i|χ(i,j)=1}

O0
ji. Let A2 = {A2

1, . . . , A
2
`} and O2 = {O2

1, . . . , O
2
t }.450

Note that A2 ∪ O2 is a disjoint sub-decomposition of A ∪ O. This construction along with451

Claims 7 and 8 ensures the following.452

Claim 9. • For any point p ∈ A0
i \ A2

i , there exists some O2
j ∈ O2 such that A2

i and O2
j453

share an edge on their boundary and p ∈ Oj.454
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• For any point p ∈ O0
j \O2

j , there exists some A2
i ∈ A2 such that A2

i and O2
j share an edge455

on their boundary and p ∈ Ai.456

By renaming each set A2
i as Ãi for i ∈ [`] and each O2

j as Õj for j ∈ [t], we obtain the final457

decomposition Ã ∪ Õ = A2 ∪ O2. Finally, we claim the following which completes the proof of458

the lemma statement.459

Claim 10. For any input object S ∈ S either (i) there exist Ã ∈ Ã and Õ ∈ Õ such that460

S ∩ Ã 6= ∅ and S ∩ Õ 6= ∅, or (ii) there exist A ∈ A and O ∈ O such that S ∩A ∩O 6= ∅, and Ã461

and Õ share an edge on their boundary.462

Proof. Let S be any input object in S . From Claim 5 (iii), we know that there exist A0
i ∈ A0

463

and O0
j ∈ O0 such that S ∩A0

i 6= ∅ and S ∩O0
j 6= ∅ for some i ∈ [`] and j ∈ [t]. If after Step 3,464

S ∩ A2
i 6= ∅ and S ∩O2

j 6= ∅, then the claim follows. So without loss of generality assume that465

S ∩A2
i = ∅. Consider any point p ∈ S ∩A0

i . As p ∈ A0
i \A2

i , there exist some O2
j ∈ O2 such that466

A2
i and O2

j share an edge on their boundary and p ∈ Oj (follows from Claim 9). Thus the claim467

follows.468

4.2 Nearest-site Voronoi diagram469

Recalling the definition of the convex distance function δC from Definition 1, we define the470

distance δC(p, P ) from a point p to any object P (which need not be convex and homothetic to471

C) as follows.472

Definition 3. Let p be a point and P be an object in a plane. The distance δC(p, P ) from p to473

P is defined as δC(p, P ) = min
q∈P

δC(p, q).474

This distance function has the following properties.475

Property 2. (i) If p is contained in the object P , then δC(p, P ) = 0.476

(ii) If δC(p, P ) > 0, then p is outside the object P , and a translated copy of C centered at p477

with scaling factor δC(p, P ) touches the object P .478

Now, we define a nearest-site Voronoi diagram NVDC for all the objects in Ã ∪ Õ with respect to479

the distance function δC . We define Voronoi cell of Si ∈ Ã ∪ Õ as Cell(Si) = {p ∈ R2|δC(p, Si) ≤480

δC(p, Sj) for all j 6= i}. The NVDC is a partition on the plane imposed by the collection of cells481

of all the objects in Ã ∪ Õ. A point p is in Cell(S) for some object S ∈ Ã ∪ Õ, implies that if we482

place a homothetic copy of C centered at p with a scaling factor δC(p, S), then C touches S and483

the interior of C is empty. Now, we have the following two lemmas.484

Lemma 6. The cell of every object S ∈ Ã ∪ Õ is nonempty. Moreover, S ⊆ Cell(S).485

Proof. This follows from Property 2(i) and the fact that Ã ∪ Õ is a set of interior disjoint objects486

(from Lemma 5(a)).487

Lemma 7. Each cell Cell(S) is simply connected.488
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Proof. For every S ∈ Ã ∪ Õ, let us define the function πS : R2 → S, that maps any point to one489

of its closest points in S. (If p ∈ S, then πS(p) = p.)490

We first claim that for every point p ∈ Cell(S), the line segment pπS(p) ⊆ Cell(S). To see491

this, suppose to the contrary that there exists a point q ∈ pπS(p) such that q ∈ Cell(S′) where492

S(′ 6= S) ∈ Ã ∪ Õ. Then by basic properties of convex distance functions (Property 1), we have493

