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A survey of models containing PDEs

When creating our ODEs previously we have been only inserted in
systems which changes with respect to one variable in particular
changes with respect to time. However many systems insist on
behaving in a much more complicated manner. For instnace, if a drop
of dye is placed in a pail the concentration at some point will depend
both on the point’s position relative to the placement of dye and on the
time elapsed since the dye was introduced. The concentration at that
point changes with space and time.
In response we turn to PDEs, which allow us to identify the different
variables that a system may be dependent on and set up our models
accordingly.
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What is a partial differential equation The simplest form of partial
differential equations (PDE) involving a suitably differentiable unknown
function u(x, y) of the two independent variables x and y is an equation
that relates x, y, u and some partial derivatives of u with respect to x

and y. The order of the PDE is the order of the highest partial
derivative of u that occurs in the equation, so a general first order PDE
for the function u(x, y) is of the form

(1) F (x, y, u, ux, uy) = 0

where F is an arbitrary function of its arguement.

More generally, a first order PDE for a function (u(x1, · · · , xn) of the n

independent variables x1, · · · , xn is an equation of the form

(2) G(x1, · · · , xn, u, ux1
, · · · , uxn

) = 0

where G is an arbitrary function of its arguements and uxi
= ∂u

∂xi

, for
i = 1, 2, · · · , n
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Conservation law

It states simply that mass can either be created nor destroyed. One of
the implications of this law is that in modelling the spread of of particles
(like pollution in a lake or cars on a road) we must create models which
do not allow for the spontaneous creation or disappearance of any of
our particles. The mathematical form of this law can be used as the
first step in creating models to account for the movement of such
particles.

(a) Deriving the Conservation law: We will represent the density of
cars at a particular time and place as U(x, t). The flow of cars F will be
related in some manner to the density of the cars. The total flow
represents the change in total number of cars with respect to time.
Another way to calculate the total flow is just as the mass of an object
is calculated by summing the density of small sections of it.

Mani Mehra, Department of Mathematics and Statistics, McMaster Univ. – p. 4/8



Conservation law

It states simply that mass can either be created nor destroyed. One of
the implications of this law is that in modelling the spread of of particles
(like pollution in a lake or cars on a road) we must create models which
do not allow for the spontaneous creation or disappearance of any of
our particles. The mathematical form of this law can be used as the
first step in creating models to account for the movement of such
particles.
(a) Deriving the Conservation law: We will represent the density of
cars at a particular time and place as U(x, t). The flow of cars F will be
related in some manner to the density of the cars. The total flow
represents the change in total number of cars with respect to time.
Another way to calculate the total flow is just as the mass of an object
is calculated by summing the density of small sections of it.

Mani Mehra, Department of Mathematics and Statistics, McMaster Univ. – p. 4/8



The total number of cars on stretch of road can be calculated by
summing the density of these small portions over the total interval from
x to x + ∆x is

∫ x+∆x

x
U(x, t)dx. Now change in this number with

respect to time d
dt

∫ x+∆x

x
U(x, t)dx is the change in total number of

cars with respect to time....the total flow. Thus we can equate the two
expressions for the total flow.

d

dt

∫ x+∆x

x

U(x, t)dx = F [U(x, t)] − F (U(x + ∆x, t)]

∫ x+∆x

x

∂U(x, t)

∂t
= F [U(x, t)] − F (U(x + ∆x, t)]

(5)

We are treating ∆x → 0 so

∂U(x, t)

∂t
∆x ≈ F [U(x, t)] − F (U(x + ∆x, t)]

∂U(x, t)

∂t
= −

∂F [U(x, t)]

∂x

(6)
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We have now derived the conservation law

(9)
∂U

∂t
+

∂F (U)

∂x
= 0

Since F is a function of U

(10)
∂U

∂t
+

∂F (U)

∂U

∂U

∂x
= 0

if ∂U
∂t

> 0 the density of car is increasing ans so the flow of cars past
some point x should be decreasing.

(b) The Differential Derivation of the conservation Law
We use the same strip of road x long and essentially the same
arguemnets equating the two total flow equations to one another.
The changing density ∂U

∂t
, when multiplied by the total length ∆x

should approximately represent the change in number of car over this
interval. Choosing a point at the middle and calling it x, we can see
that the edges represent the points x −

∆x
2

and x + ∆x
2
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Thus the flow in minus the flow out is F [U(x −
∆x
2

, t)] − F (U(x + ∆x
2

, t)

∂U(x, t)

∂t
∆x ≈F [U(x −

∆x

2
, t)] − F (U(x +

∆x

2
, t)]

∂U

∂t
≈−

∂F

∂x

(13)

(c) The integral derivation of the conservation law
Once again we will consider a certain stretch of road -this time from
x = a to x = b. The sensity U at some time t2 minus U at t1, integarted
over every interval dx from a to b will represent the change in the total
number of cars on this strech of road from t1 to t2.

Similarly, the flow at a minus the flow at b, integrated over every time
interval dt from t1 to t2 will also represent the change in the total
number of cars on this strech of road from t1 to t2. Therefore

(14)
∫ b

1

[U(x, t2) − U(x, t1)]dx =

∫ t2

t1

F [U(a, t)] − F [U(b, t)]dt
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We can now rewrite our equation

(17)
∫ b

a

∫ t2

t1

∂U

∂t
dtdx =

∫ t2

t1

∫ b

a

−
∂F

∂x
dxdt

(18) =⇒
∂U

∂t
+

∂F

∂x
= 0
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