Math 2E03- Introduction to Modelling

Instrutor- Dr. Mani Mehra

Department of Mathematics and Statistics McMaster Univ.

A survey of models containing DCEs

Teena is saving up for a new Barbie doll by stuffing her weekly allowences of $\$ 2$ in her mattress. Each week, her current savings are equal to the previous week's saving plus two dollars. If a represent the amount of money she has, then mathematically the amount of money sha has on the $n^{\text {th }}$ week is

$$
\begin{equation*}
a_{n}=a_{n-1}+2 \tag{1}
\end{equation*}
$$

This is known as difference equation. More genearally,

$$
\begin{equation*}
a_{n}=f\left(a_{n-1}\right) \tag{2}
\end{equation*}
$$

A survey of models containing DCEs

Teena is saving up for a new Barbie doll by stuffing her weekly allowences of $\$ 2$ in her mattress. Each week, her current savings are equal to the previous week's saving plus two dollars. If a represent the amount of money she has, then mathematically the amount of money sha has on the $n^{\text {th }}$ week is

$$
\begin{equation*}
a_{n}=a_{n-1}+2 \tag{3}
\end{equation*}
$$

This is known as difference equation. More genearally,

$$
\begin{equation*}
a_{n}=f\left(a_{n-1}\right) \tag{4}
\end{equation*}
$$

What is difference between difference equations (DCs) and differential equations (DEs)?

DCs deal with finitely-spaced steps, while DEs are based on continuous changes in the variables. Example of DCs is as in equation (2) .

The world of high finance

Problem: Nicholas takes $\$ 1000$ and places it in a bank account advertising 12% interest, calculated ('Compounded') monthly. He neither deposits nor withdraws any money from this account. How much is in his account after n months?.

The world of high finance

Problem: Nicholas takes $\$ 1000$ and places it in a bank account advertising 12% interest, calculated ('Compounded') monthly. He neither deposits nor withdraws any money from this account. How much is in his account after n months?.
The Solution Compound interest differ from the simple interest...how?

The world of high finance

Problem: Nicholas takes $\$ 1000$ and places it in a bank account advertising 12% interest, calculated ('Compounded') monthly. He neither deposits nor withdraws any money from this account. How much is in his account after n months?.
The Solution Compound interest differ from the simple interest...how? If a_{n} is current amount, where n is our index indicating how many compounding periods have gone by since the money was deposited at $n=0.12 \%$ was the advertise price so $i=.12$. Finally since the bank divides the advertised rate by the number of yearly compounding periods, introduce $N=12$.

$$
a_{n}=a_{n-1}+\frac{i}{N} a_{n-1}
$$

In more generalization sense

$$
\begin{equation*}
a_{n}=\left(1+\frac{i}{N}\right)^{n} a_{0} \tag{8}
\end{equation*}
$$

If amount is a function of some other time variables- for instance a_{t} where t is measured in years. Since interest is compounded N times in a year, $n=N t$ and

$$
\begin{equation*}
a_{t}=\left(1+\frac{i}{N}\right)^{N t} a_{0} \tag{9}
\end{equation*}
$$

Interest with Money Deposits/Withdrawl

Up until now, we have assumed that the amount of money in a particular account is not touched by its owner-the money is simple left in the account to accumulate interest.
If a particular amount b is added or subtracted from the account each month.?

Interest with Money Deposits/Withdrawl

Up until now, we have assumed that the amount of money in a particular account is not touched by its owner-the money is simple left in the account to accumulate interest.
If a particular amount b is added or subtracted from the account each month.?

$$
\begin{equation*}
a_{n}=\left(1+\frac{i}{N}\right) a_{n-1}+b \tag{12}
\end{equation*}
$$

Interest with Money Deposits/Withdrawl

Up until now, we have assumed that the amount of money in a particular account is not touched by its owner-the money is simple left in the account to accumulate interest.
If a particular amount b is added or subtracted from the account each month.?

$$
\begin{equation*}
a_{n}=\left(1+\frac{i}{N}\right) a_{n-1}+b \tag{14}
\end{equation*}
$$

The solution is

$$
\begin{equation*}
a_{n}=\left(1+\frac{i}{N}\right)^{n}\left(a_{0}+\frac{N b}{i}\right)-\frac{N b}{i} \tag{15}
\end{equation*}
$$

Problem: Craig deposits $\$ 500$ annually into an account which pays 8% interest, compounded annually. He initailly openned the account by placing $\$ 1000$ into it. How much money has he put into it after 10 years.?

