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Why Wavelets?

Efficient way to compress the smooth data except in localized
region
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Why wavelet-Taylor Galerkin method?

Successive powers of time iteration matrix become sparser
with increasing time

Example
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Improved convergence and stability properties as compared to
wavelet Galerkin method and Taylor-Galerkin method .

Example
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advection diffusion problems by wavelet-Taylor Galerkin method,
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Multiresolution Analysis of L2(R)

Definition

MRA is characterized by the following axioms

{0} ⊂ · · · ⊂ V−1 ⊂ V0 ⊂ V1 · · · ⊂ L2(R)
⋃j=∞

j=−∞ V j = L2(R)
⋂

j∈Z
V j = {0}

Invariance to dilations, i.e f ∈ V j iff f (2(.)) ∈ V j+1

Invariance to translations, i.e

{φ0
k (scaling function) = φ(x − k)|k ∈ Z} is an orthonormal

basis for V0

Define W j = {ψj
k (wavelet) |k ∈ Z} to be the complement of V j

in V j+1, where V j+1 = V j + W j .
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Each member of the wavelet family is determined by the set of
constants ak from the dilation equation

φ0
0 =

D−1
∑

k=0

akφ
1
k =⇒ φ(x) =

√
2

D−1
∑

k=0

akφ(2x − k)

and by the set of constants bk from the wavelet equation

ψ0
0 =

D−1
∑

k=0

bkφ
1
k =⇒ ψ(x) =

√
2

D−1
∑

k=0

bkφ(2x − k)

bk = (−1)kaD−1−k , k = 0, 1, · · · ,D − 1.
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∫ ∞

−∞

φ(x)dx = 1

∫ ∞

−∞

φj
k(x)φj

l (x)dx = δk,l

∫ ∞

−∞

ψi
k(x)ψj

l (x)dx = δi ,jδk,l

∫ ∞

−∞

φi
k(x)ψj

l (x)dx = 0 j ≥ i

Orthogonal projections

PV j f (x) =

∞
∑

k=−∞

c
j
kφ

j
k (x), x ∈ R

PW j f (x) =
∞
∑

k=−∞

d
j
kψ

j
k(x), x ∈ R

Wavelet decomposition

PV j f = PVJ0 f +
J−1
∑

j=J0

PW j f
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Important family of wavelets

Daubechies wavelet with different compact support, Coiflet,
Semi-orthogonal wavelet, Battle-Lemarie’s wavelets, biorthogonal
wavelet, interpolats.
Daubechies scaling and wavelet functions
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Wavelet Expansion

Since space VJ is decomposed into wavelet space
VJ0 + WJ0 + WJ0−1 + · · · + WJ−1 Using this relation we obtain

PVJ f (x) =

∞
∑

k=−∞

cJ0
k φ

J0
k (x) +

J−1
∑

j=J0

∞
∑

k=−∞

d
j
kψ

j
k(x).

Where J0 satisfy 0 ≤ J0 ≤ J.Where the coefficients c
J0
k and d

j
k are

given by

cJ0
k =

∫ ∞

−∞

f (x)φJ0
k (x)dx

d
j
k =

∫ ∞

−∞

f (x)ψj
k (x)dx , j = J0, · · · , j − 1
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An estimate for the decay of wavelet coefficients

The decay of wavelet coefficients is expressed in the following
theorem.

Theorem

Let M = D/2 be the number of vanishing moments for a wavelet

ψj
k and let f ∈ CM(R). Then the wavelet coefficients decay as

follows:

|d j
k | ≤ CM2−j(M+ 1

2
)maxξ∈Ij,k |f (M)(ξ)|.

Where CM is a constant independent of j , k and f and Ij ,k denotes

the support of ψj
k .

‖f − PVJ f ‖ = ‖
∞
∑

j=J

∞
∑

k=−∞

d
j
kψ

j
k(x)‖ = O(2−JM)
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Our Model

Consider the equations of the form

ut = Au + Ng(u) + f (x , y)

with suitable initial and boundary conditions. Here A and N are
constant-coefficient differential operators that do not depend upon
time t and the function g(u) is non-linear.
Approximation in time

To obtain a second order method the Taylor series is taken as

un − un−1

δt
= un−1

t +
δt

2
un−1
tt + O(δt2)

un−1 − un

δt
= −un

t +
δt

2
un
tt + O(δt2)
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Combining the above expressions gives

un − un−1

δt
=

1

2
(un−1

t + un
t ) +

δt

4
(un−1

tt − un
tt) + O(δt2)

Then using our model problem,

ut = −Au, utt = A2u

the initial boundary value problem is converted in to a sequence of
boundary value problems

un = T un−1

u(x , 0) = u0

δt = t∗/N, tn = nδt, n = 1, · · · ,N + 1
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Approximation in space

