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Introducing Perturbation: As you will recall the method for determining
the stability of an equilibrium point (S, I) is to introduce small
perturbation and see what happens. These perturbation will not be
constants-they can change with time. We are adding eto S, é to I, and

substitute these in to ODEs

S=84+¢
I=1+9§
$=5+¢

S=1[b—a(S+e]+9)
¢ = (b—aS)I + (—al)e + (b —aS)d — aed

after ignoring some terms

A

é =~ (—al)e+ (b —aS)d
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Similarly we can drive
0~ (al)e + (aS —b)d

We can write it in a matrix form

€ —al b—aS €
) al aS—0>b| |d

Now how to solve this system of ODEs?. Looking at (S, ) = (N, 0) for
both cases

€ 0O b—alN €
) 0 aN —bl| |6

We will solve this system of ODESs by reducing it into eigenvalues
problem.
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Let e = Ae? and § = Be. If we let z(t) = ‘| and v = , then

J B
z(t) = e o so that we can rewrite the above matrix equatfon_ as follows

- 0 b—alN
(1) x(t) = x(t)
0 alN —b
0 b—aN
(2) ety = ¢ ey
0 alN —b

Since v # 0 so we have the following eigenvalue problem:

0 b—aN
(3) AU = ¢ v

'l O aN —b
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we get two eigenvalues A = 0,aN — b Thus we have the solution
correspond to A = 0

(4) 1

where n is any real number. Similarly solution correspond to
A=aN —bis

(5) x(t) _ 6(aN—b)t

Forcase 1 aN — b > 0, so eV =0t increases as time increases-
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we get two eigenvalues A = 0,aN — b Thus we have the solution
correspond to A = 0

(6) 1

where n is any real number. Similarly solution correspond to
A=aN —bis

(7) JORT

Forcase 1 aN — b > 0, so eV =0t increases as time increases-thus
(IV,0) is an unstable equilibrium point.
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For case 2 aN — b < 0, so e(@N =Yt decreases as time increases




\4

For case 2 aN — b < 0, so e(@N =0t decreases as time increases so
point (IV, 0) is stable equilibrium point.
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For case 2 aN — b < 0, so e(@V=0)t decreases as time increases so
point (V, 0) is stable equilibrium point. For case 1, now we will have
the equilibrium point (p, N — p) to look at. Now we get two eigenvalues

0
A =0,b—aN. So solution correspond to A =0is x(t) = n . So
1

solution correspond to A = b — alN is z(t) = elb=aN)ip

A
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For case 2 aN — b < 0, so e(@V=0)t decreases as time increases so
point (V, 0) is stable equilibrium point. For case 1, now we will have
the equilibrium point (p, N — p) to look at. Now we get two eigenvalues

0
A =0,b—aN. So solution correspond to A =0is x(t) = n . So
1

solution correspond to A = b — alN is z(t) = elb=aN)ip . Thus this

point is a stable equilibrium point.
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SIR Epidemics

SIR stands for Susceptible—Infected—Removal epidemics. The term
removal is a general one which allows for infected individuals to be no
longer infected, yet not susceptible either.
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SIR Epidemics

SIR stands for Susceptible—Infected—Removal epidemics. The term
removal is a general one which allows for infected individuals to be no
longer infected, yet not susceptible either.

dS
2 48T
7 aS
dl
9 — =aSI —bl
(9) o aS
dR
— = bl
dt

We are assuming that the rate of recovery/death is proportional to
number of sick people.
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Vaccinations/Cures in epidemic modelling

People can go directly from the susceptible to the Immune category
through the adminstration of a vaccine. Sometime the number of
vaccinations given to be proportional to the number of susceptible,
Infected (sick) or recovered people. But generally a certain number of
shots would be given per day or time period. Let us suppose some
parameter c that represents the number of vaccinations given per time
period. Then the model will look like
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Vaccinations/Cures in epidemic modelling

People can go directly from the susceptible to the Immune category
through the adminstration of a vaccine. Sometime the number of
vaccinations given to be proportional to the number of susceptible,
Infected (sick) or recovered people. But generally a certain number of
shots would be given per day or time period. Let us suppose some
parameter c that represents the number of vaccinations given per time
period. Then the model will look like

dS
E:—CLSI—C
dl
11 — =aST — bl
(11) o aS
dR
— = bl
7 +c

A
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Chemical Reactions

Model of reaction rates:
Consider the following equation for the oxidation of iron

(12) 3Fe+ 209 — Fes0y

One would expect the increase in the amount of iron oxide to be
proportional to the decreases in oxygen and in iron. It is important to
note that 2 moles of oxygen and 3 of iron are needed, so for every
decraeses in oxygen of 2 moles there will be an incraese in only 1 mole
of iron oxide. Thus the decease in a reactant must be devided by its
stoiciometric coeffcient:
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Chemical Reactions

Model of reaction rates:
Consider the following equation for the oxidation of iron

(14) 3Fe+ 209 — Fes0y

One would expect the increase in the amount of iron oxide to be
proportional to the decreases in oxygen and in iron. It is important to
note that 2 moles of oxygen and 3 of iron are needed, so for every
decraeses in oxygen of 2 moles there will be an incraese in only 1 mole
of iron oxide. Thus the decease in a reactant must be devided by its
stoiciometric coeffcient:

(15) d[Fes04) _ 1d[Oz] _ 1d[Fe]

dt 2 dt 3 dt




In more general terms, for reactants R, products P and the
coefficients r and p




In more general terms, for reactants R, products P and thel

coefficients r and p

riBy +reRe + -+ rpnRy = p1 P+ pePe+ -+ prbk

- (%)%
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