Problem : Craig deposits $\$ 500$ annually into an account which pays 8% interest, compounded annually. He initailly openned the account by placing $\$ 1000$ into it. How much money has he put into it after 10 years.?
Solution : He placed $\$ 6000$ into the account. Finally he had $\$ 9402.21$.

Problem of Fibonacci's rabits: Assume that each pair of rabbits breeds twice, once at age 1 month and once at age 2 months. Also assume that each mating produces 1 pair each time. Let a_{n} be the number of newborn pairs at the $n^{\text {th }}$ month, beginning with one newborn pair $\left(a_{0}=1\right)$. This in the first month one pair will be born ($a_{1}=1$), and the following month two newborn pairs will be born-one from the first (a_{0}) pair, and one from the second a_{1} pair:

Problem of Fibonacci's rabits: Assume that each pair of rabbits breeds twice, once at age 1 month and once at age 2 months. Also assume that each mating produces 1 pair each time. Let a_{n} be the number of newborn pairs at the $n^{\text {th }}$ month, beginning with one newborn pair $\left(a_{0}=1\right)$. This in the first month one pair will be born ($a_{1}=1$), and the following month two newborn pairs will be born-one from the first (a_{0}) pair, and one from the second a_{1} pair:

$$
\begin{align*}
& a_{2}=a_{0}+a_{1}=2 \\
& a_{3}=a_{1}+a_{2}=3 \tag{18}\\
& a_{2}=a_{2}+a_{3}=5
\end{align*}
$$

Problem of Fibonacci's rabits: Assume that each pair of rabbits breeds twice, once at age 1 month and once at age 2 months. Also assume that each mating produces 1 pair each time. Let a_{n} be the number of newborn pairs at the $n^{t h}$ month, beginning with one newborn pair $\left(a_{0}=1\right)$. This in the first month one pair will be born ($a_{1}=1$), and the following month two newborn pairs will be born-one from the first (a_{0}) pair, and one from the second a_{1} pair:

$$
\begin{align*}
& a_{2}=a_{0}+a_{1}=2 \\
& a_{3}=a_{1}+a_{2}=3 \tag{20}\\
& a_{2}=a_{2}+a_{3}=5
\end{align*}
$$

The DCE for all $n \geq 2$

$$
\begin{equation*}
a_{n}=a_{n-1}+a_{n-2} \tag{21}
\end{equation*}
$$

Linear and Nonlinear operations

Consider some unknown operator Φ applied to a variable or function x. The Φ is only a linear operations if the following holds true.

- $\Phi(k x)=k \Phi(x)$

Linear and Nonlinear operations

Consider some unknown operator Φ applied to a variable or function x . The Φ is only a linear operations if the following holds true.

- $\Phi(k x)=k \Phi(x)$
- $\Phi(x+y)=\Phi(x)+\Phi(y)$

Linear and Nonlinear operations

Consider some unknown operator Φ applied to a variable or function x. The Φ is only a linear operations if the following holds true.

- $\Phi(k x)=k \Phi(x)$
- $\Phi(x+y)=\Phi(x)+\Phi(y)$
where k is constant. (examples are given in the class)

Linear and Nonlinear operations

Consider some unknown operator Φ applied to a variable or function x. The Φ is only a linear operations if the following holds true.

- $\Phi(k x)=k \Phi(x)$
- $\Phi(x+y)=\Phi(x)+\Phi(y)$
where k is constant. (examples are given in the class)