The variational formulation of the wavelet Taylor-Galerkin scheme
is

Given u0
h ∈ V

j

B(un
h , vh) −

δt

2
D(un

h , vh) +
δt2

4
C(un

h , vh) = B(un−1
h , vh) +

δt

2
D(un−1

h , vh)

+
δt2

4
C(un

h , vh)

Where the bilinear forms B, C and D are defined by

B, C,D :V × V → C

B(u, v) = (u, v), C(u, v) = (Au,Av), D(u, v) = (Au, v)
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Advection Equation M. Holmstrom and J. Walden have applied
adaptive wavelet methods on such type of PDEs. But by our
approach of FW-TGM method we are taking the advantage of
time accurate scheme as well as wavelet capabilities of compression
to produce fast algorithm based on fast matrix vector product in
terms of sparsity.
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Moreover, near the spike error in FW-TGM method is small. From this
we can conclude that near the sharp gradients we can take the advantage
of time accuracy and compression properties of wavelet in FW-TGM
method.

0 100 200 300 400 500 600
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

x

E
rr

or

D = 6 using F-WGM

0 100 200 300 400 500 600
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

x

E
rr

or

D = 6 using FW-TGM
Ref: B. V. Rathish Kumar, Mani Mehra, Time accurate Fast

Wavelet-Taylor Galerkin method for partial differential equations,

Numerical methods for partial differential equations, Vol. 22 (2)

(2005) pp. 274-295.

Mani Mehra Applications of Wavelets to Partial Differential Equations 18/48



o

Part 1: Wavelet-Taylor Galerkin method
Part 2: Adaptive wavelet collocation method

Motivation
Wavelet-Taylor Galerkin method
Conclusion and future plan

Moreover, near the spike error in FW-TGM method is small. From this
we can conclude that near the sharp gradients we can take the advantage
of time accuracy and compression properties of wavelet in FW-TGM
method.

0 100 200 300 400 500 600
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

x

E
rr

or

D = 10 using F-WGM

0 100 200 300 400 500 600
−3

−2

−1

0

1

2

3

4
x 10

−3

x

E
rr

or

D = 10 using FW-TGM
Ref: B. V. Rathish Kumar, Mani Mehra, Time accurate Fast

Wavelet-Taylor Galerkin method for partial differential equations,

Numerical methods for partial differential equations, Vol. 22 (2)

(2005) pp. 274-295.

Mani Mehra Applications of Wavelets to Partial Differential Equations 18/48



o

Part 1: Wavelet-Taylor Galerkin method
Part 2: Adaptive wavelet collocation method

Motivation
Wavelet-Taylor Galerkin method
Conclusion and future plan

Inviscid Burgers equation (quasilinear hyperbolic
conservation equation)

Case 1: Initial condition u(x , 0) = sin(2πx). The solution due to
FD scheme develops local oscillations while the solution due to
FW-TGM continues to be smooth.
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Inviscid Burgers equation (quasilinear hyperbolic
conservation equation)
Case 2: Here we are using initial condition

u(x , 0) =

{

1 + x −1 ≤ x ≤ 0
1 − x 0 ≤ x ≤ 1
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The Navier-Stokes equations

A two-dimensional incompressible viscous flow is described by the
Navier-Stokes equations. In vorticity/stream-function formulation:

−∆ψ = ω

∂ω

∂t
+ J(ψ, ω) = ν∇ω + curlf

where ω is the vorticity field (curl of the non-divergent velocity
field), ψ the stream function, f a forcing term and
J(ψ, ω) = ψyωx − ψxωy the two-dimensional Jacobian operator.
Rewriting these equations as follows:

−∆ψ = ω

∂ω

∂t
= ν∇ω + s, s = curlf − J(ψ, ω)
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Wavelet-Taylor Galerkin method for Navier-Stokes Split the
problem into three subproblems: solve a Poisson equation to
obtain stream function from the vorticity, evaluate the non-linear
term, integrate the heat equation.
Starting from ω̃n at time t = nδt

Compute ψ̃n by solving Poisson equation. Here the numerical
solution has been searched as the long time asymptotic
solution of the heat equation.

Perform inverse wavelet transform to obtain nodal values ψn

and ωn.

Compute the nonlinear r.h.s sn by collocation approach using
a second-order, energy enstrophy conserving, Arakawas’
scheme.

Compute the s̃n by sn.

Finally solve the heat equation using the wavelet-Taylor
Galerkin schemes to obtain ω̃n+1.
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solution has been searched as the long time asymptotic
solution of the heat equation.

Perform inverse wavelet transform to obtain nodal values ψn

and ωn.

Compute the nonlinear r.h.s sn by collocation approach using
a second-order, energy enstrophy conserving, Arakawas’
scheme.

Compute the s̃n by sn.