δC(p, S′) ≤ δC(p, πS′(q)) ≤ δC(p, q) + δC(q, πS′(q)) < δC(p, q) + δC(q, πS(p)) = δC(p, πS(p)),

contradicting the fact that p ∈ Cell(S).494

To see that Cell(S) is connected, observe that any two points p, p′ ∈ Cell(S) can be connected as495

follows. First, connect p to πS(p) and p′ to πS(p′). Then connect these two points through S.496

By the above claim and Lemma 6, all of these segments lies within Cell(S).497

To complete the proof that Cell(S) is simply connected, we use the well known equivalent498

characterization [23] that for any simple closed (i.e., Jordan) curve Ψ ⊂ Cell(S), the interior of499

the region bounded by this curve lies entirely within Cell(S). Consider any x in the interior of500

the region bounded by Ψ. Either x ∈ S or (by extending the ray from πS(x) through x until501

it hits Ψ) there exists p ∈ Cell(S) such that x lies on the line segment pπS(x). In the former502

case, x ∈ Cell(S), follows from Lemma 6. Now, we are going to argue that x ∈ Cell(S) for the503

latter case as well. To see this, suppose to the contrary that x ∈ Cell(S′) where S(′ 6= S) ∈ Ã∪ Õ.504

Then by basic properties of convex distance functions (Property 1), we have505

δC(p, S′) ≤ δC(p, πS′(x)) ≤ δC(p, x) + δC(x, πS′(q)) < δC(p, x) + δC(x, πS(p)) = δC(p, πS(p)),

contradicting the fact that p ∈ Cell(S). Therefore x ∈ Cell(S), as desired.506

4.3 Locality Condition507

Let us consider the graph G = (V, E), the dual of the Voronoi diagram NVDC , whose vertices508

V are the elements of A ∪O and the edge set E consists of pairs U, V ∈ V whose Voronoi cells509

share an edge on their boundaries. From Lemma 6 and Lemma 7, we have the following.510

Lemma 8. The graph G = (A ∪O, E) is a planar graph.511

Now, we prove that the graph G satisfies the property needed in the locality condition (Lemma 1).512

Lemma 9. For any arbitrary input object S ∈ S , if S is dominated by at least one object of A513

and at least one object of O, then there exists A ∈ A and O ∈ O both of which dominate S and514

(A,O) ∈ E of G.515

Proof. Let S be any object in S . According to Lemma 5, there exists a disjoint sub-decomposition516

Ã ∪ Õ such that either:517

(i) there exist Ã ∈ Ã and Õ ∈ Õ such that S ∩ Ã and S ∩ Õ are both nonempty, or518

(ii) there exist A ∈ A and O ∈ O such that S ∩A ∩O 6= ∅, and their respective traces Ã and519

Õ share an edge in common on their boundaries.520
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For case (ii), clearly both A and O dominates S. The fact that Ã and Õ share a common edge521

on their boundary implies (by Lemma 6) that Cell(Ã) and Cell(Õ) also share a common edge on522

their boundaries. Therefore, (A,O) is an edge of G, as desired.523

For case (i), let c = c(S) denote the center of S. Without loss of generality, we may assume that524

A and O have been chosen so that Ã and Õ are the closest objects to c (with respect to δC) in Ã525

and Õ, respectively. We may assume that δC(c, Ã) ≤ δC(c, Õ) (as the other case is symmetrical).526

Let o ∈ Õ denote the closest point to c in Õ. Clearly, c and o lie in different Voronoi cells, so527

this segment must intersect an edge of Cell(Õ) at some point p. Let Cell(R̃) denote the cell528

neighbouring the Cell(Õ) along this edge. Letting r denote the closest point to p in R̃, we have529

δC(p, r) = δC(p, R̃) = δC(p, Õ) ≤ δC(p, o). By basic properties of convex distance function (see530

Property 1) we obtain531

δC(c, r) ≤ δC(c, p) + δC(p, r) ≤ δC(c, p) + δC(p, o) = δC(c, o).

