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Special examples of F (U): What can affect particles flowing through a
medium?. Convection (or advection) is the term for movement of
particles in a medium that has its own internal velocity. For example,
pollen blown by the wind is moving through the air, driven by
convection. Diffusion is the term given to ‘random spreading’ like that
seen when we drop dye into water, for instance. It is a result of
Brownian Motion( the vibration of the molecules of the medium ), which
in and of itself can be affected by serveral factors including
temperature. Let’s look at what the representation of flow is for these
kinds of motion.
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Convection:
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Here we see that c represent the speed of the medium that the
particles are in .
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Convection/Diffusion while only one or the other may be prevalent in a
given system, convection and diffusion are often at work
simultaneously-in the example given for the convection equation (the
pollen blowing in the wind) diffusion is also at work, accounting in
particular for any lateral spreading of the pollen with respect to the
wind direction. We simply include both convection and diffusion terms
in the equation.
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Convection equation

Since we think the solution to the convection equation may be in the
form of a wave, we will need to borrow the idea of galilean
transformation in order to gain more insight into our equation.

Imagine Fiona and Amber sitting on a pier. Fiona is on a surfboard
waiting for the next big wave. She measures distances cordinates with
primes x

′

while Amber, stationary on the pier, measures distances
without primes x.

A wave rolls in at a speed c and Fiona rides it in the x direction. At the
time t she will have a travelled a distance ct and her origin will be that
far away from Amber’s. Fiona would measure Amber as being at −ct

since she travelled in the positive x direction. If Fiona spots some
people fishing at a distance x

′

away from her, what does Amber
measure their distance as?.
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Thus the total distance as measured by Amber is x = ct + x
′

.
A Galilean Transformation takes one (in classical physics) from one
frame of reference to another frame of reference moving (with a
constant velocity) relative to the first, perhaps also with a different
definition of the origin of time and position. x− > x

′

= x + vt − x
′

0

We will use this idea to redefine as follow

U(x, t) = Ū(x − ct)

Solution to the convection equation We wish to make the substituion
x − ct into U . We thus have the following.

s = x − ct

∂s

∂x
= 1

∂s

∂t
= −c
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U(x, t) = Ū(s)

∂Ū

∂x
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′
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= −cŪ

′

which we can substitute into our convection equation

∂Ū

∂x
+

∂Ū

∂t
= 0

The PDE was satisfied without any kind of restriction on the function
itself except that it had to represent a travelling wave of some sort.
This means that any wave like function can be a solution, as long as it
is a function of (x − ct). For example, try sin(x − ct)
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How do we interpret such a solution?. We think back to Fiona cruising
along her cupboard. She should stay at whatever height she was at
when she caught the wave and so her height is constant. Normally to
an observer the height of the wave would be dependent upon time and
distance but by substituting x − ct we have switched to Fiona’s
coordinates and are riding the wave with her. To her the wave looks
perfectly motionless since she is riding along with it at the same speed
and is always at the same height. The height of wave seems to be
constant as well. If U represents the height of the wave, then U appear
to be constant. This is only true if
x − ct = A using x = x0 at t = 0 we have x = ct + x0

As time goes by this entire wave moves along x = ct + x0 line.

So we
can create our general solution of convection equation is

U(x, t) = U0(x − F
′

(U)t)
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Shock Waves

An interesting phenomena that can be explained nicely with our model
above is the cause of shock waves. Waves in air or water are generally
influenced most greatly by convection and so the convection equation
represent their true nature rather well. When two waves are created at
different spots also have different speeds and heights, it is possible for
them to collide at a particular point in space and time. Our wave
demands that U equals its value of U0 while the other demands that it
be equal to some other value of U0. The confusion creates a shock.

In this case for the two waves to meet, we require F
′

(U2) > F
′

(U1) or
F

′

(U2) < F
′

(U1) depending upon the position of U1 and U2.
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