Finally solve the heat equation using the wavelet-Taylor
Galerkin schemes to obtain ω̃n+1.
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Numerical simulation

The numerical experiment we present studies the merging of two
same sign vortices. It concerns free decaying turbulence (no forcing
term). The initial condition for the simulation considered is

ω(x , y) =

i=3
∑

i=1

Aiexp(−((x − xi )
2 + (y − yi)

2)/σ2
i )

with variables σi = 1/π, amplitudes A1 = A2 = −2A3 = π, and
positions x1 = 3π/4, x2 = x3 = 5π/4,
y1 = y2 = π, y3 = π(1 + 1/(9σ2)). In fully developed
two-dimensional turbulent flows the chance of vortex merging
increases with the density of vortices. Here with only three vortices
we need this specific configuration to ensure a rapid merger.
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In a 2π × 2π box, three vortices with a Gaussian vorticity profile
are present two are positive with the same intensity (π), one is
negative with half the intensity of others.

Three vortex interaction: initial state (t=0)

Further parameters are J = 8, δt = 2.5 × 10−3, ν = 5 × 10−5. The
turnover time of one of the positive vortices is initially T = 4.0,
and the initial Reynolds number based on the circulation of one of
the positive vortices is Re = 2 × 104. The thresholds used in the
wavelet compression are εv = 10−8, εM = 10−8.
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t=10

t=30
t=40

t=20

Three vortex interaction at different times
Ref: B. V. Rathish Kumar, Mani Mehra, A Time-Accurate
pseudo-wavelet scheme for Parabolic and Hyperbolic PDE’s,
Nonlinear Analysis, Vol. 63 (2005) pp. e345-e356.
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Conclusions
Wavelet-Taylor Galerkin method:

Space and time accurate method

Taking advantage of wavelet compression of operator as well
as localized function (e.g Gaussian) therefore computationally
efficient

Method shows Improved stability properties

Future plans

Incorporation of space-time adaptive features to the newly
proposed wavelet-Taylor Galerkin method
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Collaborator

Nicholas Kevlahan (McMaster University)
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Adaptive wavelet collocation method on the sphere
Conclusions and future directions

Why general manifolds?(e.g. Sphere)

Application of adaptive wavelet collocation method (AWCM)
to the problems of geodesy, climatology, meteorology
(Representative examples include forecasting the moisture and
cloud water fields in numerical weather prediction).

Many PDEs arise from mean curvature flow, surface diffusion
flow and Willmore flow on the sphere.
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Why wavelets?

Fast O(N ) transform.

Dynamic grid adaption to the local irregularities of the
solution.
(This situation arises e.g. in the tracking of storms or fronts
for the simulation of global atmospheric dynamics).
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Why wavelets on manifolds? (e.g. spherical wavelets)

Spherical triangular grids (quasi uniform triangulations) avoid
the pole problem.
Conventional grid–uniform longitude-latitude grid

Problem- Singularity of coordinate system near the poles
Solution-

Necessary to introduce auxiliary coordinate system.

Another solution is to avoid the introduction of the ’metric

term’ which are unbounded near the poles.

To solve PDEs efficiently using adaptivity on general manifold
by wavelet methods was an open problem.

Past applications of wavelets to turbulence have been mainly
restricted to flat geometries which severely limits for
geophysical applications.
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Wavelet multiresolution analysis of L2(S)

Definition

MRA is characterized by the following axioms

V j ⊂ V j+1 (subspaces are nested).
⋃j=∞

j=−∞ V j = L2(S).

Each V j has a Riesz basis of scaling function {φj
k |k ∈ Kj}.

Define W j = {ψj
m(wavelets)|m ∈ Mj} to be the complement of

V j in V j+1, where V j+1 = V j ⊕W j .

φj
k =

∑

l∈Kj+1

h
j
k,lφ

j+1
l (dilation equation)

ψj
m =

∑

l∈Kj+1

g
j
m,lφ

j+1
l ,m ∈ Mj (wavelet equation)
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Construction of spherical wavelets based on spherical
triangular grids
The set of all vertices

S j = {pj
k ∈ S : p

j
k = p

j+1
2k |k ∈ Kj} and Mj = Kj+1/Kj .

Level 0

Dyadic icosahedral triangulation of the sphere
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Fast wavelet transform

e4 e3

e2e1

f1

f2

v1 v2

m

The members of the neighborhoods
used in wavelet bases (m ∈ Mj ,
Km = {v1, v2, f1, f2, e1, e2, e3, e4}).

Analysis(j) :

∀m ∈ Mj : d j
m = c j+1

m −
∑

k∈Km

s̃
j
k,mc

j
k ,

∀m ∈ Kj : c
j
k = c

j+1
k .

Synthesis(j) :

∀m ∈ Kj : c
j
k = c

j
k ,

∀m ∈ Mj : c j+1
m = d j

m +
∑

k∈Km

s̃
j
k,mc

j
k .
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For linear basis, s̃v1 = s̃v2 = 1/2
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k,mc
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k .