By general position, we may assume that δC(c, R̃) < δC(c, Õ). Since Õ was chosen to be the532

closest object in Õ to c, it follows that R̃ ∈ Ã. Clearly, the associated objects R and O (which533

contain R̃ and Õ, respectively) both dominates S. Therefore, there is an edge (R,O) in G, as534

desired.535

5 Dominating-Set for Homothets of a Centrally Symmetric Con-536

vex Object537

In this section, we give a simpler analysis of the local search algorithm for the dominating-set538

problem when the objects are homothets of a centrally symmetric convex object. Our analysis539

is a generalization of Gibson et al. [16] where we can avoid the sophisticated tool of disjoint540

decomposition.541

Let C be a centrally symmetric convex object in the plane with the center c(C). Given a set S542

of homothets of C, our objective is to show that the local-search algorithm given in Section 2 is543

a PTAS for the minimum dominating-set for S . Recall that A is the set of objects returned544

by the local-search algorithm, and O is the minimum dominating-set. As a continuation from545

Section 2, we assume that both Claim 1 and 2 are satisfied.546

As in Section 4.2, we define a nearest-site Voronoi diagram for all objects in A ∪O with respect547

to a distance function δ∗C . First, we are going to extend the convex distance function to provide548

meaningful (albeit negative) to the interior of each site. This would allow us to interpret the549

Voronoi diagram as a Voronoi diagram of additively weighted points, rather than a Voronoi550

diagram of (unweighted) regions. For each object S ∈ S , we define the weight w(S) to be α,551

where S = c(S) + αC. Now, we define the distance δ∗C(p, S) between a point p ∈ R2 and an552

object S ∈ S as follows: δ∗C(p, S) = δC(p, c(S))− w(S). The distance function δ∗C(p, S) has the553

following properties:554

Property 3. (i) The distance function δ∗C(p, S) achieves its minimum value when p = c(S).555

(ii) If p is contained in the object S, then δ∗C(p, S) ≤ 0.556
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(iii) If δ∗C(p, S) > 0, then p is outside the object S, and a translated copy of C centered at p557

with scaling factor δ∗C(p, S) touches the object S.558

Note that Property 3(iii) is crucial for our analysis and it follows due to the symmetric property559

of δC . As a result, this approach cannot be applied when objects are not centrally symmetric.560

We will show that each object in A ∪O has a nonempty cell in this Voronoi diagram and each561

cell is simply connected. As a result the graph G = (V, E) which is the dual of this Voronoi562

diagram is planar. Finally, we will show that this graph satisfies the locality condition mentioned563

in Lemma 1. This completes the proof.564

Lemma 10. The cell of every object S ∈ A∪O is nonempty. Moreover, the center c(S) ⊆ Cell(S).565

Proof. For the sake of contradiction, assume for some object S ∈ A ∪ O, c(S) /∈ Cell(S) and566

c(S) ∈ Cell(S′) where S′(6= S) ∈ A ∪ O. So, δ∗C(c(S), S) ≥ δ∗C(c(S), S′). Since δ∗C(c(S), S) =567

−w(S), we have −w(S) ≥ δC(c(S), c(S′))− w(S′). This implies w(S′) ≥ δC(c(S), c(S′)) + w(S)568

which means that the object S is contained in the object S′. This contradicts Claim 1 and 2.569

Lemma 11. Each cell Cell(S) is simply connected.570

Proof. We first claim that for every point p ∈ Cell(S), the line segment pc(S) ⊆ Cell(S). To see571

this, suppose to the contrary that there exists a point q ∈ pc(S) such that q ∈ Cell(S′) where572

S′(6= S) ∈ A ∪O. Then by basic properties of convex distance functions (Property 1), we have573

δ∗C(p, S′) = δC(p, c(S′))− w(S′) ≤ δC(p, q) + δC(q, c(S′))− w(S′) ≤ δC(p, q) + δ∗C(q, S′)

574

< δC(p, q) + δ∗C(q, S) = δC(p, q) + δC(q, c(S))− w(S) = δC(p, c(S))− w(S) = δ∗C(p, S),

contradicting the fact that p ∈ Cell(S).575

To see that Cell(S) is connected, observe that any two points p, p′ ∈ Cell(S) can be connected576

via c(S) as follows. First, connect p to c(S) and then connect p′ to c(S). By the above claim577

and Lemma 10, all of these segments lies within Cell(S).578

To complete the proof that Cell(S) is simply connected, we use the well known equivalent579

characterization [23] that for any simple closed (i.e., Jordan) curve Ψ ⊂ Cell(S), the interior580

of the region bounded by this curve lies entirely within Cell(S). Consider any x in the interior581

of the region bounded by Ψ. Either x = c(S) or (by extending the ray from c(S) through x582

until it hits Ψ) there exists p ∈ Cell(S) such that x lies on the line segment pc(S). In the583

former case, x ∈ Cell(S), follows from Lemma 10. For the latter case, by the above claim (that584

pc(S) ⊆ Cell(S)), we have x ∈ Cell(S). This completes the proof.585

Lemma 12. For any arbitrary input object S ∈ S , there is an edge between (A,O) ∈ G such586

that A ∈ A and O ∈ O, and both A and O dominates S.587

Proof. The proof is similar to the Case (i) of Lemma 9.588
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6 Geometric Set-Cover for Convex Pseudodisks589

