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Age structure: the simplest case:

Many species of interest do’not have the simple life history that allows
us to blindly use the models we have just developed. Females of
snapping turtles do not become sexually mature until they are more
than 5 years old, and continue to lay eggs essentially throughout their
life, which may be as long as 100 years. How should we understand
the dynamics of this species.?.....

Befor considering forces that prevent populations from growing
expontially, we will consider whether our prediction of expontial growth
holds in a slightly more complex setting where we include age
structure. We will study a hypothetical organism that lives for 2 years,
potentially reproducing either at age 1 or at age 2. We will call an
organism 0 years old during its first year of life and 1 year old during its
second year. We will assume that all individuals die before they reach
their third year.
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The parameters and variables we need to describe this are as follows.

• m0 is the mean number of offspring of a 0 year old the following
year.

• m1 is the mean number of offspring of a 1 year old the following
year.

• S0 is the probability that a 0 year old survives to become a 1 year
old.

• n0(t) is the number of 0 year olds at time t.

• n1(t) is the number of 1 year olds at time t.

• N(t) = n0(t) + n1(t) is the total number of organisms at time t.
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We first describe the model in words, and then in equations

• n0(t + 1) = number of offspring of 0 year olds in year t + number
of offspring of 1 year olds in year t.

• n1(t + 1) = number of 0 year olds in year t times the probability of
survival from 0 to 1.

Translating this into equations, we find that

n0(t + 1) = n0(t)m0 + n1(t)m1

n1(t + 1) = n0(t)S0

(1)
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Does a population grow exponentially even we have considered age
structure model??
Problem 1: What happens if in year 0 we have 10 zero year olds and
no one year olds... n0 = 10, n1 = 0 are the starting sizes in each year
class. Using equations (1) we see the next year

n0(1) = 10m0

n1(1) = 10S0

(2)

Problem 2: If in year 0 we have no zero year olds and 10 one year olds
, so that n0(0) = 0 and n1(0) = 10. Using equation (1) we see the next
year

n0(1) = 10m1

n1(1) = 0
(3)
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There are very different populations, so we conclude that no single
number represents a growth rate. How could we get a specific,
constant rate?
Let us assume that the ratio of 0 years olds to 1 years olds remain the
same i.e n1(t) = cn0(t), where c is the ratio of one year olds to zero
years old. Substituing in to model (1), we find

n0(t + 1) = n0(t)m0 + cn0(t)m1

cn0(t + 1) = n0(t)S0

(4)

Now eliminating n0(t + 1) and n0(t), we get

(5) c2m1 + cm0 − S0 = 0

(6) c =
−m0 ±

√

(m2

0
+ 4S0m1)

2m1
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From equation (1) we see that the growth rate of the population is S0/c,
so for the positive value of c, S0/c is candidate for the growth rate of
population.
A much more convenient notation , essential for extending the models
to include more age classes, is to use matrices. We can write the
model (1) using matrices as





m0 m1

S0 0









n0(t)

n1(t)



 =





n0(t + 1)

n1(t + 1)





We will assume that the ratio of 0 years olds to 1 year olds remains
constant and the population grows at the rate λ per year. We call this
ratio of individuals at different ages that remains constant a stable age
distribution. Thus, the stable age distribution is not unique-if 10 zero
year olds and 5 one years old is a stable age distribution, so is 20 zero
years olds and 10 one years olds.
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We now express the assumption that the pop. is in a stable age
distribution in matrix and vector notation. The idea is that in every year
the ratio of 0 years old to 1 years olds remains constatnt, but that the
number in ecah age class grows at the rate λ each year. We write

(7)





m0 m1

S0 0









n0(t)

n1(t)



 =





λn0

λn1





In honour of P. H. Leslie, who was first one to describe the use of
matrices to dexcribe population dynamics with age structure, we will
call the matrix in this equation Leslie matrix and denote it by L. Let N

be the vector of population sizes N = (n0 n1)
′

, then we can write
model for the stable age distribution in more compact form

(8) LN = λN
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