For Butterfly basis, s̃v1 = s̃v2 = 1/2,
s̃f1 = s̃f2 = 1/8,
s̃e1 = s̃e2 = s̃e3 = −1/16
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Wavelet compression

uJ(p) =
∑

k∈K0 cJ0
k φ

J0
k (p) +

∑j=J−1
j=J0

∑

m∈Mj d
j
mψ

j
m(p)

Test function Wavelet locations xJ
k without

compression at J = 6, #K6 = 40962
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ε controls the total active grid
points N(ε) by the following
relation N(ε) ≤ c2ε

− n
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Therefore, approximation error
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grid
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Calculation of other differential operators on adaptive
grid

The flux term present in the spherical advection equation can
be expressed in the form of flux divergence and Jacobian
operators, ∇.(Vu) = ∇.(u∇χ) − J(u, ψ)
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Motivation
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Conclusions and future directions

Application of spherical wavelets to compress
turbulence

What is turbulence?
Smooth flow is not possible at Re = uL

ν >> 1, and at
Re = O(104) it becomes turbulent.
In direct numerical simulation (DNS) we compute all degrees
of freedom of the flow, whose number increases with Reynolds
number (e.g N(total number of grid points) ≈ Re for
two–dimensional DNS and N ≈ Re9/4 for three–dimensional
DNS). Atmospherical flows have Re ≥ 106, therefore, the
computation of atmospheric flows remain a grand
challenge!!

What are coherent structures?
A coherent structure is associated with motion of collective
part of fluid (e.g in geophysical fluid dynamics many of
coherent structures are vortices (local masses of rapidly
rotation fluid))
We find vortices on all scales, from little dust devils on a hot
summer day to ocean eddies thousand kilometer across
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Motivation
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Conclusions and future directions

Application of spherical wavelets to compress
turbulence

Turbulence can be divided into two orthogonal parts: a
organized (coherent), inhomogeneous, non-Gaussian
component and random noise (incoherent), homogeneous and
Gaussian component.

The coherent vortices must be resolved, but the noise may be
modeled (or neglected entirely).

The coherent vortices can be extracted using nonlinear
wavelet filtering.

This is the concept of Coherent Vortex Simulation which was
developed by Marie Farge, Kai Schneider and Nicholas Kevlahan in
flat geometries.
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Vorticity function. Reconstructed with 40%
significant wavelets.
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Diffusion equation

ut = ν∆Su + f

where f is localized source chosen such a way that the solution of
diffusion equation is given by

u(θ, φ, t) = 2e
−

(θ−θ0)2+(φ−φ0)2

ν(t+1)

Such equations arise in the application of Willmore flow, surface
diffusion flow etc.
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Diffusion Equation

Initial condition at t = 0 Adaptive grid at t = 0
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Diffusion Equation

Solution using AWCM at
t = 0.5

Adaptive grid at t = 0.5
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Diffusion Equation

The potential of adaptive
algorithm is measured by
compression coefficients

C =
N(ε = 0)

N(ε)
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Spherical advection equation

∂u

∂t
+ V .∇Su = 0,

Such equations arise typically in the context of numerical weather
forecast or in climatological studies, and they provide some of the
most challenging and CPU time consuming problems in modern
computational fluid dynamics.
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Ref: M. Mehra, N.K.-R. Kevlahan, An adaptive multilevel wavelet
solver for elliptic equations on an optimal spherical geodesic grid,
Submitted to SIAM J. Sci. Comp. (2007). Available at
www.math.mcmaster.ca/kevla/pdf/articles/sphere_mg.pdf
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Conclusions

Adaptive wavelet collocation method:

Used for time evolution problems (e.g diffusion and advection
equations)

Dynamic adaptivity is necessary for atmospheric modeling.

Fast O(N ) wavelet transform and O(N ) hierarchical finite
difference schemes over triangulated surface for the
differential operators is used.

Verified convergence result predicted in theory.

Adaptive multilevel wavelet solver:

Used for elliptic problems (e.g Poisson equation).

The improved truncation error and efficiency of solver on an
optimal spherical geodesic grid
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Future plans

Application of AWCM and adaptive multilevel solver to more
realistic models (e.g. geostropic turbulence which is an
unsolved challenging topic according to Ref: D. G. Dritschel,
B. Legras, Modelling ocean and atmospheric vortices, Physics
today, 1993.) (This work is currently underway!!)

Application of diffusion wavelets to partial differential
equations
Ref: Biorthogonal diffusion wavelets for multiscale
representations on manifolds and graphs Proc. SPIE Vol.
5914, 5914M Wavelets XI; Manos Papadakis, Andrew F.
Laine, Michael A. Unser; Eds., 2005
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Thank you

http://www.math.mcmaster.ca/vmmehra
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