Given a set S of n convex pseudodisks and a set P of points in R2, the objective is to cover590

all the points in P using subset of S of minimum cardinality. Here, we analyze that the local591

search algorithm, as given in Section 2, would give a polynomial time approximation scheme.592

The analysis is similar to the previous problem. Recall from Section 2.1 that O is an optimal593

covering set for P and A is the covering set returned by our local search algorithm satisfying594

both Claim 1 and 2. Here, we need to show that the locality condition mentioned in Lemma 2 is595

satisfied.596

If we restrict the proof of Lemma 5 up to Claim 9, then, it is straightforward to obtain the597

following.598

Lemma 13. Let A be the output of the local-search algorithm for set-cover on a set S of convex599

pseudodisks and a set P of points in R2, and let O be the optimum. Then there exists a disjoint600

sub-decomposition Ã ∪ Õ which satisfies the following: for any input point p ∈ P there exist601

A ∈ A and O ∈ O such that p ∈ A and p ∈ O, and their traces Ã and Õ share an edge on their602

boundary.603

Proof. Let A = {A1, . . . , A`} and O = {O1, . . . , Ot}. Our algorithm to obtain a disjoint sub-604

decomposition Ã ∪ Õ = {Ã1, . . . Ã`} ∪ {Õ1, . . . Õt} for A ∪O satisfying the lemma statement is605

exactly same as the three steps mentioned in Section 4.1 for Lemma 5. The main difference is in606

the statement of Claim 8. For set-cover problem, we have the following607

Claim 11. (i) CF(A0
i ,A0 ∪ O0) 6= ∅ for all i ∈ [`],608

(ii) CF(O0
j ,A0 ∪ O0) 6= ∅ for all j ∈ [t],609

(iii) Each point p ∈ P is covered by exactly one object from A0 (resp., O0).610

Finally, instead of Claim 10, we claim the following statement.611

Claim 12. For any input point p ∈ P, there exist A ∈ A and O ∈ O such that p ∈ A and p ∈ O,612

and Ã and Õ share an edge on their boundary.613

Proof. Let p be any input point in P. By Claim 11 (iii), there exist A0
i ∈ A0 and O0

j ∈ O0 such614

that p ∈ A0
i and p ∈ O0

j for some i ∈ [`] and j ∈ [t]. After Step 3, since A2 ∪ O2 is a disjoint615

decomposition of A ∪ O, p cannot be both in A2
i and O2

j . Therefore, either of the following616

happens: p /∈ A2
i , or p /∈ O2

j . In both cases, the claim follows from Claim 9.617

Thus the lemma follows.618

Now, consider a graph G = (V, E), where each vertex V ∈ V corresponds to an object in Ã ∪ Õ,619

and we create an edge in between two vertices whenever the corresponding objects in Ã∪ Õ share620

an edge in their boundary. Since, the objects of Ã ∪ Õ are convex and have disjoint interiors,621

this graph is a planar graph. From Lemma 13, it follows that the graph G satisfies the locality622

condition mentioned in Lemma 2. This completes the proof of Theorem 2.623
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7 Concluding Remarks624

In this paper, we have shown that the well-known local search algorithm gives a PTAS for finding625

the minimum cardinality dominating-set and geometric set-cover when the objects are homothetic626

convex objects, and convex pseudodisks, respectively. As a consequence, we obtain easy to627

implement approximation guaranteed algorithms for a broad class of objects which encompasses628

arbitrary squares, k-regular polygons, translates of convex polygons. A QPTAS is known for the629

weighted set-cover problem where objects are pseudodisks [28]. But, no QPTAS is known for the630

weighted dominating-set problem when objects are homothetic convex objects. Note that the631

separator-based arguments for finding PTAS has a limitation for handling the weighted version632

of the problems. Thus, finding a polynomial time approximation scheme for the weighted version633

of both minimum dominating-set and minimum geometric set-cover problems for homothetic634

convex objects, pseudodisks remain open in this context. Specially, for the weighted version of635

the problem, it would be interesting to analyze the approximation guarantees of local search636

algorithm.637
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