Math 2E03- Introduction to Modelling

Instructor- Dr. Mani Mehra

Department of Mathematics and Statistics McMaster Univ.

If we were to specify a certain distribution of algae at $t=0$ is $\tilde{U}(x, 0)=f(x)$, then we would also have an initial condition. Let's us impose our first boundary values

$$
\begin{aligned}
& \tilde{U}(0, t)=X(0) T(t)=0 \\
& \Longrightarrow X(0)=0 \\
& B \sin (0)+C \cos (0)=0 \\
& B(0)+C(1)=0 \\
& C=0 \\
& \Longrightarrow X=B \sin (\lambda x)
\end{aligned}
$$

Note we can not let $T(t)=0$, because this would have to told true for all t and thn we would have the trivial case $\tilde{U}=0$ which represent the situation where there is no algae at all. We now impose the other boundary value:

$$
\begin{aligned}
& \tilde{U}(L, t)=X(L) T(t)=0 \\
& \Longrightarrow X(L)=0 \\
& B \sin (\lambda L)=0 \\
& \lambda L=n \pi \\
& \lambda=\frac{n \pi}{L} \\
& \Longrightarrow X_{n}=B_{n} \sin \left(\frac{n \pi}{L} x\right) \\
& \Longrightarrow T_{n}=A_{n} e^{-\left(\frac{n \pi}{L}\right)^{2} D t} \\
& \Longrightarrow \tilde{U}_{n}=C_{n} \sin \left(\frac{n \pi}{L} x\right) e^{-\left(\frac{n \pi}{L}\right)^{2} D t}
\end{aligned}
$$

We now seek a solution involving the linear combination of solutions

$$
\tilde{U}(x, t)=\sum_{n=1}^{\infty} C_{n} \sin \left(\frac{n \pi}{L} x\right) e^{-\left(\frac{n \pi}{L}\right)^{2} D t}
$$

Now our actual population of algae is

$$
U(x, t)=e^{r t} \sum_{n=1}^{\infty} C_{n} \sin \left(\frac{n \pi}{L} x\right) e^{-\left(\frac{n \pi}{L}\right)^{2} D t}
$$

We can now answer the question posed in the problem. Note that the sin term simply oscillates- we can ignore it. It is the e term which will govern the overall growth of the population-if it increases so will the pop. but if it goes to zero the pop. will die out.
Let

$$
\begin{aligned}
& r-\left(\frac{n \pi}{L}\right)^{2} D>0 \\
& r>\left(\frac{n \pi}{L}\right)^{2} D \\
& L>n \pi \sqrt{\frac{D}{r}}
\end{aligned}
$$

For the pop. to grow faster than it diffuse out of the nutrient interval, the lenght of the interval must be greater than $n \pi \sqrt{\frac{D}{r}}$.
Now question arises why we took only constant $k=-\lambda^{2}$
Now we consider another two cases
case 1: $k=0 \ln$ this case $X(x)=B x+C$ where B and C are some constants. Using boundary consitions $X(0)=X(L)=0$ we get $\mathrm{B}=0=\mathrm{C}$ which implies \tilde{U} is identically 0 . Which is not of our interest.
Case 2: $k=\lambda^{2}$

$$
X(x)=A e^{-\lambda x}+B e^{\lambda x}
$$

Again using boundary consitions $X(0)=X(L)=0$ we get $\mathrm{B}=0=\mathrm{C}$ which implies \tilde{U} is identically 0 . Which is not of our